1 /*
2  * A sensor driver for the magnetometer AK8975.
3  *
4  * Magnetic compass sensor driver for monitoring magnetic flux information.
5  *
6  * Copyright (c) 2010, NVIDIA Corporation.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, write to the Free Software Foundation, Inc.,
20  * 51 Franklin Street, Fifth Floor, Boston, MA	02110-1301, USA.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/i2c.h>
27 #include <linux/interrupt.h>
28 #include <linux/err.h>
29 #include <linux/mutex.h>
30 #include <linux/delay.h>
31 #include <linux/bitops.h>
32 #include <linux/gpio.h>
33 #include <linux/of_gpio.h>
34 #include <linux/acpi.h>
35 
36 #include <linux/iio/iio.h>
37 #include <linux/iio/sysfs.h>
38 /*
39  * Register definitions, as well as various shifts and masks to get at the
40  * individual fields of the registers.
41  */
42 #define AK8975_REG_WIA			0x00
43 #define AK8975_DEVICE_ID		0x48
44 
45 #define AK8975_REG_INFO			0x01
46 
47 #define AK8975_REG_ST1			0x02
48 #define AK8975_REG_ST1_DRDY_SHIFT	0
49 #define AK8975_REG_ST1_DRDY_MASK	(1 << AK8975_REG_ST1_DRDY_SHIFT)
50 
51 #define AK8975_REG_HXL			0x03
52 #define AK8975_REG_HXH			0x04
53 #define AK8975_REG_HYL			0x05
54 #define AK8975_REG_HYH			0x06
55 #define AK8975_REG_HZL			0x07
56 #define AK8975_REG_HZH			0x08
57 #define AK8975_REG_ST2			0x09
58 #define AK8975_REG_ST2_DERR_SHIFT	2
59 #define AK8975_REG_ST2_DERR_MASK	(1 << AK8975_REG_ST2_DERR_SHIFT)
60 
61 #define AK8975_REG_ST2_HOFL_SHIFT	3
62 #define AK8975_REG_ST2_HOFL_MASK	(1 << AK8975_REG_ST2_HOFL_SHIFT)
63 
64 #define AK8975_REG_CNTL			0x0A
65 #define AK8975_REG_CNTL_MODE_SHIFT	0
66 #define AK8975_REG_CNTL_MODE_MASK	(0xF << AK8975_REG_CNTL_MODE_SHIFT)
67 #define AK8975_REG_CNTL_MODE_POWER_DOWN	0
68 #define AK8975_REG_CNTL_MODE_ONCE	1
69 #define AK8975_REG_CNTL_MODE_SELF_TEST	8
70 #define AK8975_REG_CNTL_MODE_FUSE_ROM	0xF
71 
72 #define AK8975_REG_RSVC			0x0B
73 #define AK8975_REG_ASTC			0x0C
74 #define AK8975_REG_TS1			0x0D
75 #define AK8975_REG_TS2			0x0E
76 #define AK8975_REG_I2CDIS		0x0F
77 #define AK8975_REG_ASAX			0x10
78 #define AK8975_REG_ASAY			0x11
79 #define AK8975_REG_ASAZ			0x12
80 
81 #define AK8975_MAX_REGS			AK8975_REG_ASAZ
82 
83 /*
84  * Miscellaneous values.
85  */
86 #define AK8975_MAX_CONVERSION_TIMEOUT	500
87 #define AK8975_CONVERSION_DONE_POLL_TIME 10
88 #define AK8975_DATA_READY_TIMEOUT	((100*HZ)/1000)
89 #define RAW_TO_GAUSS_8975(asa) ((((asa) + 128) * 3000) / 256)
90 #define RAW_TO_GAUSS_8963(asa) ((((asa) + 128) * 6000) / 256)
91 
92 /* Compatible Asahi Kasei Compass parts */
93 enum asahi_compass_chipset {
94 	AK8975,
95 	AK8963,
96 };
97 
98 /*
99  * Per-instance context data for the device.
100  */
101 struct ak8975_data {
102 	struct i2c_client	*client;
103 	struct attribute_group	attrs;
104 	struct mutex		lock;
105 	u8			asa[3];
106 	long			raw_to_gauss[3];
107 	u8			reg_cache[AK8975_MAX_REGS];
108 	int			eoc_gpio;
109 	int			eoc_irq;
110 	wait_queue_head_t	data_ready_queue;
111 	unsigned long		flags;
112 	enum asahi_compass_chipset chipset;
113 };
114 
115 static const int ak8975_index_to_reg[] = {
116 	AK8975_REG_HXL, AK8975_REG_HYL, AK8975_REG_HZL,
117 };
118 
119 /*
120  * Helper function to write to the I2C device's registers.
121  */
122 static int ak8975_write_data(struct i2c_client *client,
123 			     u8 reg, u8 val, u8 mask, u8 shift)
124 {
125 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
126 	struct ak8975_data *data = iio_priv(indio_dev);
127 	u8 regval;
128 	int ret;
129 
130 	regval = (data->reg_cache[reg] & ~mask) | (val << shift);
131 	ret = i2c_smbus_write_byte_data(client, reg, regval);
132 	if (ret < 0) {
133 		dev_err(&client->dev, "Write to device fails status %x\n", ret);
134 		return ret;
135 	}
136 	data->reg_cache[reg] = regval;
137 
138 	return 0;
139 }
140 
141 /*
142  * Handle data ready irq
143  */
144 static irqreturn_t ak8975_irq_handler(int irq, void *data)
145 {
146 	struct ak8975_data *ak8975 = data;
147 
148 	set_bit(0, &ak8975->flags);
149 	wake_up(&ak8975->data_ready_queue);
150 
151 	return IRQ_HANDLED;
152 }
153 
154 /*
155  * Install data ready interrupt handler
156  */
157 static int ak8975_setup_irq(struct ak8975_data *data)
158 {
159 	struct i2c_client *client = data->client;
160 	int rc;
161 	int irq;
162 
163 	if (client->irq)
164 		irq = client->irq;
165 	else
166 		irq = gpio_to_irq(data->eoc_gpio);
167 
168 	rc = devm_request_irq(&client->dev, irq, ak8975_irq_handler,
169 			 IRQF_TRIGGER_RISING | IRQF_ONESHOT,
170 			 dev_name(&client->dev), data);
171 	if (rc < 0) {
172 		dev_err(&client->dev,
173 			"irq %d request failed, (gpio %d): %d\n",
174 			irq, data->eoc_gpio, rc);
175 		return rc;
176 	}
177 
178 	init_waitqueue_head(&data->data_ready_queue);
179 	clear_bit(0, &data->flags);
180 	data->eoc_irq = irq;
181 
182 	return rc;
183 }
184 
185 
186 /*
187  * Perform some start-of-day setup, including reading the asa calibration
188  * values and caching them.
189  */
190 static int ak8975_setup(struct i2c_client *client)
191 {
192 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
193 	struct ak8975_data *data = iio_priv(indio_dev);
194 	u8 device_id;
195 	int ret;
196 
197 	/* Confirm that the device we're talking to is really an AK8975. */
198 	ret = i2c_smbus_read_byte_data(client, AK8975_REG_WIA);
199 	if (ret < 0) {
200 		dev_err(&client->dev, "Error reading WIA\n");
201 		return ret;
202 	}
203 	device_id = ret;
204 	if (device_id != AK8975_DEVICE_ID) {
205 		dev_err(&client->dev, "Device ak8975 not found\n");
206 		return -ENODEV;
207 	}
208 
209 	/* Write the fused rom access mode. */
210 	ret = ak8975_write_data(client,
211 				AK8975_REG_CNTL,
212 				AK8975_REG_CNTL_MODE_FUSE_ROM,
213 				AK8975_REG_CNTL_MODE_MASK,
214 				AK8975_REG_CNTL_MODE_SHIFT);
215 	if (ret < 0) {
216 		dev_err(&client->dev, "Error in setting fuse access mode\n");
217 		return ret;
218 	}
219 
220 	/* Get asa data and store in the device data. */
221 	ret = i2c_smbus_read_i2c_block_data(client, AK8975_REG_ASAX,
222 					    3, data->asa);
223 	if (ret < 0) {
224 		dev_err(&client->dev, "Not able to read asa data\n");
225 		return ret;
226 	}
227 
228 	/* After reading fuse ROM data set power-down mode */
229 	ret = ak8975_write_data(client,
230 				AK8975_REG_CNTL,
231 				AK8975_REG_CNTL_MODE_POWER_DOWN,
232 				AK8975_REG_CNTL_MODE_MASK,
233 				AK8975_REG_CNTL_MODE_SHIFT);
234 
235 	if (data->eoc_gpio > 0 || client->irq) {
236 		ret = ak8975_setup_irq(data);
237 		if (ret < 0) {
238 			dev_err(&client->dev,
239 				"Error setting data ready interrupt\n");
240 			return ret;
241 		}
242 	}
243 
244 	if (ret < 0) {
245 		dev_err(&client->dev, "Error in setting power-down mode\n");
246 		return ret;
247 	}
248 
249 /*
250  * Precalculate scale factor (in Gauss units) for each axis and
251  * store in the device data.
252  *
253  * This scale factor is axis-dependent, and is derived from 3 calibration
254  * factors ASA(x), ASA(y), and ASA(z).
255  *
256  * These ASA values are read from the sensor device at start of day, and
257  * cached in the device context struct.
258  *
259  * Adjusting the flux value with the sensitivity adjustment value should be
260  * done via the following formula:
261  *
262  * Hadj = H * ( ( ( (ASA-128)*0.5 ) / 128 ) + 1 )
263  *
264  * where H is the raw value, ASA is the sensitivity adjustment, and Hadj
265  * is the resultant adjusted value.
266  *
267  * We reduce the formula to:
268  *
269  * Hadj = H * (ASA + 128) / 256
270  *
271  * H is in the range of -4096 to 4095.  The magnetometer has a range of
272  * +-1229uT.  To go from the raw value to uT is:
273  *
274  * HuT = H * 1229/4096, or roughly, 3/10.
275  *
276  * Since 1uT = 0.01 gauss, our final scale factor becomes:
277  *
278  * Hadj = H * ((ASA + 128) / 256) * 3/10 * 1/100
279  * Hadj = H * ((ASA + 128) * 0.003) / 256
280  *
281  * Since ASA doesn't change, we cache the resultant scale factor into the
282  * device context in ak8975_setup().
283  */
284 	if (data->chipset == AK8963) {
285 		/*
286 		 * H range is +-8190 and magnetometer range is +-4912.
287 		 * So HuT using the above explanation for 8975,
288 		 * 4912/8190 = ~ 6/10.
289 		 * So the Hadj should use 6/10 instead of 3/10.
290 		 */
291 		data->raw_to_gauss[0] = RAW_TO_GAUSS_8963(data->asa[0]);
292 		data->raw_to_gauss[1] = RAW_TO_GAUSS_8963(data->asa[1]);
293 		data->raw_to_gauss[2] = RAW_TO_GAUSS_8963(data->asa[2]);
294 	} else {
295 		data->raw_to_gauss[0] = RAW_TO_GAUSS_8975(data->asa[0]);
296 		data->raw_to_gauss[1] = RAW_TO_GAUSS_8975(data->asa[1]);
297 		data->raw_to_gauss[2] = RAW_TO_GAUSS_8975(data->asa[2]);
298 	}
299 
300 	return 0;
301 }
302 
303 static int wait_conversion_complete_gpio(struct ak8975_data *data)
304 {
305 	struct i2c_client *client = data->client;
306 	u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
307 	int ret;
308 
309 	/* Wait for the conversion to complete. */
310 	while (timeout_ms) {
311 		msleep(AK8975_CONVERSION_DONE_POLL_TIME);
312 		if (gpio_get_value(data->eoc_gpio))
313 			break;
314 		timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
315 	}
316 	if (!timeout_ms) {
317 		dev_err(&client->dev, "Conversion timeout happened\n");
318 		return -EINVAL;
319 	}
320 
321 	ret = i2c_smbus_read_byte_data(client, AK8975_REG_ST1);
322 	if (ret < 0)
323 		dev_err(&client->dev, "Error in reading ST1\n");
324 
325 	return ret;
326 }
327 
328 static int wait_conversion_complete_polled(struct ak8975_data *data)
329 {
330 	struct i2c_client *client = data->client;
331 	u8 read_status;
332 	u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
333 	int ret;
334 
335 	/* Wait for the conversion to complete. */
336 	while (timeout_ms) {
337 		msleep(AK8975_CONVERSION_DONE_POLL_TIME);
338 		ret = i2c_smbus_read_byte_data(client, AK8975_REG_ST1);
339 		if (ret < 0) {
340 			dev_err(&client->dev, "Error in reading ST1\n");
341 			return ret;
342 		}
343 		read_status = ret;
344 		if (read_status)
345 			break;
346 		timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
347 	}
348 	if (!timeout_ms) {
349 		dev_err(&client->dev, "Conversion timeout happened\n");
350 		return -EINVAL;
351 	}
352 
353 	return read_status;
354 }
355 
356 /* Returns 0 if the end of conversion interrupt occured or -ETIME otherwise */
357 static int wait_conversion_complete_interrupt(struct ak8975_data *data)
358 {
359 	int ret;
360 
361 	ret = wait_event_timeout(data->data_ready_queue,
362 				 test_bit(0, &data->flags),
363 				 AK8975_DATA_READY_TIMEOUT);
364 	clear_bit(0, &data->flags);
365 
366 	return ret > 0 ? 0 : -ETIME;
367 }
368 
369 /*
370  * Emits the raw flux value for the x, y, or z axis.
371  */
372 static int ak8975_read_axis(struct iio_dev *indio_dev, int index, int *val)
373 {
374 	struct ak8975_data *data = iio_priv(indio_dev);
375 	struct i2c_client *client = data->client;
376 	int ret;
377 
378 	mutex_lock(&data->lock);
379 
380 	/* Set up the device for taking a sample. */
381 	ret = ak8975_write_data(client,
382 				AK8975_REG_CNTL,
383 				AK8975_REG_CNTL_MODE_ONCE,
384 				AK8975_REG_CNTL_MODE_MASK,
385 				AK8975_REG_CNTL_MODE_SHIFT);
386 	if (ret < 0) {
387 		dev_err(&client->dev, "Error in setting operating mode\n");
388 		goto exit;
389 	}
390 
391 	/* Wait for the conversion to complete. */
392 	if (data->eoc_irq)
393 		ret = wait_conversion_complete_interrupt(data);
394 	else if (gpio_is_valid(data->eoc_gpio))
395 		ret = wait_conversion_complete_gpio(data);
396 	else
397 		ret = wait_conversion_complete_polled(data);
398 	if (ret < 0)
399 		goto exit;
400 
401 	/* This will be executed only for non-interrupt based waiting case */
402 	if (ret & AK8975_REG_ST1_DRDY_MASK) {
403 		ret = i2c_smbus_read_byte_data(client, AK8975_REG_ST2);
404 		if (ret < 0) {
405 			dev_err(&client->dev, "Error in reading ST2\n");
406 			goto exit;
407 		}
408 		if (ret & (AK8975_REG_ST2_DERR_MASK |
409 			   AK8975_REG_ST2_HOFL_MASK)) {
410 			dev_err(&client->dev, "ST2 status error 0x%x\n", ret);
411 			ret = -EINVAL;
412 			goto exit;
413 		}
414 	}
415 
416 	/* Read the flux value from the appropriate register
417 	   (the register is specified in the iio device attributes). */
418 	ret = i2c_smbus_read_word_data(client, ak8975_index_to_reg[index]);
419 	if (ret < 0) {
420 		dev_err(&client->dev, "Read axis data fails\n");
421 		goto exit;
422 	}
423 
424 	mutex_unlock(&data->lock);
425 
426 	/* Clamp to valid range. */
427 	*val = clamp_t(s16, ret, -4096, 4095);
428 	return IIO_VAL_INT;
429 
430 exit:
431 	mutex_unlock(&data->lock);
432 	return ret;
433 }
434 
435 static int ak8975_read_raw(struct iio_dev *indio_dev,
436 			   struct iio_chan_spec const *chan,
437 			   int *val, int *val2,
438 			   long mask)
439 {
440 	struct ak8975_data *data = iio_priv(indio_dev);
441 
442 	switch (mask) {
443 	case IIO_CHAN_INFO_RAW:
444 		return ak8975_read_axis(indio_dev, chan->address, val);
445 	case IIO_CHAN_INFO_SCALE:
446 		*val = 0;
447 		*val2 = data->raw_to_gauss[chan->address];
448 		return IIO_VAL_INT_PLUS_MICRO;
449 	}
450 	return -EINVAL;
451 }
452 
453 #define AK8975_CHANNEL(axis, index)					\
454 	{								\
455 		.type = IIO_MAGN,					\
456 		.modified = 1,						\
457 		.channel2 = IIO_MOD_##axis,				\
458 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
459 			     BIT(IIO_CHAN_INFO_SCALE),			\
460 		.address = index,					\
461 	}
462 
463 static const struct iio_chan_spec ak8975_channels[] = {
464 	AK8975_CHANNEL(X, 0), AK8975_CHANNEL(Y, 1), AK8975_CHANNEL(Z, 2),
465 };
466 
467 static const struct iio_info ak8975_info = {
468 	.read_raw = &ak8975_read_raw,
469 	.driver_module = THIS_MODULE,
470 };
471 
472 static const struct acpi_device_id ak_acpi_match[] = {
473 	{"AK8975", AK8975},
474 	{"AK8963", AK8963},
475 	{"INVN6500", AK8963},
476 	{ },
477 };
478 MODULE_DEVICE_TABLE(acpi, ak_acpi_match);
479 
480 static const char *ak8975_match_acpi_device(struct device *dev,
481 					    enum asahi_compass_chipset *chipset)
482 {
483 	const struct acpi_device_id *id;
484 
485 	id = acpi_match_device(dev->driver->acpi_match_table, dev);
486 	if (!id)
487 		return NULL;
488 	*chipset = (int)id->driver_data;
489 
490 	return dev_name(dev);
491 }
492 
493 static int ak8975_probe(struct i2c_client *client,
494 			const struct i2c_device_id *id)
495 {
496 	struct ak8975_data *data;
497 	struct iio_dev *indio_dev;
498 	int eoc_gpio;
499 	int err;
500 	const char *name = NULL;
501 
502 	/* Grab and set up the supplied GPIO. */
503 	if (client->dev.platform_data)
504 		eoc_gpio = *(int *)(client->dev.platform_data);
505 	else if (client->dev.of_node)
506 		eoc_gpio = of_get_gpio(client->dev.of_node, 0);
507 	else
508 		eoc_gpio = -1;
509 
510 	if (eoc_gpio == -EPROBE_DEFER)
511 		return -EPROBE_DEFER;
512 
513 	/* We may not have a GPIO based IRQ to scan, that is fine, we will
514 	   poll if so */
515 	if (gpio_is_valid(eoc_gpio)) {
516 		err = devm_gpio_request_one(&client->dev, eoc_gpio,
517 							GPIOF_IN, "ak_8975");
518 		if (err < 0) {
519 			dev_err(&client->dev,
520 				"failed to request GPIO %d, error %d\n",
521 							eoc_gpio, err);
522 			return err;
523 		}
524 	}
525 
526 	/* Register with IIO */
527 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
528 	if (indio_dev == NULL)
529 		return -ENOMEM;
530 
531 	data = iio_priv(indio_dev);
532 	i2c_set_clientdata(client, indio_dev);
533 
534 	data->client = client;
535 	data->eoc_gpio = eoc_gpio;
536 	data->eoc_irq = 0;
537 
538 	/* id will be NULL when enumerated via ACPI */
539 	if (id) {
540 		data->chipset =
541 			(enum asahi_compass_chipset)(id->driver_data);
542 		name = id->name;
543 	} else if (ACPI_HANDLE(&client->dev))
544 		name = ak8975_match_acpi_device(&client->dev, &data->chipset);
545 	else
546 		return -ENOSYS;
547 
548 	dev_dbg(&client->dev, "Asahi compass chip %s\n", name);
549 
550 	/* Perform some basic start-of-day setup of the device. */
551 	err = ak8975_setup(client);
552 	if (err < 0) {
553 		dev_err(&client->dev, "AK8975 initialization fails\n");
554 		return err;
555 	}
556 
557 	data->client = client;
558 	mutex_init(&data->lock);
559 	data->eoc_gpio = eoc_gpio;
560 	indio_dev->dev.parent = &client->dev;
561 	indio_dev->channels = ak8975_channels;
562 	indio_dev->num_channels = ARRAY_SIZE(ak8975_channels);
563 	indio_dev->info = &ak8975_info;
564 	indio_dev->modes = INDIO_DIRECT_MODE;
565 	indio_dev->name = name;
566 	err = devm_iio_device_register(&client->dev, indio_dev);
567 	if (err < 0)
568 		return err;
569 
570 	return 0;
571 }
572 
573 static const struct i2c_device_id ak8975_id[] = {
574 	{"ak8975", AK8975},
575 	{"ak8963", AK8963},
576 	{}
577 };
578 
579 MODULE_DEVICE_TABLE(i2c, ak8975_id);
580 
581 static const struct of_device_id ak8975_of_match[] = {
582 	{ .compatible = "asahi-kasei,ak8975", },
583 	{ .compatible = "ak8975", },
584 	{ }
585 };
586 MODULE_DEVICE_TABLE(of, ak8975_of_match);
587 
588 static struct i2c_driver ak8975_driver = {
589 	.driver = {
590 		.name	= "ak8975",
591 		.of_match_table = ak8975_of_match,
592 		.acpi_match_table = ACPI_PTR(ak_acpi_match),
593 	},
594 	.probe		= ak8975_probe,
595 	.id_table	= ak8975_id,
596 };
597 module_i2c_driver(ak8975_driver);
598 
599 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
600 MODULE_DESCRIPTION("AK8975 magnetometer driver");
601 MODULE_LICENSE("GPL");
602