1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * A sensor driver for the magnetometer AK8975.
4  *
5  * Magnetic compass sensor driver for monitoring magnetic flux information.
6  *
7  * Copyright (c) 2010, NVIDIA Corporation.
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/i2c.h>
14 #include <linux/interrupt.h>
15 #include <linux/err.h>
16 #include <linux/mutex.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/gpio.h>
20 #include <linux/of_gpio.h>
21 #include <linux/acpi.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/pm_runtime.h>
24 
25 #include <linux/iio/iio.h>
26 #include <linux/iio/sysfs.h>
27 #include <linux/iio/buffer.h>
28 #include <linux/iio/trigger.h>
29 #include <linux/iio/trigger_consumer.h>
30 #include <linux/iio/triggered_buffer.h>
31 
32 #include <linux/iio/magnetometer/ak8975.h>
33 
34 /*
35  * Register definitions, as well as various shifts and masks to get at the
36  * individual fields of the registers.
37  */
38 #define AK8975_REG_WIA			0x00
39 #define AK8975_DEVICE_ID		0x48
40 
41 #define AK8975_REG_INFO			0x01
42 
43 #define AK8975_REG_ST1			0x02
44 #define AK8975_REG_ST1_DRDY_SHIFT	0
45 #define AK8975_REG_ST1_DRDY_MASK	(1 << AK8975_REG_ST1_DRDY_SHIFT)
46 
47 #define AK8975_REG_HXL			0x03
48 #define AK8975_REG_HXH			0x04
49 #define AK8975_REG_HYL			0x05
50 #define AK8975_REG_HYH			0x06
51 #define AK8975_REG_HZL			0x07
52 #define AK8975_REG_HZH			0x08
53 #define AK8975_REG_ST2			0x09
54 #define AK8975_REG_ST2_DERR_SHIFT	2
55 #define AK8975_REG_ST2_DERR_MASK	(1 << AK8975_REG_ST2_DERR_SHIFT)
56 
57 #define AK8975_REG_ST2_HOFL_SHIFT	3
58 #define AK8975_REG_ST2_HOFL_MASK	(1 << AK8975_REG_ST2_HOFL_SHIFT)
59 
60 #define AK8975_REG_CNTL			0x0A
61 #define AK8975_REG_CNTL_MODE_SHIFT	0
62 #define AK8975_REG_CNTL_MODE_MASK	(0xF << AK8975_REG_CNTL_MODE_SHIFT)
63 #define AK8975_REG_CNTL_MODE_POWER_DOWN	0x00
64 #define AK8975_REG_CNTL_MODE_ONCE	0x01
65 #define AK8975_REG_CNTL_MODE_SELF_TEST	0x08
66 #define AK8975_REG_CNTL_MODE_FUSE_ROM	0x0F
67 
68 #define AK8975_REG_RSVC			0x0B
69 #define AK8975_REG_ASTC			0x0C
70 #define AK8975_REG_TS1			0x0D
71 #define AK8975_REG_TS2			0x0E
72 #define AK8975_REG_I2CDIS		0x0F
73 #define AK8975_REG_ASAX			0x10
74 #define AK8975_REG_ASAY			0x11
75 #define AK8975_REG_ASAZ			0x12
76 
77 #define AK8975_MAX_REGS			AK8975_REG_ASAZ
78 
79 /*
80  * AK09912 Register definitions
81  */
82 #define AK09912_REG_WIA1		0x00
83 #define AK09912_REG_WIA2		0x01
84 #define AK09912_DEVICE_ID		0x04
85 #define AK09911_DEVICE_ID		0x05
86 
87 #define AK09911_REG_INFO1		0x02
88 #define AK09911_REG_INFO2		0x03
89 
90 #define AK09912_REG_ST1			0x10
91 
92 #define AK09912_REG_ST1_DRDY_SHIFT	0
93 #define AK09912_REG_ST1_DRDY_MASK	(1 << AK09912_REG_ST1_DRDY_SHIFT)
94 
95 #define AK09912_REG_HXL			0x11
96 #define AK09912_REG_HXH			0x12
97 #define AK09912_REG_HYL			0x13
98 #define AK09912_REG_HYH			0x14
99 #define AK09912_REG_HZL			0x15
100 #define AK09912_REG_HZH			0x16
101 #define AK09912_REG_TMPS		0x17
102 
103 #define AK09912_REG_ST2			0x18
104 #define AK09912_REG_ST2_HOFL_SHIFT	3
105 #define AK09912_REG_ST2_HOFL_MASK	(1 << AK09912_REG_ST2_HOFL_SHIFT)
106 
107 #define AK09912_REG_CNTL1		0x30
108 
109 #define AK09912_REG_CNTL2		0x31
110 #define AK09912_REG_CNTL_MODE_POWER_DOWN	0x00
111 #define AK09912_REG_CNTL_MODE_ONCE	0x01
112 #define AK09912_REG_CNTL_MODE_SELF_TEST	0x10
113 #define AK09912_REG_CNTL_MODE_FUSE_ROM	0x1F
114 #define AK09912_REG_CNTL2_MODE_SHIFT	0
115 #define AK09912_REG_CNTL2_MODE_MASK	(0x1F << AK09912_REG_CNTL2_MODE_SHIFT)
116 
117 #define AK09912_REG_CNTL3		0x32
118 
119 #define AK09912_REG_TS1			0x33
120 #define AK09912_REG_TS2			0x34
121 #define AK09912_REG_TS3			0x35
122 #define AK09912_REG_I2CDIS		0x36
123 #define AK09912_REG_TS4			0x37
124 
125 #define AK09912_REG_ASAX		0x60
126 #define AK09912_REG_ASAY		0x61
127 #define AK09912_REG_ASAZ		0x62
128 
129 #define AK09912_MAX_REGS		AK09912_REG_ASAZ
130 
131 /*
132  * Miscellaneous values.
133  */
134 #define AK8975_MAX_CONVERSION_TIMEOUT	500
135 #define AK8975_CONVERSION_DONE_POLL_TIME 10
136 #define AK8975_DATA_READY_TIMEOUT	((100*HZ)/1000)
137 
138 /*
139  * Precalculate scale factor (in Gauss units) for each axis and
140  * store in the device data.
141  *
142  * This scale factor is axis-dependent, and is derived from 3 calibration
143  * factors ASA(x), ASA(y), and ASA(z).
144  *
145  * These ASA values are read from the sensor device at start of day, and
146  * cached in the device context struct.
147  *
148  * Adjusting the flux value with the sensitivity adjustment value should be
149  * done via the following formula:
150  *
151  * Hadj = H * ( ( ( (ASA-128)*0.5 ) / 128 ) + 1 )
152  * where H is the raw value, ASA is the sensitivity adjustment, and Hadj
153  * is the resultant adjusted value.
154  *
155  * We reduce the formula to:
156  *
157  * Hadj = H * (ASA + 128) / 256
158  *
159  * H is in the range of -4096 to 4095.  The magnetometer has a range of
160  * +-1229uT.  To go from the raw value to uT is:
161  *
162  * HuT = H * 1229/4096, or roughly, 3/10.
163  *
164  * Since 1uT = 0.01 gauss, our final scale factor becomes:
165  *
166  * Hadj = H * ((ASA + 128) / 256) * 3/10 * 1/100
167  * Hadj = H * ((ASA + 128) * 0.003) / 256
168  *
169  * Since ASA doesn't change, we cache the resultant scale factor into the
170  * device context in ak8975_setup().
171  *
172  * Given we use IIO_VAL_INT_PLUS_MICRO bit when displaying the scale, we
173  * multiply the stored scale value by 1e6.
174  */
175 static long ak8975_raw_to_gauss(u16 data)
176 {
177 	return (((long)data + 128) * 3000) / 256;
178 }
179 
180 /*
181  * For AK8963 and AK09911, same calculation, but the device is less sensitive:
182  *
183  * H is in the range of +-8190.  The magnetometer has a range of
184  * +-4912uT.  To go from the raw value to uT is:
185  *
186  * HuT = H * 4912/8190, or roughly, 6/10, instead of 3/10.
187  */
188 
189 static long ak8963_09911_raw_to_gauss(u16 data)
190 {
191 	return (((long)data + 128) * 6000) / 256;
192 }
193 
194 /*
195  * For AK09912, same calculation, except the device is more sensitive:
196  *
197  * H is in the range of -32752 to 32752.  The magnetometer has a range of
198  * +-4912uT.  To go from the raw value to uT is:
199  *
200  * HuT = H * 4912/32752, or roughly, 3/20, instead of 3/10.
201  */
202 static long ak09912_raw_to_gauss(u16 data)
203 {
204 	return (((long)data + 128) * 1500) / 256;
205 }
206 
207 /* Compatible Asahi Kasei Compass parts */
208 enum asahi_compass_chipset {
209 	AK8975,
210 	AK8963,
211 	AK09911,
212 	AK09912,
213 	AK_MAX_TYPE
214 };
215 
216 enum ak_ctrl_reg_addr {
217 	ST1,
218 	ST2,
219 	CNTL,
220 	ASA_BASE,
221 	MAX_REGS,
222 	REGS_END,
223 };
224 
225 enum ak_ctrl_reg_mask {
226 	ST1_DRDY,
227 	ST2_HOFL,
228 	ST2_DERR,
229 	CNTL_MODE,
230 	MASK_END,
231 };
232 
233 enum ak_ctrl_mode {
234 	POWER_DOWN,
235 	MODE_ONCE,
236 	SELF_TEST,
237 	FUSE_ROM,
238 	MODE_END,
239 };
240 
241 struct ak_def {
242 	enum asahi_compass_chipset type;
243 	long (*raw_to_gauss)(u16 data);
244 	u16 range;
245 	u8 ctrl_regs[REGS_END];
246 	u8 ctrl_masks[MASK_END];
247 	u8 ctrl_modes[MODE_END];
248 	u8 data_regs[3];
249 };
250 
251 static const struct ak_def ak_def_array[AK_MAX_TYPE] = {
252 	{
253 		.type = AK8975,
254 		.raw_to_gauss = ak8975_raw_to_gauss,
255 		.range = 4096,
256 		.ctrl_regs = {
257 			AK8975_REG_ST1,
258 			AK8975_REG_ST2,
259 			AK8975_REG_CNTL,
260 			AK8975_REG_ASAX,
261 			AK8975_MAX_REGS},
262 		.ctrl_masks = {
263 			AK8975_REG_ST1_DRDY_MASK,
264 			AK8975_REG_ST2_HOFL_MASK,
265 			AK8975_REG_ST2_DERR_MASK,
266 			AK8975_REG_CNTL_MODE_MASK},
267 		.ctrl_modes = {
268 			AK8975_REG_CNTL_MODE_POWER_DOWN,
269 			AK8975_REG_CNTL_MODE_ONCE,
270 			AK8975_REG_CNTL_MODE_SELF_TEST,
271 			AK8975_REG_CNTL_MODE_FUSE_ROM},
272 		.data_regs = {
273 			AK8975_REG_HXL,
274 			AK8975_REG_HYL,
275 			AK8975_REG_HZL},
276 	},
277 	{
278 		.type = AK8963,
279 		.raw_to_gauss = ak8963_09911_raw_to_gauss,
280 		.range = 8190,
281 		.ctrl_regs = {
282 			AK8975_REG_ST1,
283 			AK8975_REG_ST2,
284 			AK8975_REG_CNTL,
285 			AK8975_REG_ASAX,
286 			AK8975_MAX_REGS},
287 		.ctrl_masks = {
288 			AK8975_REG_ST1_DRDY_MASK,
289 			AK8975_REG_ST2_HOFL_MASK,
290 			0,
291 			AK8975_REG_CNTL_MODE_MASK},
292 		.ctrl_modes = {
293 			AK8975_REG_CNTL_MODE_POWER_DOWN,
294 			AK8975_REG_CNTL_MODE_ONCE,
295 			AK8975_REG_CNTL_MODE_SELF_TEST,
296 			AK8975_REG_CNTL_MODE_FUSE_ROM},
297 		.data_regs = {
298 			AK8975_REG_HXL,
299 			AK8975_REG_HYL,
300 			AK8975_REG_HZL},
301 	},
302 	{
303 		.type = AK09911,
304 		.raw_to_gauss = ak8963_09911_raw_to_gauss,
305 		.range = 8192,
306 		.ctrl_regs = {
307 			AK09912_REG_ST1,
308 			AK09912_REG_ST2,
309 			AK09912_REG_CNTL2,
310 			AK09912_REG_ASAX,
311 			AK09912_MAX_REGS},
312 		.ctrl_masks = {
313 			AK09912_REG_ST1_DRDY_MASK,
314 			AK09912_REG_ST2_HOFL_MASK,
315 			0,
316 			AK09912_REG_CNTL2_MODE_MASK},
317 		.ctrl_modes = {
318 			AK09912_REG_CNTL_MODE_POWER_DOWN,
319 			AK09912_REG_CNTL_MODE_ONCE,
320 			AK09912_REG_CNTL_MODE_SELF_TEST,
321 			AK09912_REG_CNTL_MODE_FUSE_ROM},
322 		.data_regs = {
323 			AK09912_REG_HXL,
324 			AK09912_REG_HYL,
325 			AK09912_REG_HZL},
326 	},
327 	{
328 		.type = AK09912,
329 		.raw_to_gauss = ak09912_raw_to_gauss,
330 		.range = 32752,
331 		.ctrl_regs = {
332 			AK09912_REG_ST1,
333 			AK09912_REG_ST2,
334 			AK09912_REG_CNTL2,
335 			AK09912_REG_ASAX,
336 			AK09912_MAX_REGS},
337 		.ctrl_masks = {
338 			AK09912_REG_ST1_DRDY_MASK,
339 			AK09912_REG_ST2_HOFL_MASK,
340 			0,
341 			AK09912_REG_CNTL2_MODE_MASK},
342 		.ctrl_modes = {
343 			AK09912_REG_CNTL_MODE_POWER_DOWN,
344 			AK09912_REG_CNTL_MODE_ONCE,
345 			AK09912_REG_CNTL_MODE_SELF_TEST,
346 			AK09912_REG_CNTL_MODE_FUSE_ROM},
347 		.data_regs = {
348 			AK09912_REG_HXL,
349 			AK09912_REG_HYL,
350 			AK09912_REG_HZL},
351 	}
352 };
353 
354 /*
355  * Per-instance context data for the device.
356  */
357 struct ak8975_data {
358 	struct i2c_client	*client;
359 	const struct ak_def	*def;
360 	struct mutex		lock;
361 	u8			asa[3];
362 	long			raw_to_gauss[3];
363 	int			eoc_gpio;
364 	int			eoc_irq;
365 	wait_queue_head_t	data_ready_queue;
366 	unsigned long		flags;
367 	u8			cntl_cache;
368 	struct iio_mount_matrix orientation;
369 	struct regulator	*vdd;
370 	struct regulator	*vid;
371 };
372 
373 /* Enable attached power regulator if any. */
374 static int ak8975_power_on(const struct ak8975_data *data)
375 {
376 	int ret;
377 
378 	ret = regulator_enable(data->vdd);
379 	if (ret) {
380 		dev_warn(&data->client->dev,
381 			 "Failed to enable specified Vdd supply\n");
382 		return ret;
383 	}
384 	ret = regulator_enable(data->vid);
385 	if (ret) {
386 		dev_warn(&data->client->dev,
387 			 "Failed to enable specified Vid supply\n");
388 		return ret;
389 	}
390 	/*
391 	 * According to the datasheet the power supply rise time i 200us
392 	 * and the minimum wait time before mode setting is 100us, in
393 	 * total 300 us. Add some margin and say minimum 500us here.
394 	 */
395 	usleep_range(500, 1000);
396 	return 0;
397 }
398 
399 /* Disable attached power regulator if any. */
400 static void ak8975_power_off(const struct ak8975_data *data)
401 {
402 	regulator_disable(data->vid);
403 	regulator_disable(data->vdd);
404 }
405 
406 /*
407  * Return 0 if the i2c device is the one we expect.
408  * return a negative error number otherwise
409  */
410 static int ak8975_who_i_am(struct i2c_client *client,
411 			   enum asahi_compass_chipset type)
412 {
413 	u8 wia_val[2];
414 	int ret;
415 
416 	/*
417 	 * Signature for each device:
418 	 * Device   |  WIA1      |  WIA2
419 	 * AK09912  |  DEVICE_ID |  AK09912_DEVICE_ID
420 	 * AK09911  |  DEVICE_ID |  AK09911_DEVICE_ID
421 	 * AK8975   |  DEVICE_ID |  NA
422 	 * AK8963   |  DEVICE_ID |  NA
423 	 */
424 	ret = i2c_smbus_read_i2c_block_data_or_emulated(
425 			client, AK09912_REG_WIA1, 2, wia_val);
426 	if (ret < 0) {
427 		dev_err(&client->dev, "Error reading WIA\n");
428 		return ret;
429 	}
430 
431 	if (wia_val[0] != AK8975_DEVICE_ID)
432 		return -ENODEV;
433 
434 	switch (type) {
435 	case AK8975:
436 	case AK8963:
437 		return 0;
438 	case AK09911:
439 		if (wia_val[1] == AK09911_DEVICE_ID)
440 			return 0;
441 		break;
442 	case AK09912:
443 		if (wia_val[1] == AK09912_DEVICE_ID)
444 			return 0;
445 		break;
446 	default:
447 		dev_err(&client->dev, "Type %d unknown\n", type);
448 	}
449 	return -ENODEV;
450 }
451 
452 /*
453  * Helper function to write to CNTL register.
454  */
455 static int ak8975_set_mode(struct ak8975_data *data, enum ak_ctrl_mode mode)
456 {
457 	u8 regval;
458 	int ret;
459 
460 	regval = (data->cntl_cache & ~data->def->ctrl_masks[CNTL_MODE]) |
461 		 data->def->ctrl_modes[mode];
462 	ret = i2c_smbus_write_byte_data(data->client,
463 					data->def->ctrl_regs[CNTL], regval);
464 	if (ret < 0) {
465 		return ret;
466 	}
467 	data->cntl_cache = regval;
468 	/* After mode change wait atleast 100us */
469 	usleep_range(100, 500);
470 
471 	return 0;
472 }
473 
474 /*
475  * Handle data ready irq
476  */
477 static irqreturn_t ak8975_irq_handler(int irq, void *data)
478 {
479 	struct ak8975_data *ak8975 = data;
480 
481 	set_bit(0, &ak8975->flags);
482 	wake_up(&ak8975->data_ready_queue);
483 
484 	return IRQ_HANDLED;
485 }
486 
487 /*
488  * Install data ready interrupt handler
489  */
490 static int ak8975_setup_irq(struct ak8975_data *data)
491 {
492 	struct i2c_client *client = data->client;
493 	int rc;
494 	int irq;
495 
496 	init_waitqueue_head(&data->data_ready_queue);
497 	clear_bit(0, &data->flags);
498 	if (client->irq)
499 		irq = client->irq;
500 	else
501 		irq = gpio_to_irq(data->eoc_gpio);
502 
503 	rc = devm_request_irq(&client->dev, irq, ak8975_irq_handler,
504 			      IRQF_TRIGGER_RISING | IRQF_ONESHOT,
505 			      dev_name(&client->dev), data);
506 	if (rc < 0) {
507 		dev_err(&client->dev,
508 			"irq %d request failed, (gpio %d): %d\n",
509 			irq, data->eoc_gpio, rc);
510 		return rc;
511 	}
512 
513 	data->eoc_irq = irq;
514 
515 	return rc;
516 }
517 
518 
519 /*
520  * Perform some start-of-day setup, including reading the asa calibration
521  * values and caching them.
522  */
523 static int ak8975_setup(struct i2c_client *client)
524 {
525 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
526 	struct ak8975_data *data = iio_priv(indio_dev);
527 	int ret;
528 
529 	/* Write the fused rom access mode. */
530 	ret = ak8975_set_mode(data, FUSE_ROM);
531 	if (ret < 0) {
532 		dev_err(&client->dev, "Error in setting fuse access mode\n");
533 		return ret;
534 	}
535 
536 	/* Get asa data and store in the device data. */
537 	ret = i2c_smbus_read_i2c_block_data_or_emulated(
538 			client, data->def->ctrl_regs[ASA_BASE],
539 			3, data->asa);
540 	if (ret < 0) {
541 		dev_err(&client->dev, "Not able to read asa data\n");
542 		return ret;
543 	}
544 
545 	/* After reading fuse ROM data set power-down mode */
546 	ret = ak8975_set_mode(data, POWER_DOWN);
547 	if (ret < 0) {
548 		dev_err(&client->dev, "Error in setting power-down mode\n");
549 		return ret;
550 	}
551 
552 	if (data->eoc_gpio > 0 || client->irq > 0) {
553 		ret = ak8975_setup_irq(data);
554 		if (ret < 0) {
555 			dev_err(&client->dev,
556 				"Error setting data ready interrupt\n");
557 			return ret;
558 		}
559 	}
560 
561 	data->raw_to_gauss[0] = data->def->raw_to_gauss(data->asa[0]);
562 	data->raw_to_gauss[1] = data->def->raw_to_gauss(data->asa[1]);
563 	data->raw_to_gauss[2] = data->def->raw_to_gauss(data->asa[2]);
564 
565 	return 0;
566 }
567 
568 static int wait_conversion_complete_gpio(struct ak8975_data *data)
569 {
570 	struct i2c_client *client = data->client;
571 	u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
572 	int ret;
573 
574 	/* Wait for the conversion to complete. */
575 	while (timeout_ms) {
576 		msleep(AK8975_CONVERSION_DONE_POLL_TIME);
577 		if (gpio_get_value(data->eoc_gpio))
578 			break;
579 		timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
580 	}
581 	if (!timeout_ms) {
582 		dev_err(&client->dev, "Conversion timeout happened\n");
583 		return -EINVAL;
584 	}
585 
586 	ret = i2c_smbus_read_byte_data(client, data->def->ctrl_regs[ST1]);
587 	if (ret < 0)
588 		dev_err(&client->dev, "Error in reading ST1\n");
589 
590 	return ret;
591 }
592 
593 static int wait_conversion_complete_polled(struct ak8975_data *data)
594 {
595 	struct i2c_client *client = data->client;
596 	u8 read_status;
597 	u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
598 	int ret;
599 
600 	/* Wait for the conversion to complete. */
601 	while (timeout_ms) {
602 		msleep(AK8975_CONVERSION_DONE_POLL_TIME);
603 		ret = i2c_smbus_read_byte_data(client,
604 					       data->def->ctrl_regs[ST1]);
605 		if (ret < 0) {
606 			dev_err(&client->dev, "Error in reading ST1\n");
607 			return ret;
608 		}
609 		read_status = ret;
610 		if (read_status)
611 			break;
612 		timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
613 	}
614 	if (!timeout_ms) {
615 		dev_err(&client->dev, "Conversion timeout happened\n");
616 		return -EINVAL;
617 	}
618 
619 	return read_status;
620 }
621 
622 /* Returns 0 if the end of conversion interrupt occured or -ETIME otherwise */
623 static int wait_conversion_complete_interrupt(struct ak8975_data *data)
624 {
625 	int ret;
626 
627 	ret = wait_event_timeout(data->data_ready_queue,
628 				 test_bit(0, &data->flags),
629 				 AK8975_DATA_READY_TIMEOUT);
630 	clear_bit(0, &data->flags);
631 
632 	return ret > 0 ? 0 : -ETIME;
633 }
634 
635 static int ak8975_start_read_axis(struct ak8975_data *data,
636 				  const struct i2c_client *client)
637 {
638 	/* Set up the device for taking a sample. */
639 	int ret = ak8975_set_mode(data, MODE_ONCE);
640 
641 	if (ret < 0) {
642 		dev_err(&client->dev, "Error in setting operating mode\n");
643 		return ret;
644 	}
645 
646 	/* Wait for the conversion to complete. */
647 	if (data->eoc_irq)
648 		ret = wait_conversion_complete_interrupt(data);
649 	else if (gpio_is_valid(data->eoc_gpio))
650 		ret = wait_conversion_complete_gpio(data);
651 	else
652 		ret = wait_conversion_complete_polled(data);
653 	if (ret < 0)
654 		return ret;
655 
656 	/* This will be executed only for non-interrupt based waiting case */
657 	if (ret & data->def->ctrl_masks[ST1_DRDY]) {
658 		ret = i2c_smbus_read_byte_data(client,
659 					       data->def->ctrl_regs[ST2]);
660 		if (ret < 0) {
661 			dev_err(&client->dev, "Error in reading ST2\n");
662 			return ret;
663 		}
664 		if (ret & (data->def->ctrl_masks[ST2_DERR] |
665 			   data->def->ctrl_masks[ST2_HOFL])) {
666 			dev_err(&client->dev, "ST2 status error 0x%x\n", ret);
667 			return -EINVAL;
668 		}
669 	}
670 
671 	return 0;
672 }
673 
674 /* Retrieve raw flux value for one of the x, y, or z axis.  */
675 static int ak8975_read_axis(struct iio_dev *indio_dev, int index, int *val)
676 {
677 	struct ak8975_data *data = iio_priv(indio_dev);
678 	const struct i2c_client *client = data->client;
679 	const struct ak_def *def = data->def;
680 	__le16 rval;
681 	u16 buff;
682 	int ret;
683 
684 	pm_runtime_get_sync(&data->client->dev);
685 
686 	mutex_lock(&data->lock);
687 
688 	ret = ak8975_start_read_axis(data, client);
689 	if (ret)
690 		goto exit;
691 
692 	ret = i2c_smbus_read_i2c_block_data_or_emulated(
693 			client, def->data_regs[index],
694 			sizeof(rval), (u8*)&rval);
695 	if (ret < 0)
696 		goto exit;
697 
698 	mutex_unlock(&data->lock);
699 
700 	pm_runtime_mark_last_busy(&data->client->dev);
701 	pm_runtime_put_autosuspend(&data->client->dev);
702 
703 	/* Swap bytes and convert to valid range. */
704 	buff = le16_to_cpu(rval);
705 	*val = clamp_t(s16, buff, -def->range, def->range);
706 	return IIO_VAL_INT;
707 
708 exit:
709 	mutex_unlock(&data->lock);
710 	dev_err(&client->dev, "Error in reading axis\n");
711 	return ret;
712 }
713 
714 static int ak8975_read_raw(struct iio_dev *indio_dev,
715 			   struct iio_chan_spec const *chan,
716 			   int *val, int *val2,
717 			   long mask)
718 {
719 	struct ak8975_data *data = iio_priv(indio_dev);
720 
721 	switch (mask) {
722 	case IIO_CHAN_INFO_RAW:
723 		return ak8975_read_axis(indio_dev, chan->address, val);
724 	case IIO_CHAN_INFO_SCALE:
725 		*val = 0;
726 		*val2 = data->raw_to_gauss[chan->address];
727 		return IIO_VAL_INT_PLUS_MICRO;
728 	}
729 	return -EINVAL;
730 }
731 
732 static const struct iio_mount_matrix *
733 ak8975_get_mount_matrix(const struct iio_dev *indio_dev,
734 			const struct iio_chan_spec *chan)
735 {
736 	struct ak8975_data *data = iio_priv(indio_dev);
737 
738 	return &data->orientation;
739 }
740 
741 static const struct iio_chan_spec_ext_info ak8975_ext_info[] = {
742 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, ak8975_get_mount_matrix),
743 	{ }
744 };
745 
746 #define AK8975_CHANNEL(axis, index)					\
747 	{								\
748 		.type = IIO_MAGN,					\
749 		.modified = 1,						\
750 		.channel2 = IIO_MOD_##axis,				\
751 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
752 			     BIT(IIO_CHAN_INFO_SCALE),			\
753 		.address = index,					\
754 		.scan_index = index,					\
755 		.scan_type = {						\
756 			.sign = 's',					\
757 			.realbits = 16,					\
758 			.storagebits = 16,				\
759 			.endianness = IIO_CPU				\
760 		},							\
761 		.ext_info = ak8975_ext_info,				\
762 	}
763 
764 static const struct iio_chan_spec ak8975_channels[] = {
765 	AK8975_CHANNEL(X, 0), AK8975_CHANNEL(Y, 1), AK8975_CHANNEL(Z, 2),
766 	IIO_CHAN_SOFT_TIMESTAMP(3),
767 };
768 
769 static const unsigned long ak8975_scan_masks[] = { 0x7, 0 };
770 
771 static const struct iio_info ak8975_info = {
772 	.read_raw = &ak8975_read_raw,
773 };
774 
775 #ifdef CONFIG_ACPI
776 static const struct acpi_device_id ak_acpi_match[] = {
777 	{"AK8975", AK8975},
778 	{"AK8963", AK8963},
779 	{"INVN6500", AK8963},
780 	{"AK009911", AK09911},
781 	{"AK09911", AK09911},
782 	{"AKM9911", AK09911},
783 	{"AK09912", AK09912},
784 	{ }
785 };
786 MODULE_DEVICE_TABLE(acpi, ak_acpi_match);
787 #endif
788 
789 static const char *ak8975_match_acpi_device(struct device *dev,
790 					    enum asahi_compass_chipset *chipset)
791 {
792 	const struct acpi_device_id *id;
793 
794 	id = acpi_match_device(dev->driver->acpi_match_table, dev);
795 	if (!id)
796 		return NULL;
797 	*chipset = (int)id->driver_data;
798 
799 	return dev_name(dev);
800 }
801 
802 static void ak8975_fill_buffer(struct iio_dev *indio_dev)
803 {
804 	struct ak8975_data *data = iio_priv(indio_dev);
805 	const struct i2c_client *client = data->client;
806 	const struct ak_def *def = data->def;
807 	int ret;
808 	s16 buff[8]; /* 3 x 16 bits axis values + 1 aligned 64 bits timestamp */
809 	__le16 fval[3];
810 
811 	mutex_lock(&data->lock);
812 
813 	ret = ak8975_start_read_axis(data, client);
814 	if (ret)
815 		goto unlock;
816 
817 	/*
818 	 * For each axis, read the flux value from the appropriate register
819 	 * (the register is specified in the iio device attributes).
820 	 */
821 	ret = i2c_smbus_read_i2c_block_data_or_emulated(client,
822 							def->data_regs[0],
823 							3 * sizeof(fval[0]),
824 							(u8 *)fval);
825 	if (ret < 0)
826 		goto unlock;
827 
828 	mutex_unlock(&data->lock);
829 
830 	/* Clamp to valid range. */
831 	buff[0] = clamp_t(s16, le16_to_cpu(fval[0]), -def->range, def->range);
832 	buff[1] = clamp_t(s16, le16_to_cpu(fval[1]), -def->range, def->range);
833 	buff[2] = clamp_t(s16, le16_to_cpu(fval[2]), -def->range, def->range);
834 
835 	iio_push_to_buffers_with_timestamp(indio_dev, buff,
836 					   iio_get_time_ns(indio_dev));
837 	return;
838 
839 unlock:
840 	mutex_unlock(&data->lock);
841 	dev_err(&client->dev, "Error in reading axes block\n");
842 }
843 
844 static irqreturn_t ak8975_handle_trigger(int irq, void *p)
845 {
846 	const struct iio_poll_func *pf = p;
847 	struct iio_dev *indio_dev = pf->indio_dev;
848 
849 	ak8975_fill_buffer(indio_dev);
850 	iio_trigger_notify_done(indio_dev->trig);
851 	return IRQ_HANDLED;
852 }
853 
854 static int ak8975_probe(struct i2c_client *client,
855 			const struct i2c_device_id *id)
856 {
857 	struct ak8975_data *data;
858 	struct iio_dev *indio_dev;
859 	int eoc_gpio;
860 	int err;
861 	const char *name = NULL;
862 	enum asahi_compass_chipset chipset = AK_MAX_TYPE;
863 	const struct ak8975_platform_data *pdata =
864 		dev_get_platdata(&client->dev);
865 
866 	/* Grab and set up the supplied GPIO. */
867 	if (pdata)
868 		eoc_gpio = pdata->eoc_gpio;
869 	else if (client->dev.of_node)
870 		eoc_gpio = of_get_gpio(client->dev.of_node, 0);
871 	else
872 		eoc_gpio = -1;
873 
874 	if (eoc_gpio == -EPROBE_DEFER)
875 		return -EPROBE_DEFER;
876 
877 	/* We may not have a GPIO based IRQ to scan, that is fine, we will
878 	   poll if so */
879 	if (gpio_is_valid(eoc_gpio)) {
880 		err = devm_gpio_request_one(&client->dev, eoc_gpio,
881 							GPIOF_IN, "ak_8975");
882 		if (err < 0) {
883 			dev_err(&client->dev,
884 				"failed to request GPIO %d, error %d\n",
885 							eoc_gpio, err);
886 			return err;
887 		}
888 	}
889 
890 	/* Register with IIO */
891 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
892 	if (indio_dev == NULL)
893 		return -ENOMEM;
894 
895 	data = iio_priv(indio_dev);
896 	i2c_set_clientdata(client, indio_dev);
897 
898 	data->client = client;
899 	data->eoc_gpio = eoc_gpio;
900 	data->eoc_irq = 0;
901 
902 	if (!pdata) {
903 		err = iio_read_mount_matrix(&client->dev, "mount-matrix",
904 					    &data->orientation);
905 		if (err)
906 			return err;
907 	} else
908 		data->orientation = pdata->orientation;
909 
910 	/* id will be NULL when enumerated via ACPI */
911 	if (id) {
912 		chipset = (enum asahi_compass_chipset)(id->driver_data);
913 		name = id->name;
914 	} else if (ACPI_HANDLE(&client->dev)) {
915 		name = ak8975_match_acpi_device(&client->dev, &chipset);
916 		if (!name)
917 			return -ENODEV;
918 	} else
919 		return -ENOSYS;
920 
921 	if (chipset >= AK_MAX_TYPE) {
922 		dev_err(&client->dev, "AKM device type unsupported: %d\n",
923 			chipset);
924 		return -ENODEV;
925 	}
926 
927 	data->def = &ak_def_array[chipset];
928 
929 	/* Fetch the regulators */
930 	data->vdd = devm_regulator_get(&client->dev, "vdd");
931 	if (IS_ERR(data->vdd))
932 		return PTR_ERR(data->vdd);
933 	data->vid = devm_regulator_get(&client->dev, "vid");
934 	if (IS_ERR(data->vid))
935 		return PTR_ERR(data->vid);
936 
937 	err = ak8975_power_on(data);
938 	if (err)
939 		return err;
940 
941 	err = ak8975_who_i_am(client, data->def->type);
942 	if (err < 0) {
943 		dev_err(&client->dev, "Unexpected device\n");
944 		goto power_off;
945 	}
946 	dev_dbg(&client->dev, "Asahi compass chip %s\n", name);
947 
948 	/* Perform some basic start-of-day setup of the device. */
949 	err = ak8975_setup(client);
950 	if (err < 0) {
951 		dev_err(&client->dev, "%s initialization fails\n", name);
952 		goto power_off;
953 	}
954 
955 	mutex_init(&data->lock);
956 	indio_dev->dev.parent = &client->dev;
957 	indio_dev->channels = ak8975_channels;
958 	indio_dev->num_channels = ARRAY_SIZE(ak8975_channels);
959 	indio_dev->info = &ak8975_info;
960 	indio_dev->available_scan_masks = ak8975_scan_masks;
961 	indio_dev->modes = INDIO_DIRECT_MODE;
962 	indio_dev->name = name;
963 
964 	err = iio_triggered_buffer_setup(indio_dev, NULL, ak8975_handle_trigger,
965 					 NULL);
966 	if (err) {
967 		dev_err(&client->dev, "triggered buffer setup failed\n");
968 		goto power_off;
969 	}
970 
971 	err = iio_device_register(indio_dev);
972 	if (err) {
973 		dev_err(&client->dev, "device register failed\n");
974 		goto cleanup_buffer;
975 	}
976 
977 	/* Enable runtime PM */
978 	pm_runtime_get_noresume(&client->dev);
979 	pm_runtime_set_active(&client->dev);
980 	pm_runtime_enable(&client->dev);
981 	/*
982 	 * The device comes online in 500us, so add two orders of magnitude
983 	 * of delay before autosuspending: 50 ms.
984 	 */
985 	pm_runtime_set_autosuspend_delay(&client->dev, 50);
986 	pm_runtime_use_autosuspend(&client->dev);
987 	pm_runtime_put(&client->dev);
988 
989 	return 0;
990 
991 cleanup_buffer:
992 	iio_triggered_buffer_cleanup(indio_dev);
993 power_off:
994 	ak8975_power_off(data);
995 	return err;
996 }
997 
998 static int ak8975_remove(struct i2c_client *client)
999 {
1000 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
1001 	struct ak8975_data *data = iio_priv(indio_dev);
1002 
1003 	pm_runtime_get_sync(&client->dev);
1004 	pm_runtime_put_noidle(&client->dev);
1005 	pm_runtime_disable(&client->dev);
1006 	iio_device_unregister(indio_dev);
1007 	iio_triggered_buffer_cleanup(indio_dev);
1008 	ak8975_set_mode(data, POWER_DOWN);
1009 	ak8975_power_off(data);
1010 
1011 	return 0;
1012 }
1013 
1014 #ifdef CONFIG_PM
1015 static int ak8975_runtime_suspend(struct device *dev)
1016 {
1017 	struct i2c_client *client = to_i2c_client(dev);
1018 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
1019 	struct ak8975_data *data = iio_priv(indio_dev);
1020 	int ret;
1021 
1022 	/* Set the device in power down if it wasn't already */
1023 	ret = ak8975_set_mode(data, POWER_DOWN);
1024 	if (ret < 0) {
1025 		dev_err(&client->dev, "Error in setting power-down mode\n");
1026 		return ret;
1027 	}
1028 	/* Next cut the regulators */
1029 	ak8975_power_off(data);
1030 
1031 	return 0;
1032 }
1033 
1034 static int ak8975_runtime_resume(struct device *dev)
1035 {
1036 	struct i2c_client *client = to_i2c_client(dev);
1037 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
1038 	struct ak8975_data *data = iio_priv(indio_dev);
1039 	int ret;
1040 
1041 	/* Take up the regulators */
1042 	ak8975_power_on(data);
1043 	/*
1044 	 * We come up in powered down mode, the reading routines will
1045 	 * put us in the mode to read values later.
1046 	 */
1047 	ret = ak8975_set_mode(data, POWER_DOWN);
1048 	if (ret < 0) {
1049 		dev_err(&client->dev, "Error in setting power-down mode\n");
1050 		return ret;
1051 	}
1052 
1053 	return 0;
1054 }
1055 #endif /* CONFIG_PM */
1056 
1057 static const struct dev_pm_ops ak8975_dev_pm_ops = {
1058 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1059 				pm_runtime_force_resume)
1060 	SET_RUNTIME_PM_OPS(ak8975_runtime_suspend,
1061 			   ak8975_runtime_resume, NULL)
1062 };
1063 
1064 static const struct i2c_device_id ak8975_id[] = {
1065 	{"ak8975", AK8975},
1066 	{"ak8963", AK8963},
1067 	{"AK8963", AK8963},
1068 	{"ak09911", AK09911},
1069 	{"ak09912", AK09912},
1070 	{}
1071 };
1072 
1073 MODULE_DEVICE_TABLE(i2c, ak8975_id);
1074 
1075 static const struct of_device_id ak8975_of_match[] = {
1076 	{ .compatible = "asahi-kasei,ak8975", },
1077 	{ .compatible = "ak8975", },
1078 	{ .compatible = "asahi-kasei,ak8963", },
1079 	{ .compatible = "ak8963", },
1080 	{ .compatible = "asahi-kasei,ak09911", },
1081 	{ .compatible = "ak09911", },
1082 	{ .compatible = "asahi-kasei,ak09912", },
1083 	{ .compatible = "ak09912", },
1084 	{}
1085 };
1086 MODULE_DEVICE_TABLE(of, ak8975_of_match);
1087 
1088 static struct i2c_driver ak8975_driver = {
1089 	.driver = {
1090 		.name	= "ak8975",
1091 		.pm = &ak8975_dev_pm_ops,
1092 		.of_match_table = of_match_ptr(ak8975_of_match),
1093 		.acpi_match_table = ACPI_PTR(ak_acpi_match),
1094 	},
1095 	.probe		= ak8975_probe,
1096 	.remove		= ak8975_remove,
1097 	.id_table	= ak8975_id,
1098 };
1099 module_i2c_driver(ak8975_driver);
1100 
1101 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1102 MODULE_DESCRIPTION("AK8975 magnetometer driver");
1103 MODULE_LICENSE("GPL");
1104