1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for the Asahi Kasei EMD Corporation AK8974 4 * and Aichi Steel AMI305 magnetometer chips. 5 * Based on a patch from Samu Onkalo and the AK8975 IIO driver. 6 * 7 * Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies). 8 * Copyright (c) 2010 NVIDIA Corporation. 9 * Copyright (C) 2016 Linaro Ltd. 10 * 11 * Author: Samu Onkalo <samu.p.onkalo@nokia.com> 12 * Author: Linus Walleij <linus.walleij@linaro.org> 13 */ 14 #include <linux/module.h> 15 #include <linux/mod_devicetable.h> 16 #include <linux/kernel.h> 17 #include <linux/i2c.h> 18 #include <linux/interrupt.h> 19 #include <linux/irq.h> /* For irq_get_irq_data() */ 20 #include <linux/completion.h> 21 #include <linux/err.h> 22 #include <linux/mutex.h> 23 #include <linux/delay.h> 24 #include <linux/bitops.h> 25 #include <linux/random.h> 26 #include <linux/regmap.h> 27 #include <linux/regulator/consumer.h> 28 #include <linux/pm_runtime.h> 29 30 #include <linux/iio/iio.h> 31 #include <linux/iio/sysfs.h> 32 #include <linux/iio/buffer.h> 33 #include <linux/iio/trigger.h> 34 #include <linux/iio/trigger_consumer.h> 35 #include <linux/iio/triggered_buffer.h> 36 37 /* 38 * 16-bit registers are little-endian. LSB is at the address defined below 39 * and MSB is at the next higher address. 40 */ 41 42 /* These registers are common for AK8974 and AMI30x */ 43 #define AK8974_SELFTEST 0x0C 44 #define AK8974_SELFTEST_IDLE 0x55 45 #define AK8974_SELFTEST_OK 0xAA 46 47 #define AK8974_INFO 0x0D 48 49 #define AK8974_WHOAMI 0x0F 50 #define AK8974_WHOAMI_VALUE_AMI306 0x46 51 #define AK8974_WHOAMI_VALUE_AMI305 0x47 52 #define AK8974_WHOAMI_VALUE_AK8974 0x48 53 #define AK8974_WHOAMI_VALUE_HSCDTD008A 0x49 54 55 #define AK8974_DATA_X 0x10 56 #define AK8974_DATA_Y 0x12 57 #define AK8974_DATA_Z 0x14 58 #define AK8974_INT_SRC 0x16 59 #define AK8974_STATUS 0x18 60 #define AK8974_INT_CLEAR 0x1A 61 #define AK8974_CTRL1 0x1B 62 #define AK8974_CTRL2 0x1C 63 #define AK8974_CTRL3 0x1D 64 #define AK8974_INT_CTRL 0x1E 65 #define AK8974_INT_THRES 0x26 /* Absolute any axis value threshold */ 66 #define AK8974_PRESET 0x30 67 68 /* AK8974-specific offsets */ 69 #define AK8974_OFFSET_X 0x20 70 #define AK8974_OFFSET_Y 0x22 71 #define AK8974_OFFSET_Z 0x24 72 /* AMI305-specific offsets */ 73 #define AMI305_OFFSET_X 0x6C 74 #define AMI305_OFFSET_Y 0x72 75 #define AMI305_OFFSET_Z 0x78 76 77 /* Different temperature registers */ 78 #define AK8974_TEMP 0x31 79 #define AMI305_TEMP 0x60 80 81 /* AMI306-specific control register */ 82 #define AMI306_CTRL4 0x5C 83 84 /* AMI306 factory calibration data */ 85 86 /* fine axis sensitivity */ 87 #define AMI306_FINEOUTPUT_X 0x90 88 #define AMI306_FINEOUTPUT_Y 0x92 89 #define AMI306_FINEOUTPUT_Z 0x94 90 91 /* axis sensitivity */ 92 #define AMI306_SENS_X 0x96 93 #define AMI306_SENS_Y 0x98 94 #define AMI306_SENS_Z 0x9A 95 96 /* axis cross-interference */ 97 #define AMI306_GAIN_PARA_XZ 0x9C 98 #define AMI306_GAIN_PARA_XY 0x9D 99 #define AMI306_GAIN_PARA_YZ 0x9E 100 #define AMI306_GAIN_PARA_YX 0x9F 101 #define AMI306_GAIN_PARA_ZY 0xA0 102 #define AMI306_GAIN_PARA_ZX 0xA1 103 104 /* offset at ZERO magnetic field */ 105 #define AMI306_OFFZERO_X 0xF8 106 #define AMI306_OFFZERO_Y 0xFA 107 #define AMI306_OFFZERO_Z 0xFC 108 109 110 #define AK8974_INT_X_HIGH BIT(7) /* Axis over +threshold */ 111 #define AK8974_INT_Y_HIGH BIT(6) 112 #define AK8974_INT_Z_HIGH BIT(5) 113 #define AK8974_INT_X_LOW BIT(4) /* Axis below -threshold */ 114 #define AK8974_INT_Y_LOW BIT(3) 115 #define AK8974_INT_Z_LOW BIT(2) 116 #define AK8974_INT_RANGE BIT(1) /* Range overflow (any axis) */ 117 118 #define AK8974_STATUS_DRDY BIT(6) /* Data ready */ 119 #define AK8974_STATUS_OVERRUN BIT(5) /* Data overrun */ 120 #define AK8974_STATUS_INT BIT(4) /* Interrupt occurred */ 121 122 #define AK8974_CTRL1_POWER BIT(7) /* 0 = standby; 1 = active */ 123 #define AK8974_CTRL1_RATE BIT(4) /* 0 = 10 Hz; 1 = 20 Hz */ 124 #define AK8974_CTRL1_FORCE_EN BIT(1) /* 0 = normal; 1 = force */ 125 #define AK8974_CTRL1_MODE2 BIT(0) /* 0 */ 126 127 #define AK8974_CTRL2_INT_EN BIT(4) /* 1 = enable interrupts */ 128 #define AK8974_CTRL2_DRDY_EN BIT(3) /* 1 = enable data ready signal */ 129 #define AK8974_CTRL2_DRDY_POL BIT(2) /* 1 = data ready active high */ 130 #define AK8974_CTRL2_RESDEF (AK8974_CTRL2_DRDY_POL) 131 132 #define AK8974_CTRL3_RESET BIT(7) /* Software reset */ 133 #define AK8974_CTRL3_FORCE BIT(6) /* Start forced measurement */ 134 #define AK8974_CTRL3_SELFTEST BIT(4) /* Set selftest register */ 135 #define AK8974_CTRL3_RESDEF 0x00 136 137 #define AK8974_INT_CTRL_XEN BIT(7) /* Enable interrupt for this axis */ 138 #define AK8974_INT_CTRL_YEN BIT(6) 139 #define AK8974_INT_CTRL_ZEN BIT(5) 140 #define AK8974_INT_CTRL_XYZEN (BIT(7)|BIT(6)|BIT(5)) 141 #define AK8974_INT_CTRL_POL BIT(3) /* 0 = active low; 1 = active high */ 142 #define AK8974_INT_CTRL_PULSE BIT(1) /* 0 = latched; 1 = pulse (50 usec) */ 143 #define AK8974_INT_CTRL_RESDEF (AK8974_INT_CTRL_XYZEN | AK8974_INT_CTRL_POL) 144 145 /* HSCDTD008A-specific control register */ 146 #define HSCDTD008A_CTRL4 0x1E 147 #define HSCDTD008A_CTRL4_MMD BIT(7) /* must be set to 1 */ 148 #define HSCDTD008A_CTRL4_RANGE BIT(4) /* 0 = 14-bit output; 1 = 15-bit output */ 149 #define HSCDTD008A_CTRL4_RESDEF (HSCDTD008A_CTRL4_MMD | HSCDTD008A_CTRL4_RANGE) 150 151 /* The AMI305 has elaborate FW version and serial number registers */ 152 #define AMI305_VER 0xE8 153 #define AMI305_SN 0xEA 154 155 #define AK8974_MAX_RANGE 2048 156 157 #define AK8974_POWERON_DELAY 50 158 #define AK8974_ACTIVATE_DELAY 1 159 #define AK8974_SELFTEST_DELAY 1 160 /* 161 * Set the autosuspend to two orders of magnitude larger than the poweron 162 * delay to make sane reasonable power tradeoff savings (5 seconds in 163 * this case). 164 */ 165 #define AK8974_AUTOSUSPEND_DELAY 5000 166 167 #define AK8974_MEASTIME 3 168 169 #define AK8974_PWR_ON 1 170 #define AK8974_PWR_OFF 0 171 172 /** 173 * struct ak8974 - state container for the AK8974 driver 174 * @i2c: parent I2C client 175 * @orientation: mounting matrix, flipped axis etc 176 * @map: regmap to access the AK8974 registers over I2C 177 * @regs: the avdd and dvdd power regulators 178 * @name: the name of the part 179 * @variant: the whoami ID value (for selecting code paths) 180 * @lock: locks the magnetometer for exclusive use during a measurement 181 * @drdy_irq: uses the DRDY IRQ line 182 * @drdy_complete: completion for DRDY 183 * @drdy_active_low: the DRDY IRQ is active low 184 * @scan: timestamps 185 */ 186 struct ak8974 { 187 struct i2c_client *i2c; 188 struct iio_mount_matrix orientation; 189 struct regmap *map; 190 struct regulator_bulk_data regs[2]; 191 const char *name; 192 u8 variant; 193 struct mutex lock; 194 bool drdy_irq; 195 struct completion drdy_complete; 196 bool drdy_active_low; 197 /* Ensure timestamp is naturally aligned */ 198 struct { 199 __le16 channels[3]; 200 s64 ts __aligned(8); 201 } scan; 202 }; 203 204 static const char ak8974_reg_avdd[] = "avdd"; 205 static const char ak8974_reg_dvdd[] = "dvdd"; 206 207 static int ak8974_get_u16_val(struct ak8974 *ak8974, u8 reg, u16 *val) 208 { 209 int ret; 210 __le16 bulk; 211 212 ret = regmap_bulk_read(ak8974->map, reg, &bulk, 2); 213 if (ret) 214 return ret; 215 *val = le16_to_cpu(bulk); 216 217 return 0; 218 } 219 220 static int ak8974_set_u16_val(struct ak8974 *ak8974, u8 reg, u16 val) 221 { 222 __le16 bulk = cpu_to_le16(val); 223 224 return regmap_bulk_write(ak8974->map, reg, &bulk, 2); 225 } 226 227 static int ak8974_set_power(struct ak8974 *ak8974, bool mode) 228 { 229 int ret; 230 u8 val; 231 232 val = mode ? AK8974_CTRL1_POWER : 0; 233 val |= AK8974_CTRL1_FORCE_EN; 234 ret = regmap_write(ak8974->map, AK8974_CTRL1, val); 235 if (ret < 0) 236 return ret; 237 238 if (mode) 239 msleep(AK8974_ACTIVATE_DELAY); 240 241 return 0; 242 } 243 244 static int ak8974_reset(struct ak8974 *ak8974) 245 { 246 int ret; 247 248 /* Power on to get register access. Sets CTRL1 reg to reset state */ 249 ret = ak8974_set_power(ak8974, AK8974_PWR_ON); 250 if (ret) 251 return ret; 252 ret = regmap_write(ak8974->map, AK8974_CTRL2, AK8974_CTRL2_RESDEF); 253 if (ret) 254 return ret; 255 ret = regmap_write(ak8974->map, AK8974_CTRL3, AK8974_CTRL3_RESDEF); 256 if (ret) 257 return ret; 258 if (ak8974->variant != AK8974_WHOAMI_VALUE_HSCDTD008A) { 259 ret = regmap_write(ak8974->map, AK8974_INT_CTRL, 260 AK8974_INT_CTRL_RESDEF); 261 if (ret) 262 return ret; 263 } else { 264 ret = regmap_write(ak8974->map, HSCDTD008A_CTRL4, 265 HSCDTD008A_CTRL4_RESDEF); 266 if (ret) 267 return ret; 268 } 269 270 /* After reset, power off is default state */ 271 return ak8974_set_power(ak8974, AK8974_PWR_OFF); 272 } 273 274 static int ak8974_configure(struct ak8974 *ak8974) 275 { 276 int ret; 277 278 ret = regmap_write(ak8974->map, AK8974_CTRL2, AK8974_CTRL2_DRDY_EN | 279 AK8974_CTRL2_INT_EN); 280 if (ret) 281 return ret; 282 ret = regmap_write(ak8974->map, AK8974_CTRL3, 0); 283 if (ret) 284 return ret; 285 if (ak8974->variant == AK8974_WHOAMI_VALUE_AMI306) { 286 /* magic from datasheet: set high-speed measurement mode */ 287 ret = ak8974_set_u16_val(ak8974, AMI306_CTRL4, 0xA07E); 288 if (ret) 289 return ret; 290 } 291 if (ak8974->variant == AK8974_WHOAMI_VALUE_HSCDTD008A) 292 return 0; 293 ret = regmap_write(ak8974->map, AK8974_INT_CTRL, AK8974_INT_CTRL_POL); 294 if (ret) 295 return ret; 296 297 return regmap_write(ak8974->map, AK8974_PRESET, 0); 298 } 299 300 static int ak8974_trigmeas(struct ak8974 *ak8974) 301 { 302 unsigned int clear; 303 u8 mask; 304 u8 val; 305 int ret; 306 307 /* Clear any previous measurement overflow status */ 308 ret = regmap_read(ak8974->map, AK8974_INT_CLEAR, &clear); 309 if (ret) 310 return ret; 311 312 /* If we have a DRDY IRQ line, use it */ 313 if (ak8974->drdy_irq) { 314 mask = AK8974_CTRL2_INT_EN | 315 AK8974_CTRL2_DRDY_EN | 316 AK8974_CTRL2_DRDY_POL; 317 val = AK8974_CTRL2_DRDY_EN; 318 319 if (!ak8974->drdy_active_low) 320 val |= AK8974_CTRL2_DRDY_POL; 321 322 init_completion(&ak8974->drdy_complete); 323 ret = regmap_update_bits(ak8974->map, AK8974_CTRL2, 324 mask, val); 325 if (ret) 326 return ret; 327 } 328 329 /* Force a measurement */ 330 return regmap_update_bits(ak8974->map, 331 AK8974_CTRL3, 332 AK8974_CTRL3_FORCE, 333 AK8974_CTRL3_FORCE); 334 } 335 336 static int ak8974_await_drdy(struct ak8974 *ak8974) 337 { 338 int timeout = 2; 339 unsigned int val; 340 int ret; 341 342 if (ak8974->drdy_irq) { 343 ret = wait_for_completion_timeout(&ak8974->drdy_complete, 344 1 + msecs_to_jiffies(1000)); 345 if (!ret) { 346 dev_err(&ak8974->i2c->dev, 347 "timeout waiting for DRDY IRQ\n"); 348 return -ETIMEDOUT; 349 } 350 return 0; 351 } 352 353 /* Default delay-based poll loop */ 354 do { 355 msleep(AK8974_MEASTIME); 356 ret = regmap_read(ak8974->map, AK8974_STATUS, &val); 357 if (ret < 0) 358 return ret; 359 if (val & AK8974_STATUS_DRDY) 360 return 0; 361 } while (--timeout); 362 363 dev_err(&ak8974->i2c->dev, "timeout waiting for DRDY\n"); 364 return -ETIMEDOUT; 365 } 366 367 static int ak8974_getresult(struct ak8974 *ak8974, __le16 *result) 368 { 369 unsigned int src; 370 int ret; 371 372 ret = ak8974_await_drdy(ak8974); 373 if (ret) 374 return ret; 375 ret = regmap_read(ak8974->map, AK8974_INT_SRC, &src); 376 if (ret < 0) 377 return ret; 378 379 /* Out of range overflow! Strong magnet close? */ 380 if (src & AK8974_INT_RANGE) { 381 dev_err(&ak8974->i2c->dev, 382 "range overflow in sensor\n"); 383 return -ERANGE; 384 } 385 386 ret = regmap_bulk_read(ak8974->map, AK8974_DATA_X, result, 6); 387 if (ret) 388 return ret; 389 390 return ret; 391 } 392 393 static irqreturn_t ak8974_drdy_irq(int irq, void *d) 394 { 395 struct ak8974 *ak8974 = d; 396 397 if (!ak8974->drdy_irq) 398 return IRQ_NONE; 399 400 /* TODO: timestamp here to get good measurement stamps */ 401 return IRQ_WAKE_THREAD; 402 } 403 404 static irqreturn_t ak8974_drdy_irq_thread(int irq, void *d) 405 { 406 struct ak8974 *ak8974 = d; 407 unsigned int val; 408 int ret; 409 410 /* Check if this was a DRDY from us */ 411 ret = regmap_read(ak8974->map, AK8974_STATUS, &val); 412 if (ret < 0) { 413 dev_err(&ak8974->i2c->dev, "error reading DRDY status\n"); 414 return IRQ_HANDLED; 415 } 416 if (val & AK8974_STATUS_DRDY) { 417 /* Yes this was our IRQ */ 418 complete(&ak8974->drdy_complete); 419 return IRQ_HANDLED; 420 } 421 422 /* We may be on a shared IRQ, let the next client check */ 423 return IRQ_NONE; 424 } 425 426 static int ak8974_selftest(struct ak8974 *ak8974) 427 { 428 struct device *dev = &ak8974->i2c->dev; 429 unsigned int val; 430 int ret; 431 432 ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val); 433 if (ret) 434 return ret; 435 if (val != AK8974_SELFTEST_IDLE) { 436 dev_err(dev, "selftest not idle before test\n"); 437 return -EIO; 438 } 439 440 /* Trigger self-test */ 441 ret = regmap_update_bits(ak8974->map, 442 AK8974_CTRL3, 443 AK8974_CTRL3_SELFTEST, 444 AK8974_CTRL3_SELFTEST); 445 if (ret) { 446 dev_err(dev, "could not write CTRL3\n"); 447 return ret; 448 } 449 450 msleep(AK8974_SELFTEST_DELAY); 451 452 ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val); 453 if (ret) 454 return ret; 455 if (val != AK8974_SELFTEST_OK) { 456 dev_err(dev, "selftest result NOT OK (%02x)\n", val); 457 return -EIO; 458 } 459 460 ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val); 461 if (ret) 462 return ret; 463 if (val != AK8974_SELFTEST_IDLE) { 464 dev_err(dev, "selftest not idle after test (%02x)\n", val); 465 return -EIO; 466 } 467 dev_dbg(dev, "passed self-test\n"); 468 469 return 0; 470 } 471 472 static void ak8974_read_calib_data(struct ak8974 *ak8974, unsigned int reg, 473 __le16 *tab, size_t tab_size) 474 { 475 int ret = regmap_bulk_read(ak8974->map, reg, tab, tab_size); 476 if (ret) { 477 memset(tab, 0xFF, tab_size); 478 dev_warn(&ak8974->i2c->dev, 479 "can't read calibration data (regs %u..%zu): %d\n", 480 reg, reg + tab_size - 1, ret); 481 } else { 482 add_device_randomness(tab, tab_size); 483 } 484 } 485 486 static int ak8974_detect(struct ak8974 *ak8974) 487 { 488 unsigned int whoami; 489 const char *name; 490 int ret; 491 unsigned int fw; 492 u16 sn; 493 494 ret = regmap_read(ak8974->map, AK8974_WHOAMI, &whoami); 495 if (ret) 496 return ret; 497 498 name = "ami305"; 499 500 switch (whoami) { 501 case AK8974_WHOAMI_VALUE_AMI306: 502 name = "ami306"; 503 fallthrough; 504 case AK8974_WHOAMI_VALUE_AMI305: 505 ret = regmap_read(ak8974->map, AMI305_VER, &fw); 506 if (ret) 507 return ret; 508 fw &= 0x7f; /* only bits 0 thru 6 valid */ 509 ret = ak8974_get_u16_val(ak8974, AMI305_SN, &sn); 510 if (ret) 511 return ret; 512 add_device_randomness(&sn, sizeof(sn)); 513 dev_info(&ak8974->i2c->dev, 514 "detected %s, FW ver %02x, S/N: %04x\n", 515 name, fw, sn); 516 break; 517 case AK8974_WHOAMI_VALUE_AK8974: 518 name = "ak8974"; 519 dev_info(&ak8974->i2c->dev, "detected AK8974\n"); 520 break; 521 case AK8974_WHOAMI_VALUE_HSCDTD008A: 522 name = "hscdtd008a"; 523 dev_info(&ak8974->i2c->dev, "detected hscdtd008a\n"); 524 break; 525 default: 526 dev_err(&ak8974->i2c->dev, "unsupported device (%02x) ", 527 whoami); 528 return -ENODEV; 529 } 530 531 ak8974->name = name; 532 ak8974->variant = whoami; 533 534 if (whoami == AK8974_WHOAMI_VALUE_AMI306) { 535 __le16 fab_data1[9], fab_data2[3]; 536 int i; 537 538 ak8974_read_calib_data(ak8974, AMI306_FINEOUTPUT_X, 539 fab_data1, sizeof(fab_data1)); 540 ak8974_read_calib_data(ak8974, AMI306_OFFZERO_X, 541 fab_data2, sizeof(fab_data2)); 542 543 for (i = 0; i < 3; ++i) { 544 static const char axis[3] = "XYZ"; 545 static const char pgaxis[6] = "ZYZXYX"; 546 unsigned offz = le16_to_cpu(fab_data2[i]) & 0x7F; 547 unsigned fine = le16_to_cpu(fab_data1[i]); 548 unsigned sens = le16_to_cpu(fab_data1[i + 3]); 549 unsigned pgain1 = le16_to_cpu(fab_data1[i + 6]); 550 unsigned pgain2 = pgain1 >> 8; 551 552 pgain1 &= 0xFF; 553 554 dev_info(&ak8974->i2c->dev, 555 "factory calibration for axis %c: offz=%u sens=%u fine=%u pga%c=%u pga%c=%u\n", 556 axis[i], offz, sens, fine, pgaxis[i * 2], 557 pgain1, pgaxis[i * 2 + 1], pgain2); 558 } 559 } 560 561 return 0; 562 } 563 564 static int ak8974_measure_channel(struct ak8974 *ak8974, unsigned long address, 565 int *val) 566 { 567 __le16 hw_values[3]; 568 int ret; 569 570 pm_runtime_get_sync(&ak8974->i2c->dev); 571 mutex_lock(&ak8974->lock); 572 573 /* 574 * We read all axes and discard all but one, for optimized 575 * reading, use the triggered buffer. 576 */ 577 ret = ak8974_trigmeas(ak8974); 578 if (ret) 579 goto out_unlock; 580 ret = ak8974_getresult(ak8974, hw_values); 581 if (ret) 582 goto out_unlock; 583 /* 584 * This explicit cast to (s16) is necessary as the measurement 585 * is done in 2's complement with positive and negative values. 586 * The follwing assignment to *val will then convert the signed 587 * s16 value to a signed int value. 588 */ 589 *val = (s16)le16_to_cpu(hw_values[address]); 590 out_unlock: 591 mutex_unlock(&ak8974->lock); 592 pm_runtime_mark_last_busy(&ak8974->i2c->dev); 593 pm_runtime_put_autosuspend(&ak8974->i2c->dev); 594 595 return ret; 596 } 597 598 static int ak8974_read_raw(struct iio_dev *indio_dev, 599 struct iio_chan_spec const *chan, 600 int *val, int *val2, 601 long mask) 602 { 603 struct ak8974 *ak8974 = iio_priv(indio_dev); 604 int ret; 605 606 switch (mask) { 607 case IIO_CHAN_INFO_RAW: 608 if (chan->address > 2) { 609 dev_err(&ak8974->i2c->dev, "faulty channel address\n"); 610 return -EIO; 611 } 612 ret = ak8974_measure_channel(ak8974, chan->address, val); 613 if (ret) 614 return ret; 615 return IIO_VAL_INT; 616 case IIO_CHAN_INFO_SCALE: 617 switch (ak8974->variant) { 618 case AK8974_WHOAMI_VALUE_AMI306: 619 case AK8974_WHOAMI_VALUE_AMI305: 620 /* 621 * The datasheet for AMI305 and AMI306, page 6 622 * specifies the range of the sensor to be 623 * +/- 12 Gauss. 624 */ 625 *val = 12; 626 /* 627 * 12 bits are used, +/- 2^11 628 * [ -2048 .. 2047 ] (manual page 20) 629 * [ 0xf800 .. 0x07ff ] 630 */ 631 *val2 = 11; 632 return IIO_VAL_FRACTIONAL_LOG2; 633 case AK8974_WHOAMI_VALUE_HSCDTD008A: 634 /* 635 * The datasheet for HSCDTF008A, page 3 specifies the 636 * range of the sensor as +/- 2.4 mT per axis, which 637 * corresponds to +/- 2400 uT = +/- 24 Gauss. 638 */ 639 *val = 24; 640 /* 641 * 15 bits are used (set up in CTRL4), +/- 2^14 642 * [ -16384 .. 16383 ] (manual page 24) 643 * [ 0xc000 .. 0x3fff ] 644 */ 645 *val2 = 14; 646 return IIO_VAL_FRACTIONAL_LOG2; 647 default: 648 /* GUESSING +/- 12 Gauss */ 649 *val = 12; 650 /* GUESSING 12 bits ADC +/- 2^11 */ 651 *val2 = 11; 652 return IIO_VAL_FRACTIONAL_LOG2; 653 } 654 break; 655 default: 656 /* Unknown request */ 657 break; 658 } 659 660 return -EINVAL; 661 } 662 663 static void ak8974_fill_buffer(struct iio_dev *indio_dev) 664 { 665 struct ak8974 *ak8974 = iio_priv(indio_dev); 666 int ret; 667 668 pm_runtime_get_sync(&ak8974->i2c->dev); 669 mutex_lock(&ak8974->lock); 670 671 ret = ak8974_trigmeas(ak8974); 672 if (ret) { 673 dev_err(&ak8974->i2c->dev, "error triggering measure\n"); 674 goto out_unlock; 675 } 676 ret = ak8974_getresult(ak8974, ak8974->scan.channels); 677 if (ret) { 678 dev_err(&ak8974->i2c->dev, "error getting measures\n"); 679 goto out_unlock; 680 } 681 682 iio_push_to_buffers_with_timestamp(indio_dev, &ak8974->scan, 683 iio_get_time_ns(indio_dev)); 684 685 out_unlock: 686 mutex_unlock(&ak8974->lock); 687 pm_runtime_mark_last_busy(&ak8974->i2c->dev); 688 pm_runtime_put_autosuspend(&ak8974->i2c->dev); 689 } 690 691 static irqreturn_t ak8974_handle_trigger(int irq, void *p) 692 { 693 const struct iio_poll_func *pf = p; 694 struct iio_dev *indio_dev = pf->indio_dev; 695 696 ak8974_fill_buffer(indio_dev); 697 iio_trigger_notify_done(indio_dev->trig); 698 699 return IRQ_HANDLED; 700 } 701 702 static const struct iio_mount_matrix * 703 ak8974_get_mount_matrix(const struct iio_dev *indio_dev, 704 const struct iio_chan_spec *chan) 705 { 706 struct ak8974 *ak8974 = iio_priv(indio_dev); 707 708 return &ak8974->orientation; 709 } 710 711 static const struct iio_chan_spec_ext_info ak8974_ext_info[] = { 712 IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, ak8974_get_mount_matrix), 713 { }, 714 }; 715 716 #define AK8974_AXIS_CHANNEL(axis, index, bits) \ 717 { \ 718 .type = IIO_MAGN, \ 719 .modified = 1, \ 720 .channel2 = IIO_MOD_##axis, \ 721 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 722 BIT(IIO_CHAN_INFO_SCALE), \ 723 .ext_info = ak8974_ext_info, \ 724 .address = index, \ 725 .scan_index = index, \ 726 .scan_type = { \ 727 .sign = 's', \ 728 .realbits = bits, \ 729 .storagebits = 16, \ 730 .endianness = IIO_LE \ 731 }, \ 732 } 733 734 /* 735 * We have no datasheet for the AK8974 but we guess that its 736 * ADC is 12 bits. The AMI305 and AMI306 certainly has 12bit 737 * ADC. 738 */ 739 static const struct iio_chan_spec ak8974_12_bits_channels[] = { 740 AK8974_AXIS_CHANNEL(X, 0, 12), 741 AK8974_AXIS_CHANNEL(Y, 1, 12), 742 AK8974_AXIS_CHANNEL(Z, 2, 12), 743 IIO_CHAN_SOFT_TIMESTAMP(3), 744 }; 745 746 /* 747 * The HSCDTD008A has 15 bits resolution the way we set it up 748 * in CTRL4. 749 */ 750 static const struct iio_chan_spec ak8974_15_bits_channels[] = { 751 AK8974_AXIS_CHANNEL(X, 0, 15), 752 AK8974_AXIS_CHANNEL(Y, 1, 15), 753 AK8974_AXIS_CHANNEL(Z, 2, 15), 754 IIO_CHAN_SOFT_TIMESTAMP(3), 755 }; 756 757 static const unsigned long ak8974_scan_masks[] = { 0x7, 0 }; 758 759 static const struct iio_info ak8974_info = { 760 .read_raw = &ak8974_read_raw, 761 }; 762 763 static bool ak8974_writeable_reg(struct device *dev, unsigned int reg) 764 { 765 struct i2c_client *i2c = to_i2c_client(dev); 766 struct iio_dev *indio_dev = i2c_get_clientdata(i2c); 767 struct ak8974 *ak8974 = iio_priv(indio_dev); 768 769 switch (reg) { 770 case AK8974_CTRL1: 771 case AK8974_CTRL2: 772 case AK8974_CTRL3: 773 case AK8974_INT_CTRL: 774 case AK8974_INT_THRES: 775 case AK8974_INT_THRES + 1: 776 return true; 777 case AK8974_PRESET: 778 case AK8974_PRESET + 1: 779 return ak8974->variant != AK8974_WHOAMI_VALUE_HSCDTD008A; 780 case AK8974_OFFSET_X: 781 case AK8974_OFFSET_X + 1: 782 case AK8974_OFFSET_Y: 783 case AK8974_OFFSET_Y + 1: 784 case AK8974_OFFSET_Z: 785 case AK8974_OFFSET_Z + 1: 786 return ak8974->variant == AK8974_WHOAMI_VALUE_AK8974 || 787 ak8974->variant == AK8974_WHOAMI_VALUE_HSCDTD008A; 788 case AMI305_OFFSET_X: 789 case AMI305_OFFSET_X + 1: 790 case AMI305_OFFSET_Y: 791 case AMI305_OFFSET_Y + 1: 792 case AMI305_OFFSET_Z: 793 case AMI305_OFFSET_Z + 1: 794 return ak8974->variant == AK8974_WHOAMI_VALUE_AMI305 || 795 ak8974->variant == AK8974_WHOAMI_VALUE_AMI306; 796 case AMI306_CTRL4: 797 case AMI306_CTRL4 + 1: 798 return ak8974->variant == AK8974_WHOAMI_VALUE_AMI306; 799 default: 800 return false; 801 } 802 } 803 804 static bool ak8974_precious_reg(struct device *dev, unsigned int reg) 805 { 806 return reg == AK8974_INT_CLEAR; 807 } 808 809 static const struct regmap_config ak8974_regmap_config = { 810 .reg_bits = 8, 811 .val_bits = 8, 812 .max_register = 0xff, 813 .writeable_reg = ak8974_writeable_reg, 814 .precious_reg = ak8974_precious_reg, 815 }; 816 817 static int ak8974_probe(struct i2c_client *i2c, 818 const struct i2c_device_id *id) 819 { 820 struct iio_dev *indio_dev; 821 struct ak8974 *ak8974; 822 unsigned long irq_trig; 823 int irq = i2c->irq; 824 int ret; 825 826 /* Register with IIO */ 827 indio_dev = devm_iio_device_alloc(&i2c->dev, sizeof(*ak8974)); 828 if (indio_dev == NULL) 829 return -ENOMEM; 830 831 ak8974 = iio_priv(indio_dev); 832 i2c_set_clientdata(i2c, indio_dev); 833 ak8974->i2c = i2c; 834 mutex_init(&ak8974->lock); 835 836 ret = iio_read_mount_matrix(&i2c->dev, "mount-matrix", 837 &ak8974->orientation); 838 if (ret) 839 return ret; 840 841 ak8974->regs[0].supply = ak8974_reg_avdd; 842 ak8974->regs[1].supply = ak8974_reg_dvdd; 843 844 ret = devm_regulator_bulk_get(&i2c->dev, 845 ARRAY_SIZE(ak8974->regs), 846 ak8974->regs); 847 if (ret < 0) 848 return dev_err_probe(&i2c->dev, ret, "cannot get regulators\n"); 849 850 ret = regulator_bulk_enable(ARRAY_SIZE(ak8974->regs), ak8974->regs); 851 if (ret < 0) { 852 dev_err(&i2c->dev, "cannot enable regulators\n"); 853 return ret; 854 } 855 856 /* Take runtime PM online */ 857 pm_runtime_get_noresume(&i2c->dev); 858 pm_runtime_set_active(&i2c->dev); 859 pm_runtime_enable(&i2c->dev); 860 861 ak8974->map = devm_regmap_init_i2c(i2c, &ak8974_regmap_config); 862 if (IS_ERR(ak8974->map)) { 863 dev_err(&i2c->dev, "failed to allocate register map\n"); 864 pm_runtime_put_noidle(&i2c->dev); 865 pm_runtime_disable(&i2c->dev); 866 return PTR_ERR(ak8974->map); 867 } 868 869 ret = ak8974_set_power(ak8974, AK8974_PWR_ON); 870 if (ret) { 871 dev_err(&i2c->dev, "could not power on\n"); 872 goto disable_pm; 873 } 874 875 ret = ak8974_detect(ak8974); 876 if (ret) { 877 dev_err(&i2c->dev, "neither AK8974 nor AMI30x found\n"); 878 goto disable_pm; 879 } 880 881 ret = ak8974_selftest(ak8974); 882 if (ret) 883 dev_err(&i2c->dev, "selftest failed (continuing anyway)\n"); 884 885 ret = ak8974_reset(ak8974); 886 if (ret) { 887 dev_err(&i2c->dev, "AK8974 reset failed\n"); 888 goto disable_pm; 889 } 890 891 switch (ak8974->variant) { 892 case AK8974_WHOAMI_VALUE_AMI306: 893 case AK8974_WHOAMI_VALUE_AMI305: 894 indio_dev->channels = ak8974_12_bits_channels; 895 indio_dev->num_channels = ARRAY_SIZE(ak8974_12_bits_channels); 896 break; 897 case AK8974_WHOAMI_VALUE_HSCDTD008A: 898 indio_dev->channels = ak8974_15_bits_channels; 899 indio_dev->num_channels = ARRAY_SIZE(ak8974_15_bits_channels); 900 break; 901 default: 902 indio_dev->channels = ak8974_12_bits_channels; 903 indio_dev->num_channels = ARRAY_SIZE(ak8974_12_bits_channels); 904 break; 905 } 906 indio_dev->info = &ak8974_info; 907 indio_dev->available_scan_masks = ak8974_scan_masks; 908 indio_dev->modes = INDIO_DIRECT_MODE; 909 indio_dev->name = ak8974->name; 910 911 ret = iio_triggered_buffer_setup(indio_dev, NULL, 912 ak8974_handle_trigger, 913 NULL); 914 if (ret) { 915 dev_err(&i2c->dev, "triggered buffer setup failed\n"); 916 goto disable_pm; 917 } 918 919 /* If we have a valid DRDY IRQ, make use of it */ 920 if (irq > 0) { 921 irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq)); 922 if (irq_trig == IRQF_TRIGGER_RISING) { 923 dev_info(&i2c->dev, "enable rising edge DRDY IRQ\n"); 924 } else if (irq_trig == IRQF_TRIGGER_FALLING) { 925 ak8974->drdy_active_low = true; 926 dev_info(&i2c->dev, "enable falling edge DRDY IRQ\n"); 927 } else { 928 irq_trig = IRQF_TRIGGER_RISING; 929 } 930 irq_trig |= IRQF_ONESHOT; 931 irq_trig |= IRQF_SHARED; 932 933 ret = devm_request_threaded_irq(&i2c->dev, 934 irq, 935 ak8974_drdy_irq, 936 ak8974_drdy_irq_thread, 937 irq_trig, 938 ak8974->name, 939 ak8974); 940 if (ret) { 941 dev_err(&i2c->dev, "unable to request DRDY IRQ " 942 "- proceeding without IRQ\n"); 943 goto no_irq; 944 } 945 ak8974->drdy_irq = true; 946 } 947 948 no_irq: 949 ret = iio_device_register(indio_dev); 950 if (ret) { 951 dev_err(&i2c->dev, "device register failed\n"); 952 goto cleanup_buffer; 953 } 954 955 pm_runtime_set_autosuspend_delay(&i2c->dev, 956 AK8974_AUTOSUSPEND_DELAY); 957 pm_runtime_use_autosuspend(&i2c->dev); 958 pm_runtime_put(&i2c->dev); 959 960 return 0; 961 962 cleanup_buffer: 963 iio_triggered_buffer_cleanup(indio_dev); 964 disable_pm: 965 pm_runtime_put_noidle(&i2c->dev); 966 pm_runtime_disable(&i2c->dev); 967 ak8974_set_power(ak8974, AK8974_PWR_OFF); 968 regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs); 969 970 return ret; 971 } 972 973 static int ak8974_remove(struct i2c_client *i2c) 974 { 975 struct iio_dev *indio_dev = i2c_get_clientdata(i2c); 976 struct ak8974 *ak8974 = iio_priv(indio_dev); 977 978 iio_device_unregister(indio_dev); 979 iio_triggered_buffer_cleanup(indio_dev); 980 pm_runtime_get_sync(&i2c->dev); 981 pm_runtime_put_noidle(&i2c->dev); 982 pm_runtime_disable(&i2c->dev); 983 ak8974_set_power(ak8974, AK8974_PWR_OFF); 984 regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs); 985 986 return 0; 987 } 988 989 static int __maybe_unused ak8974_runtime_suspend(struct device *dev) 990 { 991 struct ak8974 *ak8974 = 992 iio_priv(i2c_get_clientdata(to_i2c_client(dev))); 993 994 ak8974_set_power(ak8974, AK8974_PWR_OFF); 995 regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs); 996 997 return 0; 998 } 999 1000 static int __maybe_unused ak8974_runtime_resume(struct device *dev) 1001 { 1002 struct ak8974 *ak8974 = 1003 iio_priv(i2c_get_clientdata(to_i2c_client(dev))); 1004 int ret; 1005 1006 ret = regulator_bulk_enable(ARRAY_SIZE(ak8974->regs), ak8974->regs); 1007 if (ret) 1008 return ret; 1009 msleep(AK8974_POWERON_DELAY); 1010 ret = ak8974_set_power(ak8974, AK8974_PWR_ON); 1011 if (ret) 1012 goto out_regulator_disable; 1013 1014 ret = ak8974_configure(ak8974); 1015 if (ret) 1016 goto out_disable_power; 1017 1018 return 0; 1019 1020 out_disable_power: 1021 ak8974_set_power(ak8974, AK8974_PWR_OFF); 1022 out_regulator_disable: 1023 regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs); 1024 1025 return ret; 1026 } 1027 1028 static const struct dev_pm_ops ak8974_dev_pm_ops = { 1029 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 1030 pm_runtime_force_resume) 1031 SET_RUNTIME_PM_OPS(ak8974_runtime_suspend, 1032 ak8974_runtime_resume, NULL) 1033 }; 1034 1035 static const struct i2c_device_id ak8974_id[] = { 1036 {"ami305", 0 }, 1037 {"ami306", 0 }, 1038 {"ak8974", 0 }, 1039 {"hscdtd008a", 0 }, 1040 {} 1041 }; 1042 MODULE_DEVICE_TABLE(i2c, ak8974_id); 1043 1044 static const struct of_device_id ak8974_of_match[] = { 1045 { .compatible = "asahi-kasei,ak8974", }, 1046 { .compatible = "alps,hscdtd008a", }, 1047 {} 1048 }; 1049 MODULE_DEVICE_TABLE(of, ak8974_of_match); 1050 1051 static struct i2c_driver ak8974_driver = { 1052 .driver = { 1053 .name = "ak8974", 1054 .pm = &ak8974_dev_pm_ops, 1055 .of_match_table = ak8974_of_match, 1056 }, 1057 .probe = ak8974_probe, 1058 .remove = ak8974_remove, 1059 .id_table = ak8974_id, 1060 }; 1061 module_i2c_driver(ak8974_driver); 1062 1063 MODULE_DESCRIPTION("AK8974 and AMI30x 3-axis magnetometer driver"); 1064 MODULE_AUTHOR("Samu Onkalo"); 1065 MODULE_AUTHOR("Linus Walleij"); 1066 MODULE_LICENSE("GPL v2"); 1067