xref: /openbmc/linux/drivers/iio/light/rpr0521.c (revision 3e30a927)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * RPR-0521 ROHM Ambient Light and Proximity Sensor
4  *
5  * Copyright (c) 2015, Intel Corporation.
6  *
7  * IIO driver for RPR-0521RS (7-bit I2C slave address 0x38).
8  *
9  * TODO: illuminance channel
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/i2c.h>
15 #include <linux/regmap.h>
16 #include <linux/delay.h>
17 #include <linux/acpi.h>
18 
19 #include <linux/iio/iio.h>
20 #include <linux/iio/buffer.h>
21 #include <linux/iio/trigger.h>
22 #include <linux/iio/trigger_consumer.h>
23 #include <linux/iio/triggered_buffer.h>
24 #include <linux/iio/sysfs.h>
25 #include <linux/pm_runtime.h>
26 
27 #define RPR0521_REG_SYSTEM_CTRL		0x40
28 #define RPR0521_REG_MODE_CTRL		0x41
29 #define RPR0521_REG_ALS_CTRL		0x42
30 #define RPR0521_REG_PXS_CTRL		0x43
31 #define RPR0521_REG_PXS_DATA		0x44 /* 16-bit, little endian */
32 #define RPR0521_REG_ALS_DATA0		0x46 /* 16-bit, little endian */
33 #define RPR0521_REG_ALS_DATA1		0x48 /* 16-bit, little endian */
34 #define RPR0521_REG_INTERRUPT		0x4A
35 #define RPR0521_REG_PS_OFFSET_LSB	0x53
36 #define RPR0521_REG_ID			0x92
37 
38 #define RPR0521_MODE_ALS_MASK		BIT(7)
39 #define RPR0521_MODE_PXS_MASK		BIT(6)
40 #define RPR0521_MODE_MEAS_TIME_MASK	GENMASK(3, 0)
41 #define RPR0521_ALS_DATA0_GAIN_MASK	GENMASK(5, 4)
42 #define RPR0521_ALS_DATA0_GAIN_SHIFT	4
43 #define RPR0521_ALS_DATA1_GAIN_MASK	GENMASK(3, 2)
44 #define RPR0521_ALS_DATA1_GAIN_SHIFT	2
45 #define RPR0521_PXS_GAIN_MASK		GENMASK(5, 4)
46 #define RPR0521_PXS_GAIN_SHIFT		4
47 #define RPR0521_PXS_PERSISTENCE_MASK	GENMASK(3, 0)
48 #define RPR0521_INTERRUPT_INT_TRIG_PS_MASK	BIT(0)
49 #define RPR0521_INTERRUPT_INT_TRIG_ALS_MASK	BIT(1)
50 #define RPR0521_INTERRUPT_INT_REASSERT_MASK	BIT(3)
51 #define RPR0521_INTERRUPT_ALS_INT_STATUS_MASK	BIT(6)
52 #define RPR0521_INTERRUPT_PS_INT_STATUS_MASK	BIT(7)
53 
54 #define RPR0521_MODE_ALS_ENABLE		BIT(7)
55 #define RPR0521_MODE_ALS_DISABLE	0x00
56 #define RPR0521_MODE_PXS_ENABLE		BIT(6)
57 #define RPR0521_MODE_PXS_DISABLE	0x00
58 #define RPR0521_PXS_PERSISTENCE_DRDY	0x00
59 
60 #define RPR0521_INTERRUPT_INT_TRIG_PS_ENABLE	BIT(0)
61 #define RPR0521_INTERRUPT_INT_TRIG_PS_DISABLE	0x00
62 #define RPR0521_INTERRUPT_INT_TRIG_ALS_ENABLE	BIT(1)
63 #define RPR0521_INTERRUPT_INT_TRIG_ALS_DISABLE	0x00
64 #define RPR0521_INTERRUPT_INT_REASSERT_ENABLE	BIT(3)
65 #define RPR0521_INTERRUPT_INT_REASSERT_DISABLE	0x00
66 
67 #define RPR0521_MANUFACT_ID		0xE0
68 #define RPR0521_DEFAULT_MEAS_TIME	0x06 /* ALS - 100ms, PXS - 100ms */
69 
70 #define RPR0521_DRV_NAME		"RPR0521"
71 #define RPR0521_IRQ_NAME		"rpr0521_event"
72 #define RPR0521_REGMAP_NAME		"rpr0521_regmap"
73 
74 #define RPR0521_SLEEP_DELAY_MS	2000
75 
76 #define RPR0521_ALS_SCALE_AVAIL "0.007812 0.015625 0.5 1"
77 #define RPR0521_PXS_SCALE_AVAIL "0.125 0.5 1"
78 
79 struct rpr0521_gain {
80 	int scale;
81 	int uscale;
82 };
83 
84 static const struct rpr0521_gain rpr0521_als_gain[4] = {
85 	{1, 0},		/* x1 */
86 	{0, 500000},	/* x2 */
87 	{0, 15625},	/* x64 */
88 	{0, 7812},	/* x128 */
89 };
90 
91 static const struct rpr0521_gain rpr0521_pxs_gain[3] = {
92 	{1, 0},		/* x1 */
93 	{0, 500000},	/* x2 */
94 	{0, 125000},	/* x4 */
95 };
96 
97 enum rpr0521_channel {
98 	RPR0521_CHAN_PXS,
99 	RPR0521_CHAN_ALS_DATA0,
100 	RPR0521_CHAN_ALS_DATA1,
101 };
102 
103 struct rpr0521_reg_desc {
104 	u8 address;
105 	u8 device_mask;
106 };
107 
108 static const struct rpr0521_reg_desc rpr0521_data_reg[] = {
109 	[RPR0521_CHAN_PXS]	= {
110 		.address	= RPR0521_REG_PXS_DATA,
111 		.device_mask	= RPR0521_MODE_PXS_MASK,
112 	},
113 	[RPR0521_CHAN_ALS_DATA0] = {
114 		.address	= RPR0521_REG_ALS_DATA0,
115 		.device_mask	= RPR0521_MODE_ALS_MASK,
116 	},
117 	[RPR0521_CHAN_ALS_DATA1] = {
118 		.address	= RPR0521_REG_ALS_DATA1,
119 		.device_mask	= RPR0521_MODE_ALS_MASK,
120 	},
121 };
122 
123 static const struct rpr0521_gain_info {
124 	u8 reg;
125 	u8 mask;
126 	u8 shift;
127 	const struct rpr0521_gain *gain;
128 	int size;
129 } rpr0521_gain[] = {
130 	[RPR0521_CHAN_PXS] = {
131 		.reg	= RPR0521_REG_PXS_CTRL,
132 		.mask	= RPR0521_PXS_GAIN_MASK,
133 		.shift	= RPR0521_PXS_GAIN_SHIFT,
134 		.gain	= rpr0521_pxs_gain,
135 		.size	= ARRAY_SIZE(rpr0521_pxs_gain),
136 	},
137 	[RPR0521_CHAN_ALS_DATA0] = {
138 		.reg	= RPR0521_REG_ALS_CTRL,
139 		.mask	= RPR0521_ALS_DATA0_GAIN_MASK,
140 		.shift	= RPR0521_ALS_DATA0_GAIN_SHIFT,
141 		.gain	= rpr0521_als_gain,
142 		.size	= ARRAY_SIZE(rpr0521_als_gain),
143 	},
144 	[RPR0521_CHAN_ALS_DATA1] = {
145 		.reg	= RPR0521_REG_ALS_CTRL,
146 		.mask	= RPR0521_ALS_DATA1_GAIN_MASK,
147 		.shift	= RPR0521_ALS_DATA1_GAIN_SHIFT,
148 		.gain	= rpr0521_als_gain,
149 		.size	= ARRAY_SIZE(rpr0521_als_gain),
150 	},
151 };
152 
153 struct rpr0521_samp_freq {
154 	int	als_hz;
155 	int	als_uhz;
156 	int	pxs_hz;
157 	int	pxs_uhz;
158 };
159 
160 static const struct rpr0521_samp_freq rpr0521_samp_freq_i[13] = {
161 /*	{ALS, PXS},		   W==currently writable option */
162 	{0, 0, 0, 0},		/* W0000, 0=standby */
163 	{0, 0, 100, 0},		/*  0001 */
164 	{0, 0, 25, 0},		/*  0010 */
165 	{0, 0, 10, 0},		/*  0011 */
166 	{0, 0, 2, 500000},	/*  0100 */
167 	{10, 0, 20, 0},		/*  0101 */
168 	{10, 0, 10, 0},		/* W0110 */
169 	{10, 0, 2, 500000},	/*  0111 */
170 	{2, 500000, 20, 0},	/*  1000, measurement 100ms, sleep 300ms */
171 	{2, 500000, 10, 0},	/*  1001, measurement 100ms, sleep 300ms */
172 	{2, 500000, 0, 0},	/*  1010, high sensitivity mode */
173 	{2, 500000, 2, 500000},	/* W1011, high sensitivity mode */
174 	{20, 0, 20, 0}	/* 1100, ALS_data x 0.5, see specification P.18 */
175 };
176 
177 struct rpr0521_data {
178 	struct i2c_client *client;
179 
180 	/* protect device params updates (e.g state, gain) */
181 	struct mutex lock;
182 
183 	/* device active status */
184 	bool als_dev_en;
185 	bool pxs_dev_en;
186 
187 	struct iio_trigger *drdy_trigger0;
188 	s64 irq_timestamp;
189 
190 	/* optimize runtime pm ops - enable/disable device only if needed */
191 	bool als_ps_need_en;
192 	bool pxs_ps_need_en;
193 	bool als_need_dis;
194 	bool pxs_need_dis;
195 
196 	struct regmap *regmap;
197 };
198 
199 static IIO_CONST_ATTR(in_intensity_scale_available, RPR0521_ALS_SCALE_AVAIL);
200 static IIO_CONST_ATTR(in_proximity_scale_available, RPR0521_PXS_SCALE_AVAIL);
201 
202 /*
203  * Start with easy freq first, whole table of freq combinations is more
204  * complicated.
205  */
206 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("2.5 10");
207 
208 static struct attribute *rpr0521_attributes[] = {
209 	&iio_const_attr_in_intensity_scale_available.dev_attr.attr,
210 	&iio_const_attr_in_proximity_scale_available.dev_attr.attr,
211 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
212 	NULL,
213 };
214 
215 static const struct attribute_group rpr0521_attribute_group = {
216 	.attrs = rpr0521_attributes,
217 };
218 
219 /* Order of the channel data in buffer */
220 enum rpr0521_scan_index_order {
221 	RPR0521_CHAN_INDEX_PXS,
222 	RPR0521_CHAN_INDEX_BOTH,
223 	RPR0521_CHAN_INDEX_IR,
224 };
225 
226 static const unsigned long rpr0521_available_scan_masks[] = {
227 	BIT(RPR0521_CHAN_INDEX_PXS) | BIT(RPR0521_CHAN_INDEX_BOTH) |
228 	BIT(RPR0521_CHAN_INDEX_IR),
229 	0
230 };
231 
232 static const struct iio_chan_spec rpr0521_channels[] = {
233 	{
234 		.type = IIO_PROXIMITY,
235 		.address = RPR0521_CHAN_PXS,
236 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
237 			BIT(IIO_CHAN_INFO_OFFSET) |
238 			BIT(IIO_CHAN_INFO_SCALE),
239 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
240 		.scan_index = RPR0521_CHAN_INDEX_PXS,
241 		.scan_type = {
242 			.sign = 'u',
243 			.realbits = 16,
244 			.storagebits = 16,
245 			.endianness = IIO_LE,
246 		},
247 	},
248 	{
249 		.type = IIO_INTENSITY,
250 		.modified = 1,
251 		.address = RPR0521_CHAN_ALS_DATA0,
252 		.channel2 = IIO_MOD_LIGHT_BOTH,
253 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
254 			BIT(IIO_CHAN_INFO_SCALE),
255 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
256 		.scan_index = RPR0521_CHAN_INDEX_BOTH,
257 		.scan_type = {
258 			.sign = 'u',
259 			.realbits = 16,
260 			.storagebits = 16,
261 			.endianness = IIO_LE,
262 		},
263 	},
264 	{
265 		.type = IIO_INTENSITY,
266 		.modified = 1,
267 		.address = RPR0521_CHAN_ALS_DATA1,
268 		.channel2 = IIO_MOD_LIGHT_IR,
269 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
270 			BIT(IIO_CHAN_INFO_SCALE),
271 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
272 		.scan_index = RPR0521_CHAN_INDEX_IR,
273 		.scan_type = {
274 			.sign = 'u',
275 			.realbits = 16,
276 			.storagebits = 16,
277 			.endianness = IIO_LE,
278 		},
279 	},
280 };
281 
282 static int rpr0521_als_enable(struct rpr0521_data *data, u8 status)
283 {
284 	int ret;
285 
286 	ret = regmap_update_bits(data->regmap, RPR0521_REG_MODE_CTRL,
287 				 RPR0521_MODE_ALS_MASK,
288 				 status);
289 	if (ret < 0)
290 		return ret;
291 
292 	if (status & RPR0521_MODE_ALS_MASK)
293 		data->als_dev_en = true;
294 	else
295 		data->als_dev_en = false;
296 
297 	return 0;
298 }
299 
300 static int rpr0521_pxs_enable(struct rpr0521_data *data, u8 status)
301 {
302 	int ret;
303 
304 	ret = regmap_update_bits(data->regmap, RPR0521_REG_MODE_CTRL,
305 				 RPR0521_MODE_PXS_MASK,
306 				 status);
307 	if (ret < 0)
308 		return ret;
309 
310 	if (status & RPR0521_MODE_PXS_MASK)
311 		data->pxs_dev_en = true;
312 	else
313 		data->pxs_dev_en = false;
314 
315 	return 0;
316 }
317 
318 /**
319  * rpr0521_set_power_state - handles runtime PM state and sensors enabled status
320  *
321  * @data: rpr0521 device private data
322  * @on: state to be set for devices in @device_mask
323  * @device_mask: bitmask specifying for which device we need to update @on state
324  *
325  * Calls for this function must be balanced so that each ON should have matching
326  * OFF. Otherwise pm usage_count gets out of sync.
327  */
328 static int rpr0521_set_power_state(struct rpr0521_data *data, bool on,
329 				   u8 device_mask)
330 {
331 #ifdef CONFIG_PM
332 	int ret;
333 
334 	if (device_mask & RPR0521_MODE_ALS_MASK) {
335 		data->als_ps_need_en = on;
336 		data->als_need_dis = !on;
337 	}
338 
339 	if (device_mask & RPR0521_MODE_PXS_MASK) {
340 		data->pxs_ps_need_en = on;
341 		data->pxs_need_dis = !on;
342 	}
343 
344 	/*
345 	 * On: _resume() is called only when we are suspended
346 	 * Off: _suspend() is called after delay if _resume() is not
347 	 * called before that.
348 	 * Note: If either measurement is re-enabled before _suspend(),
349 	 * both stay enabled until _suspend().
350 	 */
351 	if (on) {
352 		ret = pm_runtime_get_sync(&data->client->dev);
353 	} else {
354 		pm_runtime_mark_last_busy(&data->client->dev);
355 		ret = pm_runtime_put_autosuspend(&data->client->dev);
356 	}
357 	if (ret < 0) {
358 		dev_err(&data->client->dev,
359 			"Failed: rpr0521_set_power_state for %d, ret %d\n",
360 			on, ret);
361 		if (on)
362 			pm_runtime_put_noidle(&data->client->dev);
363 
364 		return ret;
365 	}
366 
367 	if (on) {
368 		/* If _resume() was not called, enable measurement now. */
369 		if (data->als_ps_need_en) {
370 			ret = rpr0521_als_enable(data, RPR0521_MODE_ALS_ENABLE);
371 			if (ret)
372 				return ret;
373 			data->als_ps_need_en = false;
374 		}
375 
376 		if (data->pxs_ps_need_en) {
377 			ret = rpr0521_pxs_enable(data, RPR0521_MODE_PXS_ENABLE);
378 			if (ret)
379 				return ret;
380 			data->pxs_ps_need_en = false;
381 		}
382 	}
383 #endif
384 	return 0;
385 }
386 
387 /* Interrupt register tells if this sensor caused the interrupt or not. */
388 static inline bool rpr0521_is_triggered(struct rpr0521_data *data)
389 {
390 	int ret;
391 	int reg;
392 
393 	ret = regmap_read(data->regmap, RPR0521_REG_INTERRUPT, &reg);
394 	if (ret < 0)
395 		return false;   /* Reg read failed. */
396 	if (reg &
397 	    (RPR0521_INTERRUPT_ALS_INT_STATUS_MASK |
398 	    RPR0521_INTERRUPT_PS_INT_STATUS_MASK))
399 		return true;
400 	else
401 		return false;   /* Int not from this sensor. */
402 }
403 
404 /* IRQ to trigger handler */
405 static irqreturn_t rpr0521_drdy_irq_handler(int irq, void *private)
406 {
407 	struct iio_dev *indio_dev = private;
408 	struct rpr0521_data *data = iio_priv(indio_dev);
409 
410 	data->irq_timestamp = iio_get_time_ns(indio_dev);
411 	/*
412 	 * We need to wake the thread to read the interrupt reg. It
413 	 * is not possible to do that here because regmap_read takes a
414 	 * mutex.
415 	 */
416 
417 	return IRQ_WAKE_THREAD;
418 }
419 
420 static irqreturn_t rpr0521_drdy_irq_thread(int irq, void *private)
421 {
422 	struct iio_dev *indio_dev = private;
423 	struct rpr0521_data *data = iio_priv(indio_dev);
424 
425 	if (rpr0521_is_triggered(data)) {
426 		iio_trigger_poll_chained(data->drdy_trigger0);
427 		return IRQ_HANDLED;
428 	}
429 
430 	return IRQ_NONE;
431 }
432 
433 static irqreturn_t rpr0521_trigger_consumer_store_time(int irq, void *p)
434 {
435 	struct iio_poll_func *pf = p;
436 	struct iio_dev *indio_dev = pf->indio_dev;
437 
438 	/* Other trigger polls store time here. */
439 	if (!iio_trigger_using_own(indio_dev))
440 		pf->timestamp = iio_get_time_ns(indio_dev);
441 
442 	return IRQ_WAKE_THREAD;
443 }
444 
445 static irqreturn_t rpr0521_trigger_consumer_handler(int irq, void *p)
446 {
447 	struct iio_poll_func *pf = p;
448 	struct iio_dev *indio_dev = pf->indio_dev;
449 	struct rpr0521_data *data = iio_priv(indio_dev);
450 	int err;
451 
452 	u8 buffer[16]; /* 3 16-bit channels + padding + ts */
453 
454 	/* Use irq timestamp when reasonable. */
455 	if (iio_trigger_using_own(indio_dev) && data->irq_timestamp) {
456 		pf->timestamp = data->irq_timestamp;
457 		data->irq_timestamp = 0;
458 	}
459 	/* Other chained trigger polls get timestamp only here. */
460 	if (!pf->timestamp)
461 		pf->timestamp = iio_get_time_ns(indio_dev);
462 
463 	err = regmap_bulk_read(data->regmap, RPR0521_REG_PXS_DATA,
464 		&buffer,
465 		(3 * 2) + 1);	/* 3 * 16-bit + (discarded) int clear reg. */
466 	if (!err)
467 		iio_push_to_buffers_with_timestamp(indio_dev,
468 						   buffer, pf->timestamp);
469 	else
470 		dev_err(&data->client->dev,
471 			"Trigger consumer can't read from sensor.\n");
472 	pf->timestamp = 0;
473 
474 	iio_trigger_notify_done(indio_dev->trig);
475 
476 	return IRQ_HANDLED;
477 }
478 
479 static int rpr0521_write_int_enable(struct rpr0521_data *data)
480 {
481 	int err;
482 
483 	/* Interrupt after each measurement */
484 	err = regmap_update_bits(data->regmap, RPR0521_REG_PXS_CTRL,
485 		RPR0521_PXS_PERSISTENCE_MASK,
486 		RPR0521_PXS_PERSISTENCE_DRDY);
487 	if (err) {
488 		dev_err(&data->client->dev, "PS control reg write fail.\n");
489 		return -EBUSY;
490 		}
491 
492 	/* Ignore latch and mode because of drdy */
493 	err = regmap_write(data->regmap, RPR0521_REG_INTERRUPT,
494 		RPR0521_INTERRUPT_INT_REASSERT_DISABLE |
495 		RPR0521_INTERRUPT_INT_TRIG_ALS_DISABLE |
496 		RPR0521_INTERRUPT_INT_TRIG_PS_ENABLE
497 		);
498 	if (err) {
499 		dev_err(&data->client->dev, "Interrupt setup write fail.\n");
500 		return -EBUSY;
501 		}
502 
503 	return 0;
504 }
505 
506 static int rpr0521_write_int_disable(struct rpr0521_data *data)
507 {
508 	/* Don't care of clearing mode, assert and latch. */
509 	return regmap_write(data->regmap, RPR0521_REG_INTERRUPT,
510 				RPR0521_INTERRUPT_INT_TRIG_ALS_DISABLE |
511 				RPR0521_INTERRUPT_INT_TRIG_PS_DISABLE
512 				);
513 }
514 
515 /*
516  * Trigger producer enable / disable. Note that there will be trigs only when
517  * measurement data is ready to be read.
518  */
519 static int rpr0521_pxs_drdy_set_state(struct iio_trigger *trigger,
520 	bool enable_drdy)
521 {
522 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trigger);
523 	struct rpr0521_data *data = iio_priv(indio_dev);
524 	int err;
525 
526 	if (enable_drdy)
527 		err = rpr0521_write_int_enable(data);
528 	else
529 		err = rpr0521_write_int_disable(data);
530 	if (err)
531 		dev_err(&data->client->dev, "rpr0521_pxs_drdy_set_state failed\n");
532 
533 	return err;
534 }
535 
536 static const struct iio_trigger_ops rpr0521_trigger_ops = {
537 	.set_trigger_state = rpr0521_pxs_drdy_set_state,
538 	};
539 
540 
541 static int rpr0521_buffer_preenable(struct iio_dev *indio_dev)
542 {
543 	int err;
544 	struct rpr0521_data *data = iio_priv(indio_dev);
545 
546 	mutex_lock(&data->lock);
547 	err = rpr0521_set_power_state(data, true,
548 		(RPR0521_MODE_PXS_MASK | RPR0521_MODE_ALS_MASK));
549 	mutex_unlock(&data->lock);
550 	if (err)
551 		dev_err(&data->client->dev, "_buffer_preenable fail\n");
552 
553 	return err;
554 }
555 
556 static int rpr0521_buffer_postdisable(struct iio_dev *indio_dev)
557 {
558 	int err;
559 	struct rpr0521_data *data = iio_priv(indio_dev);
560 
561 	mutex_lock(&data->lock);
562 	err = rpr0521_set_power_state(data, false,
563 		(RPR0521_MODE_PXS_MASK | RPR0521_MODE_ALS_MASK));
564 	mutex_unlock(&data->lock);
565 	if (err)
566 		dev_err(&data->client->dev, "_buffer_postdisable fail\n");
567 
568 	return err;
569 }
570 
571 static const struct iio_buffer_setup_ops rpr0521_buffer_setup_ops = {
572 	.preenable = rpr0521_buffer_preenable,
573 	.postenable = iio_triggered_buffer_postenable,
574 	.predisable = iio_triggered_buffer_predisable,
575 	.postdisable = rpr0521_buffer_postdisable,
576 };
577 
578 static int rpr0521_get_gain(struct rpr0521_data *data, int chan,
579 			    int *val, int *val2)
580 {
581 	int ret, reg, idx;
582 
583 	ret = regmap_read(data->regmap, rpr0521_gain[chan].reg, &reg);
584 	if (ret < 0)
585 		return ret;
586 
587 	idx = (rpr0521_gain[chan].mask & reg) >> rpr0521_gain[chan].shift;
588 	*val = rpr0521_gain[chan].gain[idx].scale;
589 	*val2 = rpr0521_gain[chan].gain[idx].uscale;
590 
591 	return 0;
592 }
593 
594 static int rpr0521_set_gain(struct rpr0521_data *data, int chan,
595 			    int val, int val2)
596 {
597 	int i, idx = -EINVAL;
598 
599 	/* get gain index */
600 	for (i = 0; i < rpr0521_gain[chan].size; i++)
601 		if (val == rpr0521_gain[chan].gain[i].scale &&
602 		    val2 == rpr0521_gain[chan].gain[i].uscale) {
603 			idx = i;
604 			break;
605 		}
606 
607 	if (idx < 0)
608 		return idx;
609 
610 	return regmap_update_bits(data->regmap, rpr0521_gain[chan].reg,
611 				  rpr0521_gain[chan].mask,
612 				  idx << rpr0521_gain[chan].shift);
613 }
614 
615 static int rpr0521_read_samp_freq(struct rpr0521_data *data,
616 				enum iio_chan_type chan_type,
617 			    int *val, int *val2)
618 {
619 	int reg, ret;
620 
621 	ret = regmap_read(data->regmap, RPR0521_REG_MODE_CTRL, &reg);
622 	if (ret < 0)
623 		return ret;
624 
625 	reg &= RPR0521_MODE_MEAS_TIME_MASK;
626 	if (reg >= ARRAY_SIZE(rpr0521_samp_freq_i))
627 		return -EINVAL;
628 
629 	switch (chan_type) {
630 	case IIO_INTENSITY:
631 		*val = rpr0521_samp_freq_i[reg].als_hz;
632 		*val2 = rpr0521_samp_freq_i[reg].als_uhz;
633 		return 0;
634 
635 	case IIO_PROXIMITY:
636 		*val = rpr0521_samp_freq_i[reg].pxs_hz;
637 		*val2 = rpr0521_samp_freq_i[reg].pxs_uhz;
638 		return 0;
639 
640 	default:
641 		return -EINVAL;
642 	}
643 }
644 
645 static int rpr0521_write_samp_freq_common(struct rpr0521_data *data,
646 				enum iio_chan_type chan_type,
647 				int val, int val2)
648 {
649 	int i;
650 
651 	/*
652 	 * Ignore channel
653 	 * both pxs and als are setup only to same freq because of simplicity
654 	 */
655 	switch (val) {
656 	case 0:
657 		i = 0;
658 		break;
659 
660 	case 2:
661 		if (val2 != 500000)
662 			return -EINVAL;
663 
664 		i = 11;
665 		break;
666 
667 	case 10:
668 		i = 6;
669 		break;
670 
671 	default:
672 		return -EINVAL;
673 	}
674 
675 	return regmap_update_bits(data->regmap,
676 		RPR0521_REG_MODE_CTRL,
677 		RPR0521_MODE_MEAS_TIME_MASK,
678 		i);
679 }
680 
681 static int rpr0521_read_ps_offset(struct rpr0521_data *data, int *offset)
682 {
683 	int ret;
684 	__le16 buffer;
685 
686 	ret = regmap_bulk_read(data->regmap,
687 		RPR0521_REG_PS_OFFSET_LSB, &buffer, sizeof(buffer));
688 
689 	if (ret < 0) {
690 		dev_err(&data->client->dev, "Failed to read PS OFFSET register\n");
691 		return ret;
692 	}
693 	*offset = le16_to_cpu(buffer);
694 
695 	return ret;
696 }
697 
698 static int rpr0521_write_ps_offset(struct rpr0521_data *data, int offset)
699 {
700 	int ret;
701 	__le16 buffer;
702 
703 	buffer = cpu_to_le16(offset & 0x3ff);
704 	ret = regmap_raw_write(data->regmap,
705 		RPR0521_REG_PS_OFFSET_LSB, &buffer, sizeof(buffer));
706 
707 	if (ret < 0) {
708 		dev_err(&data->client->dev, "Failed to write PS OFFSET register\n");
709 		return ret;
710 	}
711 
712 	return ret;
713 }
714 
715 static int rpr0521_read_raw(struct iio_dev *indio_dev,
716 			    struct iio_chan_spec const *chan, int *val,
717 			    int *val2, long mask)
718 {
719 	struct rpr0521_data *data = iio_priv(indio_dev);
720 	int ret;
721 	int busy;
722 	u8 device_mask;
723 	__le16 raw_data;
724 
725 	switch (mask) {
726 	case IIO_CHAN_INFO_RAW:
727 		if (chan->type != IIO_INTENSITY && chan->type != IIO_PROXIMITY)
728 			return -EINVAL;
729 
730 		busy = iio_device_claim_direct_mode(indio_dev);
731 		if (busy)
732 			return -EBUSY;
733 
734 		device_mask = rpr0521_data_reg[chan->address].device_mask;
735 
736 		mutex_lock(&data->lock);
737 		ret = rpr0521_set_power_state(data, true, device_mask);
738 		if (ret < 0)
739 			goto rpr0521_read_raw_out;
740 
741 		ret = regmap_bulk_read(data->regmap,
742 				       rpr0521_data_reg[chan->address].address,
743 				       &raw_data, sizeof(raw_data));
744 		if (ret < 0) {
745 			rpr0521_set_power_state(data, false, device_mask);
746 			goto rpr0521_read_raw_out;
747 		}
748 
749 		ret = rpr0521_set_power_state(data, false, device_mask);
750 
751 rpr0521_read_raw_out:
752 		mutex_unlock(&data->lock);
753 		iio_device_release_direct_mode(indio_dev);
754 		if (ret < 0)
755 			return ret;
756 
757 		*val = le16_to_cpu(raw_data);
758 
759 		return IIO_VAL_INT;
760 
761 	case IIO_CHAN_INFO_SCALE:
762 		mutex_lock(&data->lock);
763 		ret = rpr0521_get_gain(data, chan->address, val, val2);
764 		mutex_unlock(&data->lock);
765 		if (ret < 0)
766 			return ret;
767 
768 		return IIO_VAL_INT_PLUS_MICRO;
769 
770 	case IIO_CHAN_INFO_SAMP_FREQ:
771 		mutex_lock(&data->lock);
772 		ret = rpr0521_read_samp_freq(data, chan->type, val, val2);
773 		mutex_unlock(&data->lock);
774 		if (ret < 0)
775 			return ret;
776 
777 		return IIO_VAL_INT_PLUS_MICRO;
778 
779 	case IIO_CHAN_INFO_OFFSET:
780 		mutex_lock(&data->lock);
781 		ret = rpr0521_read_ps_offset(data, val);
782 		mutex_unlock(&data->lock);
783 		if (ret < 0)
784 			return ret;
785 
786 		return IIO_VAL_INT;
787 
788 	default:
789 		return -EINVAL;
790 	}
791 }
792 
793 static int rpr0521_write_raw(struct iio_dev *indio_dev,
794 			     struct iio_chan_spec const *chan, int val,
795 			     int val2, long mask)
796 {
797 	struct rpr0521_data *data = iio_priv(indio_dev);
798 	int ret;
799 
800 	switch (mask) {
801 	case IIO_CHAN_INFO_SCALE:
802 		mutex_lock(&data->lock);
803 		ret = rpr0521_set_gain(data, chan->address, val, val2);
804 		mutex_unlock(&data->lock);
805 
806 		return ret;
807 
808 	case IIO_CHAN_INFO_SAMP_FREQ:
809 		mutex_lock(&data->lock);
810 		ret = rpr0521_write_samp_freq_common(data, chan->type,
811 						     val, val2);
812 		mutex_unlock(&data->lock);
813 
814 		return ret;
815 
816 	case IIO_CHAN_INFO_OFFSET:
817 		mutex_lock(&data->lock);
818 		ret = rpr0521_write_ps_offset(data, val);
819 		mutex_unlock(&data->lock);
820 
821 		return ret;
822 
823 	default:
824 		return -EINVAL;
825 	}
826 }
827 
828 static const struct iio_info rpr0521_info = {
829 	.read_raw	= rpr0521_read_raw,
830 	.write_raw	= rpr0521_write_raw,
831 	.attrs		= &rpr0521_attribute_group,
832 };
833 
834 static int rpr0521_init(struct rpr0521_data *data)
835 {
836 	int ret;
837 	int id;
838 
839 	ret = regmap_read(data->regmap, RPR0521_REG_ID, &id);
840 	if (ret < 0) {
841 		dev_err(&data->client->dev, "Failed to read REG_ID register\n");
842 		return ret;
843 	}
844 
845 	if (id != RPR0521_MANUFACT_ID) {
846 		dev_err(&data->client->dev, "Wrong id, got %x, expected %x\n",
847 			id, RPR0521_MANUFACT_ID);
848 		return -ENODEV;
849 	}
850 
851 	/* set default measurement time - 100 ms for both ALS and PS */
852 	ret = regmap_update_bits(data->regmap, RPR0521_REG_MODE_CTRL,
853 				 RPR0521_MODE_MEAS_TIME_MASK,
854 				 RPR0521_DEFAULT_MEAS_TIME);
855 	if (ret) {
856 		pr_err("regmap_update_bits returned %d\n", ret);
857 		return ret;
858 	}
859 
860 #ifndef CONFIG_PM
861 	ret = rpr0521_als_enable(data, RPR0521_MODE_ALS_ENABLE);
862 	if (ret < 0)
863 		return ret;
864 	ret = rpr0521_pxs_enable(data, RPR0521_MODE_PXS_ENABLE);
865 	if (ret < 0)
866 		return ret;
867 #endif
868 
869 	data->irq_timestamp = 0;
870 
871 	return 0;
872 }
873 
874 static int rpr0521_poweroff(struct rpr0521_data *data)
875 {
876 	int ret;
877 	int tmp;
878 
879 	ret = regmap_update_bits(data->regmap, RPR0521_REG_MODE_CTRL,
880 				 RPR0521_MODE_ALS_MASK |
881 				 RPR0521_MODE_PXS_MASK,
882 				 RPR0521_MODE_ALS_DISABLE |
883 				 RPR0521_MODE_PXS_DISABLE);
884 	if (ret < 0)
885 		return ret;
886 
887 	data->als_dev_en = false;
888 	data->pxs_dev_en = false;
889 
890 	/*
891 	 * Int pin keeps state after power off. Set pin to high impedance
892 	 * mode to prevent power drain.
893 	 */
894 	ret = regmap_read(data->regmap, RPR0521_REG_INTERRUPT, &tmp);
895 	if (ret) {
896 		dev_err(&data->client->dev, "Failed to reset int pin.\n");
897 		return ret;
898 	}
899 
900 	return 0;
901 }
902 
903 static bool rpr0521_is_volatile_reg(struct device *dev, unsigned int reg)
904 {
905 	switch (reg) {
906 	case RPR0521_REG_MODE_CTRL:
907 	case RPR0521_REG_ALS_CTRL:
908 	case RPR0521_REG_PXS_CTRL:
909 		return false;
910 	default:
911 		return true;
912 	}
913 }
914 
915 static const struct regmap_config rpr0521_regmap_config = {
916 	.name		= RPR0521_REGMAP_NAME,
917 
918 	.reg_bits	= 8,
919 	.val_bits	= 8,
920 
921 	.max_register	= RPR0521_REG_ID,
922 	.cache_type	= REGCACHE_RBTREE,
923 	.volatile_reg	= rpr0521_is_volatile_reg,
924 };
925 
926 static int rpr0521_probe(struct i2c_client *client,
927 			 const struct i2c_device_id *id)
928 {
929 	struct rpr0521_data *data;
930 	struct iio_dev *indio_dev;
931 	struct regmap *regmap;
932 	int ret;
933 
934 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
935 	if (!indio_dev)
936 		return -ENOMEM;
937 
938 	regmap = devm_regmap_init_i2c(client, &rpr0521_regmap_config);
939 	if (IS_ERR(regmap)) {
940 		dev_err(&client->dev, "regmap_init failed!\n");
941 		return PTR_ERR(regmap);
942 	}
943 
944 	data = iio_priv(indio_dev);
945 	i2c_set_clientdata(client, indio_dev);
946 	data->client = client;
947 	data->regmap = regmap;
948 
949 	mutex_init(&data->lock);
950 
951 	indio_dev->dev.parent = &client->dev;
952 	indio_dev->info = &rpr0521_info;
953 	indio_dev->name = RPR0521_DRV_NAME;
954 	indio_dev->channels = rpr0521_channels;
955 	indio_dev->num_channels = ARRAY_SIZE(rpr0521_channels);
956 	indio_dev->modes = INDIO_DIRECT_MODE;
957 
958 	ret = rpr0521_init(data);
959 	if (ret < 0) {
960 		dev_err(&client->dev, "rpr0521 chip init failed\n");
961 		return ret;
962 	}
963 
964 	ret = pm_runtime_set_active(&client->dev);
965 	if (ret < 0)
966 		goto err_poweroff;
967 
968 	pm_runtime_enable(&client->dev);
969 	pm_runtime_set_autosuspend_delay(&client->dev, RPR0521_SLEEP_DELAY_MS);
970 	pm_runtime_use_autosuspend(&client->dev);
971 
972 	/*
973 	 * If sensor write/read is needed in _probe after _use_autosuspend,
974 	 * sensor needs to be _resumed first using rpr0521_set_power_state().
975 	 */
976 
977 	/* IRQ to trigger setup */
978 	if (client->irq) {
979 		/* Trigger0 producer setup */
980 		data->drdy_trigger0 = devm_iio_trigger_alloc(
981 			indio_dev->dev.parent,
982 			"%s-dev%d", indio_dev->name, indio_dev->id);
983 		if (!data->drdy_trigger0) {
984 			ret = -ENOMEM;
985 			goto err_pm_disable;
986 		}
987 		data->drdy_trigger0->dev.parent = indio_dev->dev.parent;
988 		data->drdy_trigger0->ops = &rpr0521_trigger_ops;
989 		indio_dev->available_scan_masks = rpr0521_available_scan_masks;
990 		iio_trigger_set_drvdata(data->drdy_trigger0, indio_dev);
991 
992 		/* Ties irq to trigger producer handler. */
993 		ret = devm_request_threaded_irq(&client->dev, client->irq,
994 			rpr0521_drdy_irq_handler, rpr0521_drdy_irq_thread,
995 			IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
996 			RPR0521_IRQ_NAME, indio_dev);
997 		if (ret < 0) {
998 			dev_err(&client->dev, "request irq %d for trigger0 failed\n",
999 				client->irq);
1000 			goto err_pm_disable;
1001 			}
1002 
1003 		ret = devm_iio_trigger_register(indio_dev->dev.parent,
1004 						data->drdy_trigger0);
1005 		if (ret) {
1006 			dev_err(&client->dev, "iio trigger register failed\n");
1007 			goto err_pm_disable;
1008 		}
1009 
1010 		/*
1011 		 * Now whole pipe from physical interrupt (irq defined by
1012 		 * devicetree to device) to trigger0 output is set up.
1013 		 */
1014 
1015 		/* Trigger consumer setup */
1016 		ret = devm_iio_triggered_buffer_setup(indio_dev->dev.parent,
1017 			indio_dev,
1018 			rpr0521_trigger_consumer_store_time,
1019 			rpr0521_trigger_consumer_handler,
1020 			&rpr0521_buffer_setup_ops);
1021 		if (ret < 0) {
1022 			dev_err(&client->dev, "iio triggered buffer setup failed\n");
1023 			goto err_pm_disable;
1024 		}
1025 	}
1026 
1027 	ret = iio_device_register(indio_dev);
1028 	if (ret)
1029 		goto err_pm_disable;
1030 
1031 	return 0;
1032 
1033 err_pm_disable:
1034 	pm_runtime_disable(&client->dev);
1035 	pm_runtime_set_suspended(&client->dev);
1036 	pm_runtime_put_noidle(&client->dev);
1037 err_poweroff:
1038 	rpr0521_poweroff(data);
1039 
1040 	return ret;
1041 }
1042 
1043 static int rpr0521_remove(struct i2c_client *client)
1044 {
1045 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
1046 
1047 	iio_device_unregister(indio_dev);
1048 
1049 	pm_runtime_disable(&client->dev);
1050 	pm_runtime_set_suspended(&client->dev);
1051 	pm_runtime_put_noidle(&client->dev);
1052 
1053 	rpr0521_poweroff(iio_priv(indio_dev));
1054 
1055 	return 0;
1056 }
1057 
1058 #ifdef CONFIG_PM
1059 static int rpr0521_runtime_suspend(struct device *dev)
1060 {
1061 	struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1062 	struct rpr0521_data *data = iio_priv(indio_dev);
1063 	int ret;
1064 
1065 	mutex_lock(&data->lock);
1066 	/* If measurements are enabled, enable them on resume */
1067 	if (!data->als_need_dis)
1068 		data->als_ps_need_en = data->als_dev_en;
1069 	if (!data->pxs_need_dis)
1070 		data->pxs_ps_need_en = data->pxs_dev_en;
1071 
1072 	/* disable channels and sets {als,pxs}_dev_en to false */
1073 	ret = rpr0521_poweroff(data);
1074 	regcache_mark_dirty(data->regmap);
1075 	mutex_unlock(&data->lock);
1076 
1077 	return ret;
1078 }
1079 
1080 static int rpr0521_runtime_resume(struct device *dev)
1081 {
1082 	struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1083 	struct rpr0521_data *data = iio_priv(indio_dev);
1084 	int ret;
1085 
1086 	regcache_sync(data->regmap);
1087 	if (data->als_ps_need_en) {
1088 		ret = rpr0521_als_enable(data, RPR0521_MODE_ALS_ENABLE);
1089 		if (ret < 0)
1090 			return ret;
1091 		data->als_ps_need_en = false;
1092 	}
1093 
1094 	if (data->pxs_ps_need_en) {
1095 		ret = rpr0521_pxs_enable(data, RPR0521_MODE_PXS_ENABLE);
1096 		if (ret < 0)
1097 			return ret;
1098 		data->pxs_ps_need_en = false;
1099 	}
1100 	msleep(100);	//wait for first measurement result
1101 
1102 	return 0;
1103 }
1104 #endif
1105 
1106 static const struct dev_pm_ops rpr0521_pm_ops = {
1107 	SET_RUNTIME_PM_OPS(rpr0521_runtime_suspend,
1108 			   rpr0521_runtime_resume, NULL)
1109 };
1110 
1111 static const struct acpi_device_id rpr0521_acpi_match[] = {
1112 	{"RPR0521", 0},
1113 	{ }
1114 };
1115 MODULE_DEVICE_TABLE(acpi, rpr0521_acpi_match);
1116 
1117 static const struct i2c_device_id rpr0521_id[] = {
1118 	{"rpr0521", 0},
1119 	{ }
1120 };
1121 
1122 MODULE_DEVICE_TABLE(i2c, rpr0521_id);
1123 
1124 static struct i2c_driver rpr0521_driver = {
1125 	.driver = {
1126 		.name	= RPR0521_DRV_NAME,
1127 		.pm	= &rpr0521_pm_ops,
1128 		.acpi_match_table = ACPI_PTR(rpr0521_acpi_match),
1129 	},
1130 	.probe		= rpr0521_probe,
1131 	.remove		= rpr0521_remove,
1132 	.id_table	= rpr0521_id,
1133 };
1134 
1135 module_i2c_driver(rpr0521_driver);
1136 
1137 MODULE_AUTHOR("Daniel Baluta <daniel.baluta@intel.com>");
1138 MODULE_DESCRIPTION("RPR0521 ROHM Ambient Light and Proximity Sensor driver");
1139 MODULE_LICENSE("GPL v2");
1140