1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Support for Lite-On LTR501 and similar ambient light and proximity sensors. 4 * 5 * Copyright 2014 Peter Meerwald <pmeerw@pmeerw.net> 6 * 7 * 7-bit I2C slave address 0x23 8 * 9 * TODO: IR LED characteristics 10 */ 11 12 #include <linux/module.h> 13 #include <linux/i2c.h> 14 #include <linux/err.h> 15 #include <linux/delay.h> 16 #include <linux/regmap.h> 17 #include <linux/acpi.h> 18 #include <linux/regulator/consumer.h> 19 20 #include <linux/iio/iio.h> 21 #include <linux/iio/events.h> 22 #include <linux/iio/sysfs.h> 23 #include <linux/iio/trigger_consumer.h> 24 #include <linux/iio/buffer.h> 25 #include <linux/iio/triggered_buffer.h> 26 27 #define LTR501_DRV_NAME "ltr501" 28 29 #define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */ 30 #define LTR501_PS_CONTR 0x81 /* PS operation mode */ 31 #define LTR501_PS_MEAS_RATE 0x84 /* measurement rate*/ 32 #define LTR501_ALS_MEAS_RATE 0x85 /* ALS integ time, measurement rate*/ 33 #define LTR501_PART_ID 0x86 34 #define LTR501_MANUFAC_ID 0x87 35 #define LTR501_ALS_DATA1 0x88 /* 16-bit, little endian */ 36 #define LTR501_ALS_DATA1_UPPER 0x89 /* upper 8 bits of LTR501_ALS_DATA1 */ 37 #define LTR501_ALS_DATA0 0x8a /* 16-bit, little endian */ 38 #define LTR501_ALS_DATA0_UPPER 0x8b /* upper 8 bits of LTR501_ALS_DATA0 */ 39 #define LTR501_ALS_PS_STATUS 0x8c 40 #define LTR501_PS_DATA 0x8d /* 16-bit, little endian */ 41 #define LTR501_PS_DATA_UPPER 0x8e /* upper 8 bits of LTR501_PS_DATA */ 42 #define LTR501_INTR 0x8f /* output mode, polarity, mode */ 43 #define LTR501_PS_THRESH_UP 0x90 /* 11 bit, ps upper threshold */ 44 #define LTR501_PS_THRESH_LOW 0x92 /* 11 bit, ps lower threshold */ 45 #define LTR501_ALS_THRESH_UP 0x97 /* 16 bit, ALS upper threshold */ 46 #define LTR501_ALS_THRESH_LOW 0x99 /* 16 bit, ALS lower threshold */ 47 #define LTR501_INTR_PRST 0x9e /* ps thresh, als thresh */ 48 #define LTR501_MAX_REG 0x9f 49 50 #define LTR501_ALS_CONTR_SW_RESET BIT(2) 51 #define LTR501_CONTR_PS_GAIN_MASK (BIT(3) | BIT(2)) 52 #define LTR501_CONTR_PS_GAIN_SHIFT 2 53 #define LTR501_CONTR_ALS_GAIN_MASK BIT(3) 54 #define LTR501_CONTR_ACTIVE BIT(1) 55 56 #define LTR501_STATUS_ALS_INTR BIT(3) 57 #define LTR501_STATUS_ALS_RDY BIT(2) 58 #define LTR501_STATUS_PS_INTR BIT(1) 59 #define LTR501_STATUS_PS_RDY BIT(0) 60 61 #define LTR501_PS_DATA_MASK 0x7ff 62 #define LTR501_PS_THRESH_MASK 0x7ff 63 #define LTR501_ALS_THRESH_MASK 0xffff 64 65 #define LTR501_ALS_DEF_PERIOD 500000 66 #define LTR501_PS_DEF_PERIOD 100000 67 68 #define LTR501_REGMAP_NAME "ltr501_regmap" 69 70 #define LTR501_LUX_CONV(vis_coeff, vis_data, ir_coeff, ir_data) \ 71 ((vis_coeff * vis_data) - (ir_coeff * ir_data)) 72 73 static const int int_time_mapping[] = {100000, 50000, 200000, 400000}; 74 75 static const struct reg_field reg_field_it = 76 REG_FIELD(LTR501_ALS_MEAS_RATE, 3, 4); 77 static const struct reg_field reg_field_als_intr = 78 REG_FIELD(LTR501_INTR, 1, 1); 79 static const struct reg_field reg_field_ps_intr = 80 REG_FIELD(LTR501_INTR, 0, 0); 81 static const struct reg_field reg_field_als_rate = 82 REG_FIELD(LTR501_ALS_MEAS_RATE, 0, 2); 83 static const struct reg_field reg_field_ps_rate = 84 REG_FIELD(LTR501_PS_MEAS_RATE, 0, 3); 85 static const struct reg_field reg_field_als_prst = 86 REG_FIELD(LTR501_INTR_PRST, 0, 3); 87 static const struct reg_field reg_field_ps_prst = 88 REG_FIELD(LTR501_INTR_PRST, 4, 7); 89 90 struct ltr501_samp_table { 91 int freq_val; /* repetition frequency in micro HZ*/ 92 int time_val; /* repetition rate in micro seconds */ 93 }; 94 95 #define LTR501_RESERVED_GAIN -1 96 97 enum { 98 ltr501 = 0, 99 ltr559, 100 ltr301, 101 ltr303, 102 }; 103 104 struct ltr501_gain { 105 int scale; 106 int uscale; 107 }; 108 109 static const struct ltr501_gain ltr501_als_gain_tbl[] = { 110 {1, 0}, 111 {0, 5000}, 112 }; 113 114 static const struct ltr501_gain ltr559_als_gain_tbl[] = { 115 {1, 0}, 116 {0, 500000}, 117 {0, 250000}, 118 {0, 125000}, 119 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN}, 120 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN}, 121 {0, 20000}, 122 {0, 10000}, 123 }; 124 125 static const struct ltr501_gain ltr501_ps_gain_tbl[] = { 126 {1, 0}, 127 {0, 250000}, 128 {0, 125000}, 129 {0, 62500}, 130 }; 131 132 static const struct ltr501_gain ltr559_ps_gain_tbl[] = { 133 {0, 62500}, /* x16 gain */ 134 {0, 31250}, /* x32 gain */ 135 {0, 15625}, /* bits X1 are for x64 gain */ 136 {0, 15624}, 137 }; 138 139 struct ltr501_chip_info { 140 u8 partid; 141 const struct ltr501_gain *als_gain; 142 int als_gain_tbl_size; 143 const struct ltr501_gain *ps_gain; 144 int ps_gain_tbl_size; 145 u8 als_mode_active; 146 u8 als_gain_mask; 147 u8 als_gain_shift; 148 struct iio_chan_spec const *channels; 149 const int no_channels; 150 const struct iio_info *info; 151 const struct iio_info *info_no_irq; 152 }; 153 154 struct ltr501_data { 155 struct i2c_client *client; 156 struct regulator_bulk_data regulators[2]; 157 struct mutex lock_als, lock_ps; 158 const struct ltr501_chip_info *chip_info; 159 u8 als_contr, ps_contr; 160 int als_period, ps_period; /* period in micro seconds */ 161 struct regmap *regmap; 162 struct regmap_field *reg_it; 163 struct regmap_field *reg_als_intr; 164 struct regmap_field *reg_ps_intr; 165 struct regmap_field *reg_als_rate; 166 struct regmap_field *reg_ps_rate; 167 struct regmap_field *reg_als_prst; 168 struct regmap_field *reg_ps_prst; 169 uint32_t near_level; 170 }; 171 172 static const struct ltr501_samp_table ltr501_als_samp_table[] = { 173 {20000000, 50000}, {10000000, 100000}, 174 {5000000, 200000}, {2000000, 500000}, 175 {1000000, 1000000}, {500000, 2000000}, 176 {500000, 2000000}, {500000, 2000000} 177 }; 178 179 static const struct ltr501_samp_table ltr501_ps_samp_table[] = { 180 {20000000, 50000}, {14285714, 70000}, 181 {10000000, 100000}, {5000000, 200000}, 182 {2000000, 500000}, {1000000, 1000000}, 183 {500000, 2000000}, {500000, 2000000}, 184 {500000, 2000000} 185 }; 186 187 static int ltr501_match_samp_freq(const struct ltr501_samp_table *tab, 188 int len, int val, int val2) 189 { 190 int i, freq; 191 192 freq = val * 1000000 + val2; 193 194 for (i = 0; i < len; i++) { 195 if (tab[i].freq_val == freq) 196 return i; 197 } 198 199 return -EINVAL; 200 } 201 202 static int ltr501_als_read_samp_freq(const struct ltr501_data *data, 203 int *val, int *val2) 204 { 205 int ret, i; 206 207 ret = regmap_field_read(data->reg_als_rate, &i); 208 if (ret < 0) 209 return ret; 210 211 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table)) 212 return -EINVAL; 213 214 *val = ltr501_als_samp_table[i].freq_val / 1000000; 215 *val2 = ltr501_als_samp_table[i].freq_val % 1000000; 216 217 return IIO_VAL_INT_PLUS_MICRO; 218 } 219 220 static int ltr501_ps_read_samp_freq(const struct ltr501_data *data, 221 int *val, int *val2) 222 { 223 int ret, i; 224 225 ret = regmap_field_read(data->reg_ps_rate, &i); 226 if (ret < 0) 227 return ret; 228 229 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table)) 230 return -EINVAL; 231 232 *val = ltr501_ps_samp_table[i].freq_val / 1000000; 233 *val2 = ltr501_ps_samp_table[i].freq_val % 1000000; 234 235 return IIO_VAL_INT_PLUS_MICRO; 236 } 237 238 static int ltr501_als_write_samp_freq(struct ltr501_data *data, 239 int val, int val2) 240 { 241 int i, ret; 242 243 i = ltr501_match_samp_freq(ltr501_als_samp_table, 244 ARRAY_SIZE(ltr501_als_samp_table), 245 val, val2); 246 247 if (i < 0) 248 return i; 249 250 mutex_lock(&data->lock_als); 251 ret = regmap_field_write(data->reg_als_rate, i); 252 mutex_unlock(&data->lock_als); 253 254 return ret; 255 } 256 257 static int ltr501_ps_write_samp_freq(struct ltr501_data *data, 258 int val, int val2) 259 { 260 int i, ret; 261 262 i = ltr501_match_samp_freq(ltr501_ps_samp_table, 263 ARRAY_SIZE(ltr501_ps_samp_table), 264 val, val2); 265 266 if (i < 0) 267 return i; 268 269 mutex_lock(&data->lock_ps); 270 ret = regmap_field_write(data->reg_ps_rate, i); 271 mutex_unlock(&data->lock_ps); 272 273 return ret; 274 } 275 276 static int ltr501_als_read_samp_period(const struct ltr501_data *data, int *val) 277 { 278 int ret, i; 279 280 ret = regmap_field_read(data->reg_als_rate, &i); 281 if (ret < 0) 282 return ret; 283 284 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table)) 285 return -EINVAL; 286 287 *val = ltr501_als_samp_table[i].time_val; 288 289 return IIO_VAL_INT; 290 } 291 292 static int ltr501_ps_read_samp_period(const struct ltr501_data *data, int *val) 293 { 294 int ret, i; 295 296 ret = regmap_field_read(data->reg_ps_rate, &i); 297 if (ret < 0) 298 return ret; 299 300 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table)) 301 return -EINVAL; 302 303 *val = ltr501_ps_samp_table[i].time_val; 304 305 return IIO_VAL_INT; 306 } 307 308 /* IR and visible spectrum coeff's are given in data sheet */ 309 static unsigned long ltr501_calculate_lux(u16 vis_data, u16 ir_data) 310 { 311 unsigned long ratio, lux; 312 313 if (vis_data == 0) 314 return 0; 315 316 /* multiply numerator by 100 to avoid handling ratio < 1 */ 317 ratio = DIV_ROUND_UP(ir_data * 100, ir_data + vis_data); 318 319 if (ratio < 45) 320 lux = LTR501_LUX_CONV(1774, vis_data, -1105, ir_data); 321 else if (ratio >= 45 && ratio < 64) 322 lux = LTR501_LUX_CONV(3772, vis_data, 1336, ir_data); 323 else if (ratio >= 64 && ratio < 85) 324 lux = LTR501_LUX_CONV(1690, vis_data, 169, ir_data); 325 else 326 lux = 0; 327 328 return lux / 1000; 329 } 330 331 static int ltr501_drdy(const struct ltr501_data *data, u8 drdy_mask) 332 { 333 int tries = 100; 334 int ret, status; 335 336 while (tries--) { 337 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status); 338 if (ret < 0) 339 return ret; 340 if ((status & drdy_mask) == drdy_mask) 341 return 0; 342 msleep(25); 343 } 344 345 dev_err(&data->client->dev, "ltr501_drdy() failed, data not ready\n"); 346 return -EIO; 347 } 348 349 static int ltr501_set_it_time(struct ltr501_data *data, int it) 350 { 351 int ret, i, index = -1, status; 352 353 for (i = 0; i < ARRAY_SIZE(int_time_mapping); i++) { 354 if (int_time_mapping[i] == it) { 355 index = i; 356 break; 357 } 358 } 359 /* Make sure integ time index is valid */ 360 if (index < 0) 361 return -EINVAL; 362 363 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status); 364 if (ret < 0) 365 return ret; 366 367 if (status & LTR501_CONTR_ALS_GAIN_MASK) { 368 /* 369 * 200 ms and 400 ms integ time can only be 370 * used in dynamic range 1 371 */ 372 if (index > 1) 373 return -EINVAL; 374 } else 375 /* 50 ms integ time can only be used in dynamic range 2 */ 376 if (index == 1) 377 return -EINVAL; 378 379 return regmap_field_write(data->reg_it, index); 380 } 381 382 /* read int time in micro seconds */ 383 static int ltr501_read_it_time(const struct ltr501_data *data, 384 int *val, int *val2) 385 { 386 int ret, index; 387 388 ret = regmap_field_read(data->reg_it, &index); 389 if (ret < 0) 390 return ret; 391 392 /* Make sure integ time index is valid */ 393 if (index < 0 || index >= ARRAY_SIZE(int_time_mapping)) 394 return -EINVAL; 395 396 *val2 = int_time_mapping[index]; 397 *val = 0; 398 399 return IIO_VAL_INT_PLUS_MICRO; 400 } 401 402 static int ltr501_read_als(const struct ltr501_data *data, __le16 buf[2]) 403 { 404 int ret; 405 406 ret = ltr501_drdy(data, LTR501_STATUS_ALS_RDY); 407 if (ret < 0) 408 return ret; 409 /* always read both ALS channels in given order */ 410 return regmap_bulk_read(data->regmap, LTR501_ALS_DATA1, 411 buf, 2 * sizeof(__le16)); 412 } 413 414 static int ltr501_read_ps(const struct ltr501_data *data) 415 { 416 __le16 status; 417 int ret; 418 419 ret = ltr501_drdy(data, LTR501_STATUS_PS_RDY); 420 if (ret < 0) 421 return ret; 422 423 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA, 424 &status, sizeof(status)); 425 if (ret < 0) 426 return ret; 427 428 return le16_to_cpu(status); 429 } 430 431 static int ltr501_read_intr_prst(const struct ltr501_data *data, 432 enum iio_chan_type type, 433 int *val2) 434 { 435 int ret, samp_period, prst; 436 437 switch (type) { 438 case IIO_INTENSITY: 439 ret = regmap_field_read(data->reg_als_prst, &prst); 440 if (ret < 0) 441 return ret; 442 443 ret = ltr501_als_read_samp_period(data, &samp_period); 444 445 if (ret < 0) 446 return ret; 447 *val2 = samp_period * prst; 448 return IIO_VAL_INT_PLUS_MICRO; 449 case IIO_PROXIMITY: 450 ret = regmap_field_read(data->reg_ps_prst, &prst); 451 if (ret < 0) 452 return ret; 453 454 ret = ltr501_ps_read_samp_period(data, &samp_period); 455 456 if (ret < 0) 457 return ret; 458 459 *val2 = samp_period * prst; 460 return IIO_VAL_INT_PLUS_MICRO; 461 default: 462 return -EINVAL; 463 } 464 465 return -EINVAL; 466 } 467 468 static int ltr501_write_intr_prst(struct ltr501_data *data, 469 enum iio_chan_type type, 470 int val, int val2) 471 { 472 int ret, samp_period, new_val; 473 unsigned long period; 474 475 if (val < 0 || val2 < 0) 476 return -EINVAL; 477 478 /* period in microseconds */ 479 period = ((val * 1000000) + val2); 480 481 switch (type) { 482 case IIO_INTENSITY: 483 ret = ltr501_als_read_samp_period(data, &samp_period); 484 if (ret < 0) 485 return ret; 486 487 /* period should be atleast equal to sampling period */ 488 if (period < samp_period) 489 return -EINVAL; 490 491 new_val = DIV_ROUND_UP(period, samp_period); 492 if (new_val < 0 || new_val > 0x0f) 493 return -EINVAL; 494 495 mutex_lock(&data->lock_als); 496 ret = regmap_field_write(data->reg_als_prst, new_val); 497 mutex_unlock(&data->lock_als); 498 if (ret >= 0) 499 data->als_period = period; 500 501 return ret; 502 case IIO_PROXIMITY: 503 ret = ltr501_ps_read_samp_period(data, &samp_period); 504 if (ret < 0) 505 return ret; 506 507 /* period should be atleast equal to rate */ 508 if (period < samp_period) 509 return -EINVAL; 510 511 new_val = DIV_ROUND_UP(period, samp_period); 512 if (new_val < 0 || new_val > 0x0f) 513 return -EINVAL; 514 515 mutex_lock(&data->lock_ps); 516 ret = regmap_field_write(data->reg_ps_prst, new_val); 517 mutex_unlock(&data->lock_ps); 518 if (ret >= 0) 519 data->ps_period = period; 520 521 return ret; 522 default: 523 return -EINVAL; 524 } 525 526 return -EINVAL; 527 } 528 529 static ssize_t ltr501_read_near_level(struct iio_dev *indio_dev, 530 uintptr_t priv, 531 const struct iio_chan_spec *chan, 532 char *buf) 533 { 534 struct ltr501_data *data = iio_priv(indio_dev); 535 536 return sprintf(buf, "%u\n", data->near_level); 537 } 538 539 static const struct iio_chan_spec_ext_info ltr501_ext_info[] = { 540 { 541 .name = "nearlevel", 542 .shared = IIO_SEPARATE, 543 .read = ltr501_read_near_level, 544 }, 545 { /* sentinel */ } 546 }; 547 548 static const struct iio_event_spec ltr501_als_event_spec[] = { 549 { 550 .type = IIO_EV_TYPE_THRESH, 551 .dir = IIO_EV_DIR_RISING, 552 .mask_separate = BIT(IIO_EV_INFO_VALUE), 553 }, { 554 .type = IIO_EV_TYPE_THRESH, 555 .dir = IIO_EV_DIR_FALLING, 556 .mask_separate = BIT(IIO_EV_INFO_VALUE), 557 }, { 558 .type = IIO_EV_TYPE_THRESH, 559 .dir = IIO_EV_DIR_EITHER, 560 .mask_separate = BIT(IIO_EV_INFO_ENABLE) | 561 BIT(IIO_EV_INFO_PERIOD), 562 }, 563 564 }; 565 566 static const struct iio_event_spec ltr501_pxs_event_spec[] = { 567 { 568 .type = IIO_EV_TYPE_THRESH, 569 .dir = IIO_EV_DIR_RISING, 570 .mask_separate = BIT(IIO_EV_INFO_VALUE), 571 }, { 572 .type = IIO_EV_TYPE_THRESH, 573 .dir = IIO_EV_DIR_FALLING, 574 .mask_separate = BIT(IIO_EV_INFO_VALUE), 575 }, { 576 .type = IIO_EV_TYPE_THRESH, 577 .dir = IIO_EV_DIR_EITHER, 578 .mask_separate = BIT(IIO_EV_INFO_ENABLE) | 579 BIT(IIO_EV_INFO_PERIOD), 580 }, 581 }; 582 583 #define LTR501_INTENSITY_CHANNEL(_idx, _addr, _mod, _shared, \ 584 _evspec, _evsize) { \ 585 .type = IIO_INTENSITY, \ 586 .modified = 1, \ 587 .address = (_addr), \ 588 .channel2 = (_mod), \ 589 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 590 .info_mask_shared_by_type = (_shared), \ 591 .scan_index = (_idx), \ 592 .scan_type = { \ 593 .sign = 'u', \ 594 .realbits = 16, \ 595 .storagebits = 16, \ 596 .endianness = IIO_CPU, \ 597 }, \ 598 .event_spec = _evspec,\ 599 .num_event_specs = _evsize,\ 600 } 601 602 #define LTR501_LIGHT_CHANNEL() { \ 603 .type = IIO_LIGHT, \ 604 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \ 605 .scan_index = -1, \ 606 } 607 608 static const struct iio_chan_spec ltr501_channels[] = { 609 LTR501_LIGHT_CHANNEL(), 610 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0, 611 ltr501_als_event_spec, 612 ARRAY_SIZE(ltr501_als_event_spec)), 613 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR, 614 BIT(IIO_CHAN_INFO_SCALE) | 615 BIT(IIO_CHAN_INFO_INT_TIME) | 616 BIT(IIO_CHAN_INFO_SAMP_FREQ), 617 NULL, 0), 618 { 619 .type = IIO_PROXIMITY, 620 .address = LTR501_PS_DATA, 621 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | 622 BIT(IIO_CHAN_INFO_SCALE), 623 .scan_index = 2, 624 .scan_type = { 625 .sign = 'u', 626 .realbits = 11, 627 .storagebits = 16, 628 .endianness = IIO_CPU, 629 }, 630 .event_spec = ltr501_pxs_event_spec, 631 .num_event_specs = ARRAY_SIZE(ltr501_pxs_event_spec), 632 .ext_info = ltr501_ext_info, 633 }, 634 IIO_CHAN_SOFT_TIMESTAMP(3), 635 }; 636 637 static const struct iio_chan_spec ltr301_channels[] = { 638 LTR501_LIGHT_CHANNEL(), 639 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0, 640 ltr501_als_event_spec, 641 ARRAY_SIZE(ltr501_als_event_spec)), 642 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR, 643 BIT(IIO_CHAN_INFO_SCALE) | 644 BIT(IIO_CHAN_INFO_INT_TIME) | 645 BIT(IIO_CHAN_INFO_SAMP_FREQ), 646 NULL, 0), 647 IIO_CHAN_SOFT_TIMESTAMP(2), 648 }; 649 650 static int ltr501_read_raw(struct iio_dev *indio_dev, 651 struct iio_chan_spec const *chan, 652 int *val, int *val2, long mask) 653 { 654 struct ltr501_data *data = iio_priv(indio_dev); 655 __le16 buf[2]; 656 int ret, i; 657 658 switch (mask) { 659 case IIO_CHAN_INFO_PROCESSED: 660 switch (chan->type) { 661 case IIO_LIGHT: 662 ret = iio_device_claim_direct_mode(indio_dev); 663 if (ret) 664 return ret; 665 666 mutex_lock(&data->lock_als); 667 ret = ltr501_read_als(data, buf); 668 mutex_unlock(&data->lock_als); 669 iio_device_release_direct_mode(indio_dev); 670 if (ret < 0) 671 return ret; 672 *val = ltr501_calculate_lux(le16_to_cpu(buf[1]), 673 le16_to_cpu(buf[0])); 674 return IIO_VAL_INT; 675 default: 676 return -EINVAL; 677 } 678 case IIO_CHAN_INFO_RAW: 679 ret = iio_device_claim_direct_mode(indio_dev); 680 if (ret) 681 return ret; 682 683 switch (chan->type) { 684 case IIO_INTENSITY: 685 mutex_lock(&data->lock_als); 686 ret = ltr501_read_als(data, buf); 687 mutex_unlock(&data->lock_als); 688 if (ret < 0) 689 break; 690 *val = le16_to_cpu(chan->address == LTR501_ALS_DATA1 ? 691 buf[0] : buf[1]); 692 ret = IIO_VAL_INT; 693 break; 694 case IIO_PROXIMITY: 695 mutex_lock(&data->lock_ps); 696 ret = ltr501_read_ps(data); 697 mutex_unlock(&data->lock_ps); 698 if (ret < 0) 699 break; 700 *val = ret & LTR501_PS_DATA_MASK; 701 ret = IIO_VAL_INT; 702 break; 703 default: 704 ret = -EINVAL; 705 break; 706 } 707 708 iio_device_release_direct_mode(indio_dev); 709 return ret; 710 711 case IIO_CHAN_INFO_SCALE: 712 switch (chan->type) { 713 case IIO_INTENSITY: 714 i = (data->als_contr & data->chip_info->als_gain_mask) 715 >> data->chip_info->als_gain_shift; 716 *val = data->chip_info->als_gain[i].scale; 717 *val2 = data->chip_info->als_gain[i].uscale; 718 return IIO_VAL_INT_PLUS_MICRO; 719 case IIO_PROXIMITY: 720 i = (data->ps_contr & LTR501_CONTR_PS_GAIN_MASK) >> 721 LTR501_CONTR_PS_GAIN_SHIFT; 722 *val = data->chip_info->ps_gain[i].scale; 723 *val2 = data->chip_info->ps_gain[i].uscale; 724 return IIO_VAL_INT_PLUS_MICRO; 725 default: 726 return -EINVAL; 727 } 728 case IIO_CHAN_INFO_INT_TIME: 729 switch (chan->type) { 730 case IIO_INTENSITY: 731 return ltr501_read_it_time(data, val, val2); 732 default: 733 return -EINVAL; 734 } 735 case IIO_CHAN_INFO_SAMP_FREQ: 736 switch (chan->type) { 737 case IIO_INTENSITY: 738 return ltr501_als_read_samp_freq(data, val, val2); 739 case IIO_PROXIMITY: 740 return ltr501_ps_read_samp_freq(data, val, val2); 741 default: 742 return -EINVAL; 743 } 744 } 745 return -EINVAL; 746 } 747 748 static int ltr501_get_gain_index(const struct ltr501_gain *gain, int size, 749 int val, int val2) 750 { 751 int i; 752 753 for (i = 0; i < size; i++) 754 if (val == gain[i].scale && val2 == gain[i].uscale) 755 return i; 756 757 return -1; 758 } 759 760 static int ltr501_write_raw(struct iio_dev *indio_dev, 761 struct iio_chan_spec const *chan, 762 int val, int val2, long mask) 763 { 764 struct ltr501_data *data = iio_priv(indio_dev); 765 int i, ret, freq_val, freq_val2; 766 const struct ltr501_chip_info *info = data->chip_info; 767 768 ret = iio_device_claim_direct_mode(indio_dev); 769 if (ret) 770 return ret; 771 772 switch (mask) { 773 case IIO_CHAN_INFO_SCALE: 774 switch (chan->type) { 775 case IIO_INTENSITY: 776 i = ltr501_get_gain_index(info->als_gain, 777 info->als_gain_tbl_size, 778 val, val2); 779 if (i < 0) { 780 ret = -EINVAL; 781 break; 782 } 783 784 data->als_contr &= ~info->als_gain_mask; 785 data->als_contr |= i << info->als_gain_shift; 786 787 ret = regmap_write(data->regmap, LTR501_ALS_CONTR, 788 data->als_contr); 789 break; 790 case IIO_PROXIMITY: 791 i = ltr501_get_gain_index(info->ps_gain, 792 info->ps_gain_tbl_size, 793 val, val2); 794 if (i < 0) { 795 ret = -EINVAL; 796 break; 797 } 798 data->ps_contr &= ~LTR501_CONTR_PS_GAIN_MASK; 799 data->ps_contr |= i << LTR501_CONTR_PS_GAIN_SHIFT; 800 801 ret = regmap_write(data->regmap, LTR501_PS_CONTR, 802 data->ps_contr); 803 break; 804 default: 805 ret = -EINVAL; 806 break; 807 } 808 break; 809 810 case IIO_CHAN_INFO_INT_TIME: 811 switch (chan->type) { 812 case IIO_INTENSITY: 813 if (val != 0) { 814 ret = -EINVAL; 815 break; 816 } 817 mutex_lock(&data->lock_als); 818 ret = ltr501_set_it_time(data, val2); 819 mutex_unlock(&data->lock_als); 820 break; 821 default: 822 ret = -EINVAL; 823 break; 824 } 825 break; 826 827 case IIO_CHAN_INFO_SAMP_FREQ: 828 switch (chan->type) { 829 case IIO_INTENSITY: 830 ret = ltr501_als_read_samp_freq(data, &freq_val, 831 &freq_val2); 832 if (ret < 0) 833 break; 834 835 ret = ltr501_als_write_samp_freq(data, val, val2); 836 if (ret < 0) 837 break; 838 839 /* update persistence count when changing frequency */ 840 ret = ltr501_write_intr_prst(data, chan->type, 841 0, data->als_period); 842 843 if (ret < 0) 844 ret = ltr501_als_write_samp_freq(data, freq_val, 845 freq_val2); 846 break; 847 case IIO_PROXIMITY: 848 ret = ltr501_ps_read_samp_freq(data, &freq_val, 849 &freq_val2); 850 if (ret < 0) 851 break; 852 853 ret = ltr501_ps_write_samp_freq(data, val, val2); 854 if (ret < 0) 855 break; 856 857 /* update persistence count when changing frequency */ 858 ret = ltr501_write_intr_prst(data, chan->type, 859 0, data->ps_period); 860 861 if (ret < 0) 862 ret = ltr501_ps_write_samp_freq(data, freq_val, 863 freq_val2); 864 break; 865 default: 866 ret = -EINVAL; 867 break; 868 } 869 break; 870 871 default: 872 ret = -EINVAL; 873 break; 874 } 875 876 iio_device_release_direct_mode(indio_dev); 877 return ret; 878 } 879 880 static int ltr501_read_thresh(const struct iio_dev *indio_dev, 881 const struct iio_chan_spec *chan, 882 enum iio_event_type type, 883 enum iio_event_direction dir, 884 enum iio_event_info info, 885 int *val, int *val2) 886 { 887 const struct ltr501_data *data = iio_priv(indio_dev); 888 int ret, thresh_data; 889 890 switch (chan->type) { 891 case IIO_INTENSITY: 892 switch (dir) { 893 case IIO_EV_DIR_RISING: 894 ret = regmap_bulk_read(data->regmap, 895 LTR501_ALS_THRESH_UP, 896 &thresh_data, 2); 897 if (ret < 0) 898 return ret; 899 *val = thresh_data & LTR501_ALS_THRESH_MASK; 900 return IIO_VAL_INT; 901 case IIO_EV_DIR_FALLING: 902 ret = regmap_bulk_read(data->regmap, 903 LTR501_ALS_THRESH_LOW, 904 &thresh_data, 2); 905 if (ret < 0) 906 return ret; 907 *val = thresh_data & LTR501_ALS_THRESH_MASK; 908 return IIO_VAL_INT; 909 default: 910 return -EINVAL; 911 } 912 case IIO_PROXIMITY: 913 switch (dir) { 914 case IIO_EV_DIR_RISING: 915 ret = regmap_bulk_read(data->regmap, 916 LTR501_PS_THRESH_UP, 917 &thresh_data, 2); 918 if (ret < 0) 919 return ret; 920 *val = thresh_data & LTR501_PS_THRESH_MASK; 921 return IIO_VAL_INT; 922 case IIO_EV_DIR_FALLING: 923 ret = regmap_bulk_read(data->regmap, 924 LTR501_PS_THRESH_LOW, 925 &thresh_data, 2); 926 if (ret < 0) 927 return ret; 928 *val = thresh_data & LTR501_PS_THRESH_MASK; 929 return IIO_VAL_INT; 930 default: 931 return -EINVAL; 932 } 933 default: 934 return -EINVAL; 935 } 936 937 return -EINVAL; 938 } 939 940 static int ltr501_write_thresh(struct iio_dev *indio_dev, 941 const struct iio_chan_spec *chan, 942 enum iio_event_type type, 943 enum iio_event_direction dir, 944 enum iio_event_info info, 945 int val, int val2) 946 { 947 struct ltr501_data *data = iio_priv(indio_dev); 948 int ret; 949 950 if (val < 0) 951 return -EINVAL; 952 953 switch (chan->type) { 954 case IIO_INTENSITY: 955 if (val > LTR501_ALS_THRESH_MASK) 956 return -EINVAL; 957 switch (dir) { 958 case IIO_EV_DIR_RISING: 959 mutex_lock(&data->lock_als); 960 ret = regmap_bulk_write(data->regmap, 961 LTR501_ALS_THRESH_UP, 962 &val, 2); 963 mutex_unlock(&data->lock_als); 964 return ret; 965 case IIO_EV_DIR_FALLING: 966 mutex_lock(&data->lock_als); 967 ret = regmap_bulk_write(data->regmap, 968 LTR501_ALS_THRESH_LOW, 969 &val, 2); 970 mutex_unlock(&data->lock_als); 971 return ret; 972 default: 973 return -EINVAL; 974 } 975 case IIO_PROXIMITY: 976 if (val > LTR501_PS_THRESH_MASK) 977 return -EINVAL; 978 switch (dir) { 979 case IIO_EV_DIR_RISING: 980 mutex_lock(&data->lock_ps); 981 ret = regmap_bulk_write(data->regmap, 982 LTR501_PS_THRESH_UP, 983 &val, 2); 984 mutex_unlock(&data->lock_ps); 985 return ret; 986 case IIO_EV_DIR_FALLING: 987 mutex_lock(&data->lock_ps); 988 ret = regmap_bulk_write(data->regmap, 989 LTR501_PS_THRESH_LOW, 990 &val, 2); 991 mutex_unlock(&data->lock_ps); 992 return ret; 993 default: 994 return -EINVAL; 995 } 996 default: 997 return -EINVAL; 998 } 999 1000 return -EINVAL; 1001 } 1002 1003 static int ltr501_read_event(struct iio_dev *indio_dev, 1004 const struct iio_chan_spec *chan, 1005 enum iio_event_type type, 1006 enum iio_event_direction dir, 1007 enum iio_event_info info, 1008 int *val, int *val2) 1009 { 1010 int ret; 1011 1012 switch (info) { 1013 case IIO_EV_INFO_VALUE: 1014 return ltr501_read_thresh(indio_dev, chan, type, dir, 1015 info, val, val2); 1016 case IIO_EV_INFO_PERIOD: 1017 ret = ltr501_read_intr_prst(iio_priv(indio_dev), 1018 chan->type, val2); 1019 *val = *val2 / 1000000; 1020 *val2 = *val2 % 1000000; 1021 return ret; 1022 default: 1023 return -EINVAL; 1024 } 1025 1026 return -EINVAL; 1027 } 1028 1029 static int ltr501_write_event(struct iio_dev *indio_dev, 1030 const struct iio_chan_spec *chan, 1031 enum iio_event_type type, 1032 enum iio_event_direction dir, 1033 enum iio_event_info info, 1034 int val, int val2) 1035 { 1036 switch (info) { 1037 case IIO_EV_INFO_VALUE: 1038 if (val2 != 0) 1039 return -EINVAL; 1040 return ltr501_write_thresh(indio_dev, chan, type, dir, 1041 info, val, val2); 1042 case IIO_EV_INFO_PERIOD: 1043 return ltr501_write_intr_prst(iio_priv(indio_dev), chan->type, 1044 val, val2); 1045 default: 1046 return -EINVAL; 1047 } 1048 1049 return -EINVAL; 1050 } 1051 1052 static int ltr501_read_event_config(struct iio_dev *indio_dev, 1053 const struct iio_chan_spec *chan, 1054 enum iio_event_type type, 1055 enum iio_event_direction dir) 1056 { 1057 struct ltr501_data *data = iio_priv(indio_dev); 1058 int ret, status; 1059 1060 switch (chan->type) { 1061 case IIO_INTENSITY: 1062 ret = regmap_field_read(data->reg_als_intr, &status); 1063 if (ret < 0) 1064 return ret; 1065 return status; 1066 case IIO_PROXIMITY: 1067 ret = regmap_field_read(data->reg_ps_intr, &status); 1068 if (ret < 0) 1069 return ret; 1070 return status; 1071 default: 1072 return -EINVAL; 1073 } 1074 1075 return -EINVAL; 1076 } 1077 1078 static int ltr501_write_event_config(struct iio_dev *indio_dev, 1079 const struct iio_chan_spec *chan, 1080 enum iio_event_type type, 1081 enum iio_event_direction dir, int state) 1082 { 1083 struct ltr501_data *data = iio_priv(indio_dev); 1084 int ret; 1085 1086 /* only 1 and 0 are valid inputs */ 1087 if (state != 1 && state != 0) 1088 return -EINVAL; 1089 1090 switch (chan->type) { 1091 case IIO_INTENSITY: 1092 mutex_lock(&data->lock_als); 1093 ret = regmap_field_write(data->reg_als_intr, state); 1094 mutex_unlock(&data->lock_als); 1095 return ret; 1096 case IIO_PROXIMITY: 1097 mutex_lock(&data->lock_ps); 1098 ret = regmap_field_write(data->reg_ps_intr, state); 1099 mutex_unlock(&data->lock_ps); 1100 return ret; 1101 default: 1102 return -EINVAL; 1103 } 1104 1105 return -EINVAL; 1106 } 1107 1108 static ssize_t ltr501_show_proximity_scale_avail(struct device *dev, 1109 struct device_attribute *attr, 1110 char *buf) 1111 { 1112 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev)); 1113 const struct ltr501_chip_info *info = data->chip_info; 1114 ssize_t len = 0; 1115 int i; 1116 1117 for (i = 0; i < info->ps_gain_tbl_size; i++) { 1118 if (info->ps_gain[i].scale == LTR501_RESERVED_GAIN) 1119 continue; 1120 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ", 1121 info->ps_gain[i].scale, 1122 info->ps_gain[i].uscale); 1123 } 1124 1125 buf[len - 1] = '\n'; 1126 1127 return len; 1128 } 1129 1130 static ssize_t ltr501_show_intensity_scale_avail(struct device *dev, 1131 struct device_attribute *attr, 1132 char *buf) 1133 { 1134 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev)); 1135 const struct ltr501_chip_info *info = data->chip_info; 1136 ssize_t len = 0; 1137 int i; 1138 1139 for (i = 0; i < info->als_gain_tbl_size; i++) { 1140 if (info->als_gain[i].scale == LTR501_RESERVED_GAIN) 1141 continue; 1142 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ", 1143 info->als_gain[i].scale, 1144 info->als_gain[i].uscale); 1145 } 1146 1147 buf[len - 1] = '\n'; 1148 1149 return len; 1150 } 1151 1152 static IIO_CONST_ATTR_INT_TIME_AVAIL("0.05 0.1 0.2 0.4"); 1153 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("20 10 5 2 1 0.5"); 1154 1155 static IIO_DEVICE_ATTR(in_proximity_scale_available, S_IRUGO, 1156 ltr501_show_proximity_scale_avail, NULL, 0); 1157 static IIO_DEVICE_ATTR(in_intensity_scale_available, S_IRUGO, 1158 ltr501_show_intensity_scale_avail, NULL, 0); 1159 1160 static struct attribute *ltr501_attributes[] = { 1161 &iio_dev_attr_in_proximity_scale_available.dev_attr.attr, 1162 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr, 1163 &iio_const_attr_integration_time_available.dev_attr.attr, 1164 &iio_const_attr_sampling_frequency_available.dev_attr.attr, 1165 NULL 1166 }; 1167 1168 static struct attribute *ltr301_attributes[] = { 1169 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr, 1170 &iio_const_attr_integration_time_available.dev_attr.attr, 1171 &iio_const_attr_sampling_frequency_available.dev_attr.attr, 1172 NULL 1173 }; 1174 1175 static const struct attribute_group ltr501_attribute_group = { 1176 .attrs = ltr501_attributes, 1177 }; 1178 1179 static const struct attribute_group ltr301_attribute_group = { 1180 .attrs = ltr301_attributes, 1181 }; 1182 1183 static const struct iio_info ltr501_info_no_irq = { 1184 .read_raw = ltr501_read_raw, 1185 .write_raw = ltr501_write_raw, 1186 .attrs = <r501_attribute_group, 1187 }; 1188 1189 static const struct iio_info ltr501_info = { 1190 .read_raw = ltr501_read_raw, 1191 .write_raw = ltr501_write_raw, 1192 .attrs = <r501_attribute_group, 1193 .read_event_value = <r501_read_event, 1194 .write_event_value = <r501_write_event, 1195 .read_event_config = <r501_read_event_config, 1196 .write_event_config = <r501_write_event_config, 1197 }; 1198 1199 static const struct iio_info ltr301_info_no_irq = { 1200 .read_raw = ltr501_read_raw, 1201 .write_raw = ltr501_write_raw, 1202 .attrs = <r301_attribute_group, 1203 }; 1204 1205 static const struct iio_info ltr301_info = { 1206 .read_raw = ltr501_read_raw, 1207 .write_raw = ltr501_write_raw, 1208 .attrs = <r301_attribute_group, 1209 .read_event_value = <r501_read_event, 1210 .write_event_value = <r501_write_event, 1211 .read_event_config = <r501_read_event_config, 1212 .write_event_config = <r501_write_event_config, 1213 }; 1214 1215 static const struct ltr501_chip_info ltr501_chip_info_tbl[] = { 1216 [ltr501] = { 1217 .partid = 0x08, 1218 .als_gain = ltr501_als_gain_tbl, 1219 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl), 1220 .ps_gain = ltr501_ps_gain_tbl, 1221 .ps_gain_tbl_size = ARRAY_SIZE(ltr501_ps_gain_tbl), 1222 .als_mode_active = BIT(0) | BIT(1), 1223 .als_gain_mask = BIT(3), 1224 .als_gain_shift = 3, 1225 .info = <r501_info, 1226 .info_no_irq = <r501_info_no_irq, 1227 .channels = ltr501_channels, 1228 .no_channels = ARRAY_SIZE(ltr501_channels), 1229 }, 1230 [ltr559] = { 1231 .partid = 0x09, 1232 .als_gain = ltr559_als_gain_tbl, 1233 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl), 1234 .ps_gain = ltr559_ps_gain_tbl, 1235 .ps_gain_tbl_size = ARRAY_SIZE(ltr559_ps_gain_tbl), 1236 .als_mode_active = BIT(0), 1237 .als_gain_mask = BIT(2) | BIT(3) | BIT(4), 1238 .als_gain_shift = 2, 1239 .info = <r501_info, 1240 .info_no_irq = <r501_info_no_irq, 1241 .channels = ltr501_channels, 1242 .no_channels = ARRAY_SIZE(ltr501_channels), 1243 }, 1244 [ltr301] = { 1245 .partid = 0x08, 1246 .als_gain = ltr501_als_gain_tbl, 1247 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl), 1248 .als_mode_active = BIT(0) | BIT(1), 1249 .als_gain_mask = BIT(3), 1250 .als_gain_shift = 3, 1251 .info = <r301_info, 1252 .info_no_irq = <r301_info_no_irq, 1253 .channels = ltr301_channels, 1254 .no_channels = ARRAY_SIZE(ltr301_channels), 1255 }, 1256 [ltr303] = { 1257 .partid = 0x0A, 1258 .als_gain = ltr559_als_gain_tbl, 1259 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl), 1260 .als_mode_active = BIT(0), 1261 .als_gain_mask = BIT(2) | BIT(3) | BIT(4), 1262 .als_gain_shift = 2, 1263 .info = <r301_info, 1264 .info_no_irq = <r301_info_no_irq, 1265 .channels = ltr301_channels, 1266 .no_channels = ARRAY_SIZE(ltr301_channels), 1267 }, 1268 }; 1269 1270 static int ltr501_write_contr(struct ltr501_data *data, u8 als_val, u8 ps_val) 1271 { 1272 int ret; 1273 1274 ret = regmap_write(data->regmap, LTR501_ALS_CONTR, als_val); 1275 if (ret < 0) 1276 return ret; 1277 1278 return regmap_write(data->regmap, LTR501_PS_CONTR, ps_val); 1279 } 1280 1281 static irqreturn_t ltr501_trigger_handler(int irq, void *p) 1282 { 1283 struct iio_poll_func *pf = p; 1284 struct iio_dev *indio_dev = pf->indio_dev; 1285 struct ltr501_data *data = iio_priv(indio_dev); 1286 struct { 1287 u16 channels[3]; 1288 s64 ts __aligned(8); 1289 } scan; 1290 __le16 als_buf[2]; 1291 u8 mask = 0; 1292 int j = 0; 1293 int ret, psdata; 1294 1295 memset(&scan, 0, sizeof(scan)); 1296 1297 /* figure out which data needs to be ready */ 1298 if (test_bit(0, indio_dev->active_scan_mask) || 1299 test_bit(1, indio_dev->active_scan_mask)) 1300 mask |= LTR501_STATUS_ALS_RDY; 1301 if (test_bit(2, indio_dev->active_scan_mask)) 1302 mask |= LTR501_STATUS_PS_RDY; 1303 1304 ret = ltr501_drdy(data, mask); 1305 if (ret < 0) 1306 goto done; 1307 1308 if (mask & LTR501_STATUS_ALS_RDY) { 1309 ret = regmap_bulk_read(data->regmap, LTR501_ALS_DATA1, 1310 als_buf, sizeof(als_buf)); 1311 if (ret < 0) 1312 goto done; 1313 if (test_bit(0, indio_dev->active_scan_mask)) 1314 scan.channels[j++] = le16_to_cpu(als_buf[1]); 1315 if (test_bit(1, indio_dev->active_scan_mask)) 1316 scan.channels[j++] = le16_to_cpu(als_buf[0]); 1317 } 1318 1319 if (mask & LTR501_STATUS_PS_RDY) { 1320 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA, 1321 &psdata, 2); 1322 if (ret < 0) 1323 goto done; 1324 scan.channels[j++] = psdata & LTR501_PS_DATA_MASK; 1325 } 1326 1327 iio_push_to_buffers_with_timestamp(indio_dev, &scan, 1328 iio_get_time_ns(indio_dev)); 1329 1330 done: 1331 iio_trigger_notify_done(indio_dev->trig); 1332 1333 return IRQ_HANDLED; 1334 } 1335 1336 static irqreturn_t ltr501_interrupt_handler(int irq, void *private) 1337 { 1338 struct iio_dev *indio_dev = private; 1339 struct ltr501_data *data = iio_priv(indio_dev); 1340 int ret, status; 1341 1342 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status); 1343 if (ret < 0) { 1344 dev_err(&data->client->dev, 1345 "irq read int reg failed\n"); 1346 return IRQ_HANDLED; 1347 } 1348 1349 if (status & LTR501_STATUS_ALS_INTR) 1350 iio_push_event(indio_dev, 1351 IIO_UNMOD_EVENT_CODE(IIO_INTENSITY, 0, 1352 IIO_EV_TYPE_THRESH, 1353 IIO_EV_DIR_EITHER), 1354 iio_get_time_ns(indio_dev)); 1355 1356 if (status & LTR501_STATUS_PS_INTR) 1357 iio_push_event(indio_dev, 1358 IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0, 1359 IIO_EV_TYPE_THRESH, 1360 IIO_EV_DIR_EITHER), 1361 iio_get_time_ns(indio_dev)); 1362 1363 return IRQ_HANDLED; 1364 } 1365 1366 static int ltr501_init(struct ltr501_data *data) 1367 { 1368 int ret, status; 1369 1370 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status); 1371 if (ret < 0) 1372 return ret; 1373 1374 data->als_contr = status | data->chip_info->als_mode_active; 1375 1376 ret = regmap_read(data->regmap, LTR501_PS_CONTR, &status); 1377 if (ret < 0) 1378 return ret; 1379 1380 data->ps_contr = status | LTR501_CONTR_ACTIVE; 1381 1382 ret = ltr501_read_intr_prst(data, IIO_INTENSITY, &data->als_period); 1383 if (ret < 0) 1384 return ret; 1385 1386 ret = ltr501_read_intr_prst(data, IIO_PROXIMITY, &data->ps_period); 1387 if (ret < 0) 1388 return ret; 1389 1390 return ltr501_write_contr(data, data->als_contr, data->ps_contr); 1391 } 1392 1393 static bool ltr501_is_volatile_reg(struct device *dev, unsigned int reg) 1394 { 1395 switch (reg) { 1396 case LTR501_ALS_DATA1: 1397 case LTR501_ALS_DATA1_UPPER: 1398 case LTR501_ALS_DATA0: 1399 case LTR501_ALS_DATA0_UPPER: 1400 case LTR501_ALS_PS_STATUS: 1401 case LTR501_PS_DATA: 1402 case LTR501_PS_DATA_UPPER: 1403 return true; 1404 default: 1405 return false; 1406 } 1407 } 1408 1409 static const struct regmap_config ltr501_regmap_config = { 1410 .name = LTR501_REGMAP_NAME, 1411 .reg_bits = 8, 1412 .val_bits = 8, 1413 .max_register = LTR501_MAX_REG, 1414 .cache_type = REGCACHE_RBTREE, 1415 .volatile_reg = ltr501_is_volatile_reg, 1416 }; 1417 1418 static void ltr501_disable_regulators(void *d) 1419 { 1420 struct ltr501_data *data = d; 1421 1422 regulator_bulk_disable(ARRAY_SIZE(data->regulators), data->regulators); 1423 } 1424 1425 static int ltr501_powerdown(struct ltr501_data *data) 1426 { 1427 return ltr501_write_contr(data, data->als_contr & 1428 ~data->chip_info->als_mode_active, 1429 data->ps_contr & ~LTR501_CONTR_ACTIVE); 1430 } 1431 1432 static const char *ltr501_match_acpi_device(struct device *dev, int *chip_idx) 1433 { 1434 const struct acpi_device_id *id; 1435 1436 id = acpi_match_device(dev->driver->acpi_match_table, dev); 1437 if (!id) 1438 return NULL; 1439 *chip_idx = id->driver_data; 1440 return dev_name(dev); 1441 } 1442 1443 static int ltr501_probe(struct i2c_client *client, 1444 const struct i2c_device_id *id) 1445 { 1446 struct ltr501_data *data; 1447 struct iio_dev *indio_dev; 1448 struct regmap *regmap; 1449 int ret, partid, chip_idx = 0; 1450 const char *name = NULL; 1451 1452 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); 1453 if (!indio_dev) 1454 return -ENOMEM; 1455 1456 regmap = devm_regmap_init_i2c(client, <r501_regmap_config); 1457 if (IS_ERR(regmap)) { 1458 dev_err(&client->dev, "Regmap initialization failed.\n"); 1459 return PTR_ERR(regmap); 1460 } 1461 1462 data = iio_priv(indio_dev); 1463 i2c_set_clientdata(client, indio_dev); 1464 data->client = client; 1465 data->regmap = regmap; 1466 mutex_init(&data->lock_als); 1467 mutex_init(&data->lock_ps); 1468 1469 data->regulators[0].supply = "vdd"; 1470 data->regulators[1].supply = "vddio"; 1471 ret = devm_regulator_bulk_get(&client->dev, 1472 ARRAY_SIZE(data->regulators), 1473 data->regulators); 1474 if (ret) 1475 return dev_err_probe(&client->dev, ret, 1476 "Failed to get regulators\n"); 1477 1478 ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators), 1479 data->regulators); 1480 if (ret) 1481 return ret; 1482 1483 ret = devm_add_action_or_reset(&client->dev, 1484 ltr501_disable_regulators, data); 1485 if (ret) 1486 return ret; 1487 1488 data->reg_it = devm_regmap_field_alloc(&client->dev, regmap, 1489 reg_field_it); 1490 if (IS_ERR(data->reg_it)) { 1491 dev_err(&client->dev, "Integ time reg field init failed.\n"); 1492 return PTR_ERR(data->reg_it); 1493 } 1494 1495 data->reg_als_intr = devm_regmap_field_alloc(&client->dev, regmap, 1496 reg_field_als_intr); 1497 if (IS_ERR(data->reg_als_intr)) { 1498 dev_err(&client->dev, "ALS intr mode reg field init failed\n"); 1499 return PTR_ERR(data->reg_als_intr); 1500 } 1501 1502 data->reg_ps_intr = devm_regmap_field_alloc(&client->dev, regmap, 1503 reg_field_ps_intr); 1504 if (IS_ERR(data->reg_ps_intr)) { 1505 dev_err(&client->dev, "PS intr mode reg field init failed.\n"); 1506 return PTR_ERR(data->reg_ps_intr); 1507 } 1508 1509 data->reg_als_rate = devm_regmap_field_alloc(&client->dev, regmap, 1510 reg_field_als_rate); 1511 if (IS_ERR(data->reg_als_rate)) { 1512 dev_err(&client->dev, "ALS samp rate field init failed.\n"); 1513 return PTR_ERR(data->reg_als_rate); 1514 } 1515 1516 data->reg_ps_rate = devm_regmap_field_alloc(&client->dev, regmap, 1517 reg_field_ps_rate); 1518 if (IS_ERR(data->reg_ps_rate)) { 1519 dev_err(&client->dev, "PS samp rate field init failed.\n"); 1520 return PTR_ERR(data->reg_ps_rate); 1521 } 1522 1523 data->reg_als_prst = devm_regmap_field_alloc(&client->dev, regmap, 1524 reg_field_als_prst); 1525 if (IS_ERR(data->reg_als_prst)) { 1526 dev_err(&client->dev, "ALS prst reg field init failed\n"); 1527 return PTR_ERR(data->reg_als_prst); 1528 } 1529 1530 data->reg_ps_prst = devm_regmap_field_alloc(&client->dev, regmap, 1531 reg_field_ps_prst); 1532 if (IS_ERR(data->reg_ps_prst)) { 1533 dev_err(&client->dev, "PS prst reg field init failed.\n"); 1534 return PTR_ERR(data->reg_ps_prst); 1535 } 1536 1537 ret = regmap_read(data->regmap, LTR501_PART_ID, &partid); 1538 if (ret < 0) 1539 return ret; 1540 1541 if (id) { 1542 name = id->name; 1543 chip_idx = id->driver_data; 1544 } else if (ACPI_HANDLE(&client->dev)) { 1545 name = ltr501_match_acpi_device(&client->dev, &chip_idx); 1546 } else { 1547 return -ENODEV; 1548 } 1549 1550 data->chip_info = <r501_chip_info_tbl[chip_idx]; 1551 1552 if ((partid >> 4) != data->chip_info->partid) 1553 return -ENODEV; 1554 1555 if (device_property_read_u32(&client->dev, "proximity-near-level", 1556 &data->near_level)) 1557 data->near_level = 0; 1558 1559 indio_dev->info = data->chip_info->info; 1560 indio_dev->channels = data->chip_info->channels; 1561 indio_dev->num_channels = data->chip_info->no_channels; 1562 indio_dev->name = name; 1563 indio_dev->modes = INDIO_DIRECT_MODE; 1564 1565 ret = ltr501_init(data); 1566 if (ret < 0) 1567 return ret; 1568 1569 if (client->irq > 0) { 1570 ret = devm_request_threaded_irq(&client->dev, client->irq, 1571 NULL, ltr501_interrupt_handler, 1572 IRQF_TRIGGER_FALLING | 1573 IRQF_ONESHOT, 1574 "ltr501_thresh_event", 1575 indio_dev); 1576 if (ret) { 1577 dev_err(&client->dev, "request irq (%d) failed\n", 1578 client->irq); 1579 return ret; 1580 } 1581 } else { 1582 indio_dev->info = data->chip_info->info_no_irq; 1583 } 1584 1585 ret = iio_triggered_buffer_setup(indio_dev, NULL, 1586 ltr501_trigger_handler, NULL); 1587 if (ret) 1588 goto powerdown_on_error; 1589 1590 ret = iio_device_register(indio_dev); 1591 if (ret) 1592 goto error_unreg_buffer; 1593 1594 return 0; 1595 1596 error_unreg_buffer: 1597 iio_triggered_buffer_cleanup(indio_dev); 1598 powerdown_on_error: 1599 ltr501_powerdown(data); 1600 return ret; 1601 } 1602 1603 static int ltr501_remove(struct i2c_client *client) 1604 { 1605 struct iio_dev *indio_dev = i2c_get_clientdata(client); 1606 1607 iio_device_unregister(indio_dev); 1608 iio_triggered_buffer_cleanup(indio_dev); 1609 ltr501_powerdown(iio_priv(indio_dev)); 1610 1611 return 0; 1612 } 1613 1614 static int ltr501_suspend(struct device *dev) 1615 { 1616 struct ltr501_data *data = iio_priv(i2c_get_clientdata( 1617 to_i2c_client(dev))); 1618 return ltr501_powerdown(data); 1619 } 1620 1621 static int ltr501_resume(struct device *dev) 1622 { 1623 struct ltr501_data *data = iio_priv(i2c_get_clientdata( 1624 to_i2c_client(dev))); 1625 1626 return ltr501_write_contr(data, data->als_contr, 1627 data->ps_contr); 1628 } 1629 1630 static DEFINE_SIMPLE_DEV_PM_OPS(ltr501_pm_ops, ltr501_suspend, ltr501_resume); 1631 1632 static const struct acpi_device_id ltr_acpi_match[] = { 1633 { "LTER0501", ltr501 }, 1634 { "LTER0559", ltr559 }, 1635 { "LTER0301", ltr301 }, 1636 { }, 1637 }; 1638 MODULE_DEVICE_TABLE(acpi, ltr_acpi_match); 1639 1640 static const struct i2c_device_id ltr501_id[] = { 1641 { "ltr501", ltr501 }, 1642 { "ltr559", ltr559 }, 1643 { "ltr301", ltr301 }, 1644 { "ltr303", ltr303 }, 1645 { } 1646 }; 1647 MODULE_DEVICE_TABLE(i2c, ltr501_id); 1648 1649 static const struct of_device_id ltr501_of_match[] = { 1650 { .compatible = "liteon,ltr501", }, 1651 { .compatible = "liteon,ltr559", }, 1652 { .compatible = "liteon,ltr301", }, 1653 { .compatible = "liteon,ltr303", }, 1654 {} 1655 }; 1656 MODULE_DEVICE_TABLE(of, ltr501_of_match); 1657 1658 static struct i2c_driver ltr501_driver = { 1659 .driver = { 1660 .name = LTR501_DRV_NAME, 1661 .of_match_table = ltr501_of_match, 1662 .pm = pm_sleep_ptr(<r501_pm_ops), 1663 .acpi_match_table = ACPI_PTR(ltr_acpi_match), 1664 }, 1665 .probe = ltr501_probe, 1666 .remove = ltr501_remove, 1667 .id_table = ltr501_id, 1668 }; 1669 1670 module_i2c_driver(ltr501_driver); 1671 1672 MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>"); 1673 MODULE_DESCRIPTION("Lite-On LTR501 ambient light and proximity sensor driver"); 1674 MODULE_LICENSE("GPL"); 1675