xref: /openbmc/linux/drivers/iio/light/ltr501.c (revision ee8ec048)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Support for Lite-On LTR501 and similar ambient light and proximity sensors.
4  *
5  * Copyright 2014 Peter Meerwald <pmeerw@pmeerw.net>
6  *
7  * 7-bit I2C slave address 0x23
8  *
9  * TODO: IR LED characteristics
10  */
11 
12 #include <linux/module.h>
13 #include <linux/i2c.h>
14 #include <linux/err.h>
15 #include <linux/delay.h>
16 #include <linux/regmap.h>
17 #include <linux/acpi.h>
18 #include <linux/regulator/consumer.h>
19 
20 #include <linux/iio/iio.h>
21 #include <linux/iio/events.h>
22 #include <linux/iio/sysfs.h>
23 #include <linux/iio/trigger_consumer.h>
24 #include <linux/iio/buffer.h>
25 #include <linux/iio/triggered_buffer.h>
26 
27 #define LTR501_DRV_NAME "ltr501"
28 
29 #define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */
30 #define LTR501_PS_CONTR 0x81 /* PS operation mode */
31 #define LTR501_PS_MEAS_RATE 0x84 /* measurement rate*/
32 #define LTR501_ALS_MEAS_RATE 0x85 /* ALS integ time, measurement rate*/
33 #define LTR501_PART_ID 0x86
34 #define LTR501_MANUFAC_ID 0x87
35 #define LTR501_ALS_DATA1 0x88 /* 16-bit, little endian */
36 #define LTR501_ALS_DATA1_UPPER 0x89 /* upper 8 bits of LTR501_ALS_DATA1 */
37 #define LTR501_ALS_DATA0 0x8a /* 16-bit, little endian */
38 #define LTR501_ALS_DATA0_UPPER 0x8b /* upper 8 bits of LTR501_ALS_DATA0 */
39 #define LTR501_ALS_PS_STATUS 0x8c
40 #define LTR501_PS_DATA 0x8d /* 16-bit, little endian */
41 #define LTR501_PS_DATA_UPPER 0x8e /* upper 8 bits of LTR501_PS_DATA */
42 #define LTR501_INTR 0x8f /* output mode, polarity, mode */
43 #define LTR501_PS_THRESH_UP 0x90 /* 11 bit, ps upper threshold */
44 #define LTR501_PS_THRESH_LOW 0x92 /* 11 bit, ps lower threshold */
45 #define LTR501_ALS_THRESH_UP 0x97 /* 16 bit, ALS upper threshold */
46 #define LTR501_ALS_THRESH_LOW 0x99 /* 16 bit, ALS lower threshold */
47 #define LTR501_INTR_PRST 0x9e /* ps thresh, als thresh */
48 #define LTR501_MAX_REG 0x9f
49 
50 #define LTR501_ALS_CONTR_SW_RESET BIT(2)
51 #define LTR501_CONTR_PS_GAIN_MASK (BIT(3) | BIT(2))
52 #define LTR501_CONTR_PS_GAIN_SHIFT 2
53 #define LTR501_CONTR_ALS_GAIN_MASK BIT(3)
54 #define LTR501_CONTR_ACTIVE BIT(1)
55 
56 #define LTR501_STATUS_ALS_INTR BIT(3)
57 #define LTR501_STATUS_ALS_RDY BIT(2)
58 #define LTR501_STATUS_PS_INTR BIT(1)
59 #define LTR501_STATUS_PS_RDY BIT(0)
60 
61 #define LTR501_PS_DATA_MASK 0x7ff
62 #define LTR501_PS_THRESH_MASK 0x7ff
63 #define LTR501_ALS_THRESH_MASK 0xffff
64 
65 #define LTR501_ALS_DEF_PERIOD 500000
66 #define LTR501_PS_DEF_PERIOD 100000
67 
68 #define LTR501_REGMAP_NAME "ltr501_regmap"
69 
70 #define LTR501_LUX_CONV(vis_coeff, vis_data, ir_coeff, ir_data) \
71 			((vis_coeff * vis_data) - (ir_coeff * ir_data))
72 
73 static const int int_time_mapping[] = {100000, 50000, 200000, 400000};
74 
75 static const struct reg_field reg_field_it =
76 				REG_FIELD(LTR501_ALS_MEAS_RATE, 3, 4);
77 static const struct reg_field reg_field_als_intr =
78 				REG_FIELD(LTR501_INTR, 1, 1);
79 static const struct reg_field reg_field_ps_intr =
80 				REG_FIELD(LTR501_INTR, 0, 0);
81 static const struct reg_field reg_field_als_rate =
82 				REG_FIELD(LTR501_ALS_MEAS_RATE, 0, 2);
83 static const struct reg_field reg_field_ps_rate =
84 				REG_FIELD(LTR501_PS_MEAS_RATE, 0, 3);
85 static const struct reg_field reg_field_als_prst =
86 				REG_FIELD(LTR501_INTR_PRST, 0, 3);
87 static const struct reg_field reg_field_ps_prst =
88 				REG_FIELD(LTR501_INTR_PRST, 4, 7);
89 
90 struct ltr501_samp_table {
91 	int freq_val;  /* repetition frequency in micro HZ*/
92 	int time_val; /* repetition rate in micro seconds */
93 };
94 
95 #define LTR501_RESERVED_GAIN -1
96 
97 enum {
98 	ltr501 = 0,
99 	ltr559,
100 	ltr301,
101 	ltr303,
102 };
103 
104 struct ltr501_gain {
105 	int scale;
106 	int uscale;
107 };
108 
109 static const struct ltr501_gain ltr501_als_gain_tbl[] = {
110 	{1, 0},
111 	{0, 5000},
112 };
113 
114 static const struct ltr501_gain ltr559_als_gain_tbl[] = {
115 	{1, 0},
116 	{0, 500000},
117 	{0, 250000},
118 	{0, 125000},
119 	{LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
120 	{LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
121 	{0, 20000},
122 	{0, 10000},
123 };
124 
125 static const struct ltr501_gain ltr501_ps_gain_tbl[] = {
126 	{1, 0},
127 	{0, 250000},
128 	{0, 125000},
129 	{0, 62500},
130 };
131 
132 static const struct ltr501_gain ltr559_ps_gain_tbl[] = {
133 	{0, 62500}, /* x16 gain */
134 	{0, 31250}, /* x32 gain */
135 	{0, 15625}, /* bits X1 are for x64 gain */
136 	{0, 15624},
137 };
138 
139 struct ltr501_chip_info {
140 	u8 partid;
141 	const struct ltr501_gain *als_gain;
142 	int als_gain_tbl_size;
143 	const struct ltr501_gain *ps_gain;
144 	int ps_gain_tbl_size;
145 	u8 als_mode_active;
146 	u8 als_gain_mask;
147 	u8 als_gain_shift;
148 	struct iio_chan_spec const *channels;
149 	const int no_channels;
150 	const struct iio_info *info;
151 	const struct iio_info *info_no_irq;
152 };
153 
154 struct ltr501_data {
155 	struct i2c_client *client;
156 	struct regulator_bulk_data regulators[2];
157 	struct mutex lock_als, lock_ps;
158 	const struct ltr501_chip_info *chip_info;
159 	u8 als_contr, ps_contr;
160 	int als_period, ps_period; /* period in micro seconds */
161 	struct regmap *regmap;
162 	struct regmap_field *reg_it;
163 	struct regmap_field *reg_als_intr;
164 	struct regmap_field *reg_ps_intr;
165 	struct regmap_field *reg_als_rate;
166 	struct regmap_field *reg_ps_rate;
167 	struct regmap_field *reg_als_prst;
168 	struct regmap_field *reg_ps_prst;
169 };
170 
171 static const struct ltr501_samp_table ltr501_als_samp_table[] = {
172 			{20000000, 50000}, {10000000, 100000},
173 			{5000000, 200000}, {2000000, 500000},
174 			{1000000, 1000000}, {500000, 2000000},
175 			{500000, 2000000}, {500000, 2000000}
176 };
177 
178 static const struct ltr501_samp_table ltr501_ps_samp_table[] = {
179 			{20000000, 50000}, {14285714, 70000},
180 			{10000000, 100000}, {5000000, 200000},
181 			{2000000, 500000}, {1000000, 1000000},
182 			{500000, 2000000}, {500000, 2000000},
183 			{500000, 2000000}
184 };
185 
186 static int ltr501_match_samp_freq(const struct ltr501_samp_table *tab,
187 					   int len, int val, int val2)
188 {
189 	int i, freq;
190 
191 	freq = val * 1000000 + val2;
192 
193 	for (i = 0; i < len; i++) {
194 		if (tab[i].freq_val == freq)
195 			return i;
196 	}
197 
198 	return -EINVAL;
199 }
200 
201 static int ltr501_als_read_samp_freq(const struct ltr501_data *data,
202 				     int *val, int *val2)
203 {
204 	int ret, i;
205 
206 	ret = regmap_field_read(data->reg_als_rate, &i);
207 	if (ret < 0)
208 		return ret;
209 
210 	if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
211 		return -EINVAL;
212 
213 	*val = ltr501_als_samp_table[i].freq_val / 1000000;
214 	*val2 = ltr501_als_samp_table[i].freq_val % 1000000;
215 
216 	return IIO_VAL_INT_PLUS_MICRO;
217 }
218 
219 static int ltr501_ps_read_samp_freq(const struct ltr501_data *data,
220 				    int *val, int *val2)
221 {
222 	int ret, i;
223 
224 	ret = regmap_field_read(data->reg_ps_rate, &i);
225 	if (ret < 0)
226 		return ret;
227 
228 	if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
229 		return -EINVAL;
230 
231 	*val = ltr501_ps_samp_table[i].freq_val / 1000000;
232 	*val2 = ltr501_ps_samp_table[i].freq_val % 1000000;
233 
234 	return IIO_VAL_INT_PLUS_MICRO;
235 }
236 
237 static int ltr501_als_write_samp_freq(struct ltr501_data *data,
238 				      int val, int val2)
239 {
240 	int i, ret;
241 
242 	i = ltr501_match_samp_freq(ltr501_als_samp_table,
243 				   ARRAY_SIZE(ltr501_als_samp_table),
244 				   val, val2);
245 
246 	if (i < 0)
247 		return i;
248 
249 	mutex_lock(&data->lock_als);
250 	ret = regmap_field_write(data->reg_als_rate, i);
251 	mutex_unlock(&data->lock_als);
252 
253 	return ret;
254 }
255 
256 static int ltr501_ps_write_samp_freq(struct ltr501_data *data,
257 				     int val, int val2)
258 {
259 	int i, ret;
260 
261 	i = ltr501_match_samp_freq(ltr501_ps_samp_table,
262 				   ARRAY_SIZE(ltr501_ps_samp_table),
263 				   val, val2);
264 
265 	if (i < 0)
266 		return i;
267 
268 	mutex_lock(&data->lock_ps);
269 	ret = regmap_field_write(data->reg_ps_rate, i);
270 	mutex_unlock(&data->lock_ps);
271 
272 	return ret;
273 }
274 
275 static int ltr501_als_read_samp_period(const struct ltr501_data *data, int *val)
276 {
277 	int ret, i;
278 
279 	ret = regmap_field_read(data->reg_als_rate, &i);
280 	if (ret < 0)
281 		return ret;
282 
283 	if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
284 		return -EINVAL;
285 
286 	*val = ltr501_als_samp_table[i].time_val;
287 
288 	return IIO_VAL_INT;
289 }
290 
291 static int ltr501_ps_read_samp_period(const struct ltr501_data *data, int *val)
292 {
293 	int ret, i;
294 
295 	ret = regmap_field_read(data->reg_ps_rate, &i);
296 	if (ret < 0)
297 		return ret;
298 
299 	if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
300 		return -EINVAL;
301 
302 	*val = ltr501_ps_samp_table[i].time_val;
303 
304 	return IIO_VAL_INT;
305 }
306 
307 /* IR and visible spectrum coeff's are given in data sheet */
308 static unsigned long ltr501_calculate_lux(u16 vis_data, u16 ir_data)
309 {
310 	unsigned long ratio, lux;
311 
312 	if (vis_data == 0)
313 		return 0;
314 
315 	/* multiply numerator by 100 to avoid handling ratio < 1 */
316 	ratio = DIV_ROUND_UP(ir_data * 100, ir_data + vis_data);
317 
318 	if (ratio < 45)
319 		lux = LTR501_LUX_CONV(1774, vis_data, -1105, ir_data);
320 	else if (ratio >= 45 && ratio < 64)
321 		lux = LTR501_LUX_CONV(3772, vis_data, 1336, ir_data);
322 	else if (ratio >= 64 && ratio < 85)
323 		lux = LTR501_LUX_CONV(1690, vis_data, 169, ir_data);
324 	else
325 		lux = 0;
326 
327 	return lux / 1000;
328 }
329 
330 static int ltr501_drdy(const struct ltr501_data *data, u8 drdy_mask)
331 {
332 	int tries = 100;
333 	int ret, status;
334 
335 	while (tries--) {
336 		ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
337 		if (ret < 0)
338 			return ret;
339 		if ((status & drdy_mask) == drdy_mask)
340 			return 0;
341 		msleep(25);
342 	}
343 
344 	dev_err(&data->client->dev, "ltr501_drdy() failed, data not ready\n");
345 	return -EIO;
346 }
347 
348 static int ltr501_set_it_time(struct ltr501_data *data, int it)
349 {
350 	int ret, i, index = -1, status;
351 
352 	for (i = 0; i < ARRAY_SIZE(int_time_mapping); i++) {
353 		if (int_time_mapping[i] == it) {
354 			index = i;
355 			break;
356 		}
357 	}
358 	/* Make sure integ time index is valid */
359 	if (index < 0)
360 		return -EINVAL;
361 
362 	ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
363 	if (ret < 0)
364 		return ret;
365 
366 	if (status & LTR501_CONTR_ALS_GAIN_MASK) {
367 		/*
368 		 * 200 ms and 400 ms integ time can only be
369 		 * used in dynamic range 1
370 		 */
371 		if (index > 1)
372 			return -EINVAL;
373 	} else
374 		/* 50 ms integ time can only be used in dynamic range 2 */
375 		if (index == 1)
376 			return -EINVAL;
377 
378 	return regmap_field_write(data->reg_it, index);
379 }
380 
381 /* read int time in micro seconds */
382 static int ltr501_read_it_time(const struct ltr501_data *data,
383 			       int *val, int *val2)
384 {
385 	int ret, index;
386 
387 	ret = regmap_field_read(data->reg_it, &index);
388 	if (ret < 0)
389 		return ret;
390 
391 	/* Make sure integ time index is valid */
392 	if (index < 0 || index >= ARRAY_SIZE(int_time_mapping))
393 		return -EINVAL;
394 
395 	*val2 = int_time_mapping[index];
396 	*val = 0;
397 
398 	return IIO_VAL_INT_PLUS_MICRO;
399 }
400 
401 static int ltr501_read_als(const struct ltr501_data *data, __le16 buf[2])
402 {
403 	int ret;
404 
405 	ret = ltr501_drdy(data, LTR501_STATUS_ALS_RDY);
406 	if (ret < 0)
407 		return ret;
408 	/* always read both ALS channels in given order */
409 	return regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
410 				buf, 2 * sizeof(__le16));
411 }
412 
413 static int ltr501_read_ps(const struct ltr501_data *data)
414 {
415 	__le16 status;
416 	int ret;
417 
418 	ret = ltr501_drdy(data, LTR501_STATUS_PS_RDY);
419 	if (ret < 0)
420 		return ret;
421 
422 	ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
423 			       &status, sizeof(status));
424 	if (ret < 0)
425 		return ret;
426 
427 	return le16_to_cpu(status);
428 }
429 
430 static int ltr501_read_intr_prst(const struct ltr501_data *data,
431 				 enum iio_chan_type type,
432 				 int *val2)
433 {
434 	int ret, samp_period, prst;
435 
436 	switch (type) {
437 	case IIO_INTENSITY:
438 		ret = regmap_field_read(data->reg_als_prst, &prst);
439 		if (ret < 0)
440 			return ret;
441 
442 		ret = ltr501_als_read_samp_period(data, &samp_period);
443 
444 		if (ret < 0)
445 			return ret;
446 		*val2 = samp_period * prst;
447 		return IIO_VAL_INT_PLUS_MICRO;
448 	case IIO_PROXIMITY:
449 		ret = regmap_field_read(data->reg_ps_prst, &prst);
450 		if (ret < 0)
451 			return ret;
452 
453 		ret = ltr501_ps_read_samp_period(data, &samp_period);
454 
455 		if (ret < 0)
456 			return ret;
457 
458 		*val2 = samp_period * prst;
459 		return IIO_VAL_INT_PLUS_MICRO;
460 	default:
461 		return -EINVAL;
462 	}
463 
464 	return -EINVAL;
465 }
466 
467 static int ltr501_write_intr_prst(struct ltr501_data *data,
468 				  enum iio_chan_type type,
469 				  int val, int val2)
470 {
471 	int ret, samp_period, new_val;
472 	unsigned long period;
473 
474 	if (val < 0 || val2 < 0)
475 		return -EINVAL;
476 
477 	/* period in microseconds */
478 	period = ((val * 1000000) + val2);
479 
480 	switch (type) {
481 	case IIO_INTENSITY:
482 		ret = ltr501_als_read_samp_period(data, &samp_period);
483 		if (ret < 0)
484 			return ret;
485 
486 		/* period should be atleast equal to sampling period */
487 		if (period < samp_period)
488 			return -EINVAL;
489 
490 		new_val = DIV_ROUND_UP(period, samp_period);
491 		if (new_val < 0 || new_val > 0x0f)
492 			return -EINVAL;
493 
494 		mutex_lock(&data->lock_als);
495 		ret = regmap_field_write(data->reg_als_prst, new_val);
496 		mutex_unlock(&data->lock_als);
497 		if (ret >= 0)
498 			data->als_period = period;
499 
500 		return ret;
501 	case IIO_PROXIMITY:
502 		ret = ltr501_ps_read_samp_period(data, &samp_period);
503 		if (ret < 0)
504 			return ret;
505 
506 		/* period should be atleast equal to rate */
507 		if (period < samp_period)
508 			return -EINVAL;
509 
510 		new_val = DIV_ROUND_UP(period, samp_period);
511 		if (new_val < 0 || new_val > 0x0f)
512 			return -EINVAL;
513 
514 		mutex_lock(&data->lock_ps);
515 		ret = regmap_field_write(data->reg_ps_prst, new_val);
516 		mutex_unlock(&data->lock_ps);
517 		if (ret >= 0)
518 			data->ps_period = period;
519 
520 		return ret;
521 	default:
522 		return -EINVAL;
523 	}
524 
525 	return -EINVAL;
526 }
527 
528 static const struct iio_event_spec ltr501_als_event_spec[] = {
529 	{
530 		.type = IIO_EV_TYPE_THRESH,
531 		.dir = IIO_EV_DIR_RISING,
532 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
533 	}, {
534 		.type = IIO_EV_TYPE_THRESH,
535 		.dir = IIO_EV_DIR_FALLING,
536 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
537 	}, {
538 		.type = IIO_EV_TYPE_THRESH,
539 		.dir = IIO_EV_DIR_EITHER,
540 		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
541 				 BIT(IIO_EV_INFO_PERIOD),
542 	},
543 
544 };
545 
546 static const struct iio_event_spec ltr501_pxs_event_spec[] = {
547 	{
548 		.type = IIO_EV_TYPE_THRESH,
549 		.dir = IIO_EV_DIR_RISING,
550 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
551 	}, {
552 		.type = IIO_EV_TYPE_THRESH,
553 		.dir = IIO_EV_DIR_FALLING,
554 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
555 	}, {
556 		.type = IIO_EV_TYPE_THRESH,
557 		.dir = IIO_EV_DIR_EITHER,
558 		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
559 				 BIT(IIO_EV_INFO_PERIOD),
560 	},
561 };
562 
563 #define LTR501_INTENSITY_CHANNEL(_idx, _addr, _mod, _shared, \
564 				 _evspec, _evsize) { \
565 	.type = IIO_INTENSITY, \
566 	.modified = 1, \
567 	.address = (_addr), \
568 	.channel2 = (_mod), \
569 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
570 	.info_mask_shared_by_type = (_shared), \
571 	.scan_index = (_idx), \
572 	.scan_type = { \
573 		.sign = 'u', \
574 		.realbits = 16, \
575 		.storagebits = 16, \
576 		.endianness = IIO_CPU, \
577 	}, \
578 	.event_spec = _evspec,\
579 	.num_event_specs = _evsize,\
580 }
581 
582 #define LTR501_LIGHT_CHANNEL() { \
583 	.type = IIO_LIGHT, \
584 	.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
585 	.scan_index = -1, \
586 }
587 
588 static const struct iio_chan_spec ltr501_channels[] = {
589 	LTR501_LIGHT_CHANNEL(),
590 	LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
591 				 ltr501_als_event_spec,
592 				 ARRAY_SIZE(ltr501_als_event_spec)),
593 	LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
594 				 BIT(IIO_CHAN_INFO_SCALE) |
595 				 BIT(IIO_CHAN_INFO_INT_TIME) |
596 				 BIT(IIO_CHAN_INFO_SAMP_FREQ),
597 				 NULL, 0),
598 	{
599 		.type = IIO_PROXIMITY,
600 		.address = LTR501_PS_DATA,
601 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
602 			BIT(IIO_CHAN_INFO_SCALE),
603 		.scan_index = 2,
604 		.scan_type = {
605 			.sign = 'u',
606 			.realbits = 11,
607 			.storagebits = 16,
608 			.endianness = IIO_CPU,
609 		},
610 		.event_spec = ltr501_pxs_event_spec,
611 		.num_event_specs = ARRAY_SIZE(ltr501_pxs_event_spec),
612 	},
613 	IIO_CHAN_SOFT_TIMESTAMP(3),
614 };
615 
616 static const struct iio_chan_spec ltr301_channels[] = {
617 	LTR501_LIGHT_CHANNEL(),
618 	LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
619 				 ltr501_als_event_spec,
620 				 ARRAY_SIZE(ltr501_als_event_spec)),
621 	LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
622 				 BIT(IIO_CHAN_INFO_SCALE) |
623 				 BIT(IIO_CHAN_INFO_INT_TIME) |
624 				 BIT(IIO_CHAN_INFO_SAMP_FREQ),
625 				 NULL, 0),
626 	IIO_CHAN_SOFT_TIMESTAMP(2),
627 };
628 
629 static int ltr501_read_raw(struct iio_dev *indio_dev,
630 			   struct iio_chan_spec const *chan,
631 			   int *val, int *val2, long mask)
632 {
633 	struct ltr501_data *data = iio_priv(indio_dev);
634 	__le16 buf[2];
635 	int ret, i;
636 
637 	switch (mask) {
638 	case IIO_CHAN_INFO_PROCESSED:
639 		switch (chan->type) {
640 		case IIO_LIGHT:
641 			ret = iio_device_claim_direct_mode(indio_dev);
642 			if (ret)
643 				return ret;
644 
645 			mutex_lock(&data->lock_als);
646 			ret = ltr501_read_als(data, buf);
647 			mutex_unlock(&data->lock_als);
648 			iio_device_release_direct_mode(indio_dev);
649 			if (ret < 0)
650 				return ret;
651 			*val = ltr501_calculate_lux(le16_to_cpu(buf[1]),
652 						    le16_to_cpu(buf[0]));
653 			return IIO_VAL_INT;
654 		default:
655 			return -EINVAL;
656 		}
657 	case IIO_CHAN_INFO_RAW:
658 		ret = iio_device_claim_direct_mode(indio_dev);
659 		if (ret)
660 			return ret;
661 
662 		switch (chan->type) {
663 		case IIO_INTENSITY:
664 			mutex_lock(&data->lock_als);
665 			ret = ltr501_read_als(data, buf);
666 			mutex_unlock(&data->lock_als);
667 			if (ret < 0)
668 				break;
669 			*val = le16_to_cpu(chan->address == LTR501_ALS_DATA1 ?
670 					   buf[0] : buf[1]);
671 			ret = IIO_VAL_INT;
672 			break;
673 		case IIO_PROXIMITY:
674 			mutex_lock(&data->lock_ps);
675 			ret = ltr501_read_ps(data);
676 			mutex_unlock(&data->lock_ps);
677 			if (ret < 0)
678 				break;
679 			*val = ret & LTR501_PS_DATA_MASK;
680 			ret = IIO_VAL_INT;
681 			break;
682 		default:
683 			ret = -EINVAL;
684 			break;
685 		}
686 
687 		iio_device_release_direct_mode(indio_dev);
688 		return ret;
689 
690 	case IIO_CHAN_INFO_SCALE:
691 		switch (chan->type) {
692 		case IIO_INTENSITY:
693 			i = (data->als_contr & data->chip_info->als_gain_mask)
694 			     >> data->chip_info->als_gain_shift;
695 			*val = data->chip_info->als_gain[i].scale;
696 			*val2 = data->chip_info->als_gain[i].uscale;
697 			return IIO_VAL_INT_PLUS_MICRO;
698 		case IIO_PROXIMITY:
699 			i = (data->ps_contr & LTR501_CONTR_PS_GAIN_MASK) >>
700 				LTR501_CONTR_PS_GAIN_SHIFT;
701 			*val = data->chip_info->ps_gain[i].scale;
702 			*val2 = data->chip_info->ps_gain[i].uscale;
703 			return IIO_VAL_INT_PLUS_MICRO;
704 		default:
705 			return -EINVAL;
706 		}
707 	case IIO_CHAN_INFO_INT_TIME:
708 		switch (chan->type) {
709 		case IIO_INTENSITY:
710 			return ltr501_read_it_time(data, val, val2);
711 		default:
712 			return -EINVAL;
713 		}
714 	case IIO_CHAN_INFO_SAMP_FREQ:
715 		switch (chan->type) {
716 		case IIO_INTENSITY:
717 			return ltr501_als_read_samp_freq(data, val, val2);
718 		case IIO_PROXIMITY:
719 			return ltr501_ps_read_samp_freq(data, val, val2);
720 		default:
721 			return -EINVAL;
722 		}
723 	}
724 	return -EINVAL;
725 }
726 
727 static int ltr501_get_gain_index(const struct ltr501_gain *gain, int size,
728 				 int val, int val2)
729 {
730 	int i;
731 
732 	for (i = 0; i < size; i++)
733 		if (val == gain[i].scale && val2 == gain[i].uscale)
734 			return i;
735 
736 	return -1;
737 }
738 
739 static int ltr501_write_raw(struct iio_dev *indio_dev,
740 			    struct iio_chan_spec const *chan,
741 			    int val, int val2, long mask)
742 {
743 	struct ltr501_data *data = iio_priv(indio_dev);
744 	int i, ret, freq_val, freq_val2;
745 	const struct ltr501_chip_info *info = data->chip_info;
746 
747 	ret = iio_device_claim_direct_mode(indio_dev);
748 	if (ret)
749 		return ret;
750 
751 	switch (mask) {
752 	case IIO_CHAN_INFO_SCALE:
753 		switch (chan->type) {
754 		case IIO_INTENSITY:
755 			i = ltr501_get_gain_index(info->als_gain,
756 						  info->als_gain_tbl_size,
757 						  val, val2);
758 			if (i < 0) {
759 				ret = -EINVAL;
760 				break;
761 			}
762 
763 			data->als_contr &= ~info->als_gain_mask;
764 			data->als_contr |= i << info->als_gain_shift;
765 
766 			ret = regmap_write(data->regmap, LTR501_ALS_CONTR,
767 					   data->als_contr);
768 			break;
769 		case IIO_PROXIMITY:
770 			i = ltr501_get_gain_index(info->ps_gain,
771 						  info->ps_gain_tbl_size,
772 						  val, val2);
773 			if (i < 0) {
774 				ret = -EINVAL;
775 				break;
776 			}
777 			data->ps_contr &= ~LTR501_CONTR_PS_GAIN_MASK;
778 			data->ps_contr |= i << LTR501_CONTR_PS_GAIN_SHIFT;
779 
780 			ret = regmap_write(data->regmap, LTR501_PS_CONTR,
781 					   data->ps_contr);
782 			break;
783 		default:
784 			ret = -EINVAL;
785 			break;
786 		}
787 		break;
788 
789 	case IIO_CHAN_INFO_INT_TIME:
790 		switch (chan->type) {
791 		case IIO_INTENSITY:
792 			if (val != 0) {
793 				ret = -EINVAL;
794 				break;
795 			}
796 			mutex_lock(&data->lock_als);
797 			ret = ltr501_set_it_time(data, val2);
798 			mutex_unlock(&data->lock_als);
799 			break;
800 		default:
801 			ret = -EINVAL;
802 			break;
803 		}
804 		break;
805 
806 	case IIO_CHAN_INFO_SAMP_FREQ:
807 		switch (chan->type) {
808 		case IIO_INTENSITY:
809 			ret = ltr501_als_read_samp_freq(data, &freq_val,
810 							&freq_val2);
811 			if (ret < 0)
812 				break;
813 
814 			ret = ltr501_als_write_samp_freq(data, val, val2);
815 			if (ret < 0)
816 				break;
817 
818 			/* update persistence count when changing frequency */
819 			ret = ltr501_write_intr_prst(data, chan->type,
820 						     0, data->als_period);
821 
822 			if (ret < 0)
823 				ret = ltr501_als_write_samp_freq(data, freq_val,
824 								 freq_val2);
825 			break;
826 		case IIO_PROXIMITY:
827 			ret = ltr501_ps_read_samp_freq(data, &freq_val,
828 						       &freq_val2);
829 			if (ret < 0)
830 				break;
831 
832 			ret = ltr501_ps_write_samp_freq(data, val, val2);
833 			if (ret < 0)
834 				break;
835 
836 			/* update persistence count when changing frequency */
837 			ret = ltr501_write_intr_prst(data, chan->type,
838 						     0, data->ps_period);
839 
840 			if (ret < 0)
841 				ret = ltr501_ps_write_samp_freq(data, freq_val,
842 								freq_val2);
843 			break;
844 		default:
845 			ret = -EINVAL;
846 			break;
847 		}
848 		break;
849 
850 	default:
851 		ret = -EINVAL;
852 		break;
853 	}
854 
855 	iio_device_release_direct_mode(indio_dev);
856 	return ret;
857 }
858 
859 static int ltr501_read_thresh(const struct iio_dev *indio_dev,
860 			      const struct iio_chan_spec *chan,
861 			      enum iio_event_type type,
862 			      enum iio_event_direction dir,
863 			      enum iio_event_info info,
864 			      int *val, int *val2)
865 {
866 	const struct ltr501_data *data = iio_priv(indio_dev);
867 	int ret, thresh_data;
868 
869 	switch (chan->type) {
870 	case IIO_INTENSITY:
871 		switch (dir) {
872 		case IIO_EV_DIR_RISING:
873 			ret = regmap_bulk_read(data->regmap,
874 					       LTR501_ALS_THRESH_UP,
875 					       &thresh_data, 2);
876 			if (ret < 0)
877 				return ret;
878 			*val = thresh_data & LTR501_ALS_THRESH_MASK;
879 			return IIO_VAL_INT;
880 		case IIO_EV_DIR_FALLING:
881 			ret = regmap_bulk_read(data->regmap,
882 					       LTR501_ALS_THRESH_LOW,
883 					       &thresh_data, 2);
884 			if (ret < 0)
885 				return ret;
886 			*val = thresh_data & LTR501_ALS_THRESH_MASK;
887 			return IIO_VAL_INT;
888 		default:
889 			return -EINVAL;
890 		}
891 	case IIO_PROXIMITY:
892 		switch (dir) {
893 		case IIO_EV_DIR_RISING:
894 			ret = regmap_bulk_read(data->regmap,
895 					       LTR501_PS_THRESH_UP,
896 					       &thresh_data, 2);
897 			if (ret < 0)
898 				return ret;
899 			*val = thresh_data & LTR501_PS_THRESH_MASK;
900 			return IIO_VAL_INT;
901 		case IIO_EV_DIR_FALLING:
902 			ret = regmap_bulk_read(data->regmap,
903 					       LTR501_PS_THRESH_LOW,
904 					       &thresh_data, 2);
905 			if (ret < 0)
906 				return ret;
907 			*val = thresh_data & LTR501_PS_THRESH_MASK;
908 			return IIO_VAL_INT;
909 		default:
910 			return -EINVAL;
911 		}
912 	default:
913 		return -EINVAL;
914 	}
915 
916 	return -EINVAL;
917 }
918 
919 static int ltr501_write_thresh(struct iio_dev *indio_dev,
920 			       const struct iio_chan_spec *chan,
921 			       enum iio_event_type type,
922 			       enum iio_event_direction dir,
923 			       enum iio_event_info info,
924 			       int val, int val2)
925 {
926 	struct ltr501_data *data = iio_priv(indio_dev);
927 	int ret;
928 
929 	if (val < 0)
930 		return -EINVAL;
931 
932 	switch (chan->type) {
933 	case IIO_INTENSITY:
934 		if (val > LTR501_ALS_THRESH_MASK)
935 			return -EINVAL;
936 		switch (dir) {
937 		case IIO_EV_DIR_RISING:
938 			mutex_lock(&data->lock_als);
939 			ret = regmap_bulk_write(data->regmap,
940 						LTR501_ALS_THRESH_UP,
941 						&val, 2);
942 			mutex_unlock(&data->lock_als);
943 			return ret;
944 		case IIO_EV_DIR_FALLING:
945 			mutex_lock(&data->lock_als);
946 			ret = regmap_bulk_write(data->regmap,
947 						LTR501_ALS_THRESH_LOW,
948 						&val, 2);
949 			mutex_unlock(&data->lock_als);
950 			return ret;
951 		default:
952 			return -EINVAL;
953 		}
954 	case IIO_PROXIMITY:
955 		if (val > LTR501_PS_THRESH_MASK)
956 			return -EINVAL;
957 		switch (dir) {
958 		case IIO_EV_DIR_RISING:
959 			mutex_lock(&data->lock_ps);
960 			ret = regmap_bulk_write(data->regmap,
961 						LTR501_PS_THRESH_UP,
962 						&val, 2);
963 			mutex_unlock(&data->lock_ps);
964 			return ret;
965 		case IIO_EV_DIR_FALLING:
966 			mutex_lock(&data->lock_ps);
967 			ret = regmap_bulk_write(data->regmap,
968 						LTR501_PS_THRESH_LOW,
969 						&val, 2);
970 			mutex_unlock(&data->lock_ps);
971 			return ret;
972 		default:
973 			return -EINVAL;
974 		}
975 	default:
976 		return -EINVAL;
977 	}
978 
979 	return -EINVAL;
980 }
981 
982 static int ltr501_read_event(struct iio_dev *indio_dev,
983 			     const struct iio_chan_spec *chan,
984 			     enum iio_event_type type,
985 			     enum iio_event_direction dir,
986 			     enum iio_event_info info,
987 			     int *val, int *val2)
988 {
989 	int ret;
990 
991 	switch (info) {
992 	case IIO_EV_INFO_VALUE:
993 		return ltr501_read_thresh(indio_dev, chan, type, dir,
994 					  info, val, val2);
995 	case IIO_EV_INFO_PERIOD:
996 		ret = ltr501_read_intr_prst(iio_priv(indio_dev),
997 					    chan->type, val2);
998 		*val = *val2 / 1000000;
999 		*val2 = *val2 % 1000000;
1000 		return ret;
1001 	default:
1002 		return -EINVAL;
1003 	}
1004 
1005 	return -EINVAL;
1006 }
1007 
1008 static int ltr501_write_event(struct iio_dev *indio_dev,
1009 			      const struct iio_chan_spec *chan,
1010 			      enum iio_event_type type,
1011 			      enum iio_event_direction dir,
1012 			      enum iio_event_info info,
1013 			      int val, int val2)
1014 {
1015 	switch (info) {
1016 	case IIO_EV_INFO_VALUE:
1017 		if (val2 != 0)
1018 			return -EINVAL;
1019 		return ltr501_write_thresh(indio_dev, chan, type, dir,
1020 					   info, val, val2);
1021 	case IIO_EV_INFO_PERIOD:
1022 		return ltr501_write_intr_prst(iio_priv(indio_dev), chan->type,
1023 					      val, val2);
1024 	default:
1025 		return -EINVAL;
1026 	}
1027 
1028 	return -EINVAL;
1029 }
1030 
1031 static int ltr501_read_event_config(struct iio_dev *indio_dev,
1032 				    const struct iio_chan_spec *chan,
1033 				    enum iio_event_type type,
1034 				    enum iio_event_direction dir)
1035 {
1036 	struct ltr501_data *data = iio_priv(indio_dev);
1037 	int ret, status;
1038 
1039 	switch (chan->type) {
1040 	case IIO_INTENSITY:
1041 		ret = regmap_field_read(data->reg_als_intr, &status);
1042 		if (ret < 0)
1043 			return ret;
1044 		return status;
1045 	case IIO_PROXIMITY:
1046 		ret = regmap_field_read(data->reg_ps_intr, &status);
1047 		if (ret < 0)
1048 			return ret;
1049 		return status;
1050 	default:
1051 		return -EINVAL;
1052 	}
1053 
1054 	return -EINVAL;
1055 }
1056 
1057 static int ltr501_write_event_config(struct iio_dev *indio_dev,
1058 				     const struct iio_chan_spec *chan,
1059 				     enum iio_event_type type,
1060 				     enum iio_event_direction dir, int state)
1061 {
1062 	struct ltr501_data *data = iio_priv(indio_dev);
1063 	int ret;
1064 
1065 	/* only 1 and 0 are valid inputs */
1066 	if (state != 1  && state != 0)
1067 		return -EINVAL;
1068 
1069 	switch (chan->type) {
1070 	case IIO_INTENSITY:
1071 		mutex_lock(&data->lock_als);
1072 		ret = regmap_field_write(data->reg_als_intr, state);
1073 		mutex_unlock(&data->lock_als);
1074 		return ret;
1075 	case IIO_PROXIMITY:
1076 		mutex_lock(&data->lock_ps);
1077 		ret = regmap_field_write(data->reg_ps_intr, state);
1078 		mutex_unlock(&data->lock_ps);
1079 		return ret;
1080 	default:
1081 		return -EINVAL;
1082 	}
1083 
1084 	return -EINVAL;
1085 }
1086 
1087 static ssize_t ltr501_show_proximity_scale_avail(struct device *dev,
1088 						 struct device_attribute *attr,
1089 						 char *buf)
1090 {
1091 	struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1092 	const struct ltr501_chip_info *info = data->chip_info;
1093 	ssize_t len = 0;
1094 	int i;
1095 
1096 	for (i = 0; i < info->ps_gain_tbl_size; i++) {
1097 		if (info->ps_gain[i].scale == LTR501_RESERVED_GAIN)
1098 			continue;
1099 		len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1100 				 info->ps_gain[i].scale,
1101 				 info->ps_gain[i].uscale);
1102 	}
1103 
1104 	buf[len - 1] = '\n';
1105 
1106 	return len;
1107 }
1108 
1109 static ssize_t ltr501_show_intensity_scale_avail(struct device *dev,
1110 						 struct device_attribute *attr,
1111 						 char *buf)
1112 {
1113 	struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1114 	const struct ltr501_chip_info *info = data->chip_info;
1115 	ssize_t len = 0;
1116 	int i;
1117 
1118 	for (i = 0; i < info->als_gain_tbl_size; i++) {
1119 		if (info->als_gain[i].scale == LTR501_RESERVED_GAIN)
1120 			continue;
1121 		len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1122 				 info->als_gain[i].scale,
1123 				 info->als_gain[i].uscale);
1124 	}
1125 
1126 	buf[len - 1] = '\n';
1127 
1128 	return len;
1129 }
1130 
1131 static IIO_CONST_ATTR_INT_TIME_AVAIL("0.05 0.1 0.2 0.4");
1132 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("20 10 5 2 1 0.5");
1133 
1134 static IIO_DEVICE_ATTR(in_proximity_scale_available, S_IRUGO,
1135 		       ltr501_show_proximity_scale_avail, NULL, 0);
1136 static IIO_DEVICE_ATTR(in_intensity_scale_available, S_IRUGO,
1137 		       ltr501_show_intensity_scale_avail, NULL, 0);
1138 
1139 static struct attribute *ltr501_attributes[] = {
1140 	&iio_dev_attr_in_proximity_scale_available.dev_attr.attr,
1141 	&iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1142 	&iio_const_attr_integration_time_available.dev_attr.attr,
1143 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
1144 	NULL
1145 };
1146 
1147 static struct attribute *ltr301_attributes[] = {
1148 	&iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1149 	&iio_const_attr_integration_time_available.dev_attr.attr,
1150 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
1151 	NULL
1152 };
1153 
1154 static const struct attribute_group ltr501_attribute_group = {
1155 	.attrs = ltr501_attributes,
1156 };
1157 
1158 static const struct attribute_group ltr301_attribute_group = {
1159 	.attrs = ltr301_attributes,
1160 };
1161 
1162 static const struct iio_info ltr501_info_no_irq = {
1163 	.read_raw = ltr501_read_raw,
1164 	.write_raw = ltr501_write_raw,
1165 	.attrs = &ltr501_attribute_group,
1166 };
1167 
1168 static const struct iio_info ltr501_info = {
1169 	.read_raw = ltr501_read_raw,
1170 	.write_raw = ltr501_write_raw,
1171 	.attrs = &ltr501_attribute_group,
1172 	.read_event_value	= &ltr501_read_event,
1173 	.write_event_value	= &ltr501_write_event,
1174 	.read_event_config	= &ltr501_read_event_config,
1175 	.write_event_config	= &ltr501_write_event_config,
1176 };
1177 
1178 static const struct iio_info ltr301_info_no_irq = {
1179 	.read_raw = ltr501_read_raw,
1180 	.write_raw = ltr501_write_raw,
1181 	.attrs = &ltr301_attribute_group,
1182 };
1183 
1184 static const struct iio_info ltr301_info = {
1185 	.read_raw = ltr501_read_raw,
1186 	.write_raw = ltr501_write_raw,
1187 	.attrs = &ltr301_attribute_group,
1188 	.read_event_value	= &ltr501_read_event,
1189 	.write_event_value	= &ltr501_write_event,
1190 	.read_event_config	= &ltr501_read_event_config,
1191 	.write_event_config	= &ltr501_write_event_config,
1192 };
1193 
1194 static const struct ltr501_chip_info ltr501_chip_info_tbl[] = {
1195 	[ltr501] = {
1196 		.partid = 0x08,
1197 		.als_gain = ltr501_als_gain_tbl,
1198 		.als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1199 		.ps_gain = ltr501_ps_gain_tbl,
1200 		.ps_gain_tbl_size = ARRAY_SIZE(ltr501_ps_gain_tbl),
1201 		.als_mode_active = BIT(0) | BIT(1),
1202 		.als_gain_mask = BIT(3),
1203 		.als_gain_shift = 3,
1204 		.info = &ltr501_info,
1205 		.info_no_irq = &ltr501_info_no_irq,
1206 		.channels = ltr501_channels,
1207 		.no_channels = ARRAY_SIZE(ltr501_channels),
1208 	},
1209 	[ltr559] = {
1210 		.partid = 0x09,
1211 		.als_gain = ltr559_als_gain_tbl,
1212 		.als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl),
1213 		.ps_gain = ltr559_ps_gain_tbl,
1214 		.ps_gain_tbl_size = ARRAY_SIZE(ltr559_ps_gain_tbl),
1215 		.als_mode_active = BIT(0),
1216 		.als_gain_mask = BIT(2) | BIT(3) | BIT(4),
1217 		.als_gain_shift = 2,
1218 		.info = &ltr501_info,
1219 		.info_no_irq = &ltr501_info_no_irq,
1220 		.channels = ltr501_channels,
1221 		.no_channels = ARRAY_SIZE(ltr501_channels),
1222 	},
1223 	[ltr301] = {
1224 		.partid = 0x08,
1225 		.als_gain = ltr501_als_gain_tbl,
1226 		.als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1227 		.als_mode_active = BIT(0) | BIT(1),
1228 		.als_gain_mask = BIT(3),
1229 		.als_gain_shift = 3,
1230 		.info = &ltr301_info,
1231 		.info_no_irq = &ltr301_info_no_irq,
1232 		.channels = ltr301_channels,
1233 		.no_channels = ARRAY_SIZE(ltr301_channels),
1234 	},
1235 	[ltr303] = {
1236 		.partid = 0x0A,
1237 		.als_gain = ltr559_als_gain_tbl,
1238 		.als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl),
1239 		.als_mode_active = BIT(0),
1240 		.als_gain_mask = BIT(2) | BIT(3) | BIT(4),
1241 		.als_gain_shift = 2,
1242 		.info = &ltr301_info,
1243 		.info_no_irq = &ltr301_info_no_irq,
1244 		.channels = ltr301_channels,
1245 		.no_channels = ARRAY_SIZE(ltr301_channels),
1246 	},
1247 };
1248 
1249 static int ltr501_write_contr(struct ltr501_data *data, u8 als_val, u8 ps_val)
1250 {
1251 	int ret;
1252 
1253 	ret = regmap_write(data->regmap, LTR501_ALS_CONTR, als_val);
1254 	if (ret < 0)
1255 		return ret;
1256 
1257 	return regmap_write(data->regmap, LTR501_PS_CONTR, ps_val);
1258 }
1259 
1260 static irqreturn_t ltr501_trigger_handler(int irq, void *p)
1261 {
1262 	struct iio_poll_func *pf = p;
1263 	struct iio_dev *indio_dev = pf->indio_dev;
1264 	struct ltr501_data *data = iio_priv(indio_dev);
1265 	struct {
1266 		u16 channels[3];
1267 		s64 ts __aligned(8);
1268 	} scan;
1269 	__le16 als_buf[2];
1270 	u8 mask = 0;
1271 	int j = 0;
1272 	int ret, psdata;
1273 
1274 	memset(&scan, 0, sizeof(scan));
1275 
1276 	/* figure out which data needs to be ready */
1277 	if (test_bit(0, indio_dev->active_scan_mask) ||
1278 	    test_bit(1, indio_dev->active_scan_mask))
1279 		mask |= LTR501_STATUS_ALS_RDY;
1280 	if (test_bit(2, indio_dev->active_scan_mask))
1281 		mask |= LTR501_STATUS_PS_RDY;
1282 
1283 	ret = ltr501_drdy(data, mask);
1284 	if (ret < 0)
1285 		goto done;
1286 
1287 	if (mask & LTR501_STATUS_ALS_RDY) {
1288 		ret = regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
1289 				       als_buf, sizeof(als_buf));
1290 		if (ret < 0)
1291 			return ret;
1292 		if (test_bit(0, indio_dev->active_scan_mask))
1293 			scan.channels[j++] = le16_to_cpu(als_buf[1]);
1294 		if (test_bit(1, indio_dev->active_scan_mask))
1295 			scan.channels[j++] = le16_to_cpu(als_buf[0]);
1296 	}
1297 
1298 	if (mask & LTR501_STATUS_PS_RDY) {
1299 		ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
1300 				       &psdata, 2);
1301 		if (ret < 0)
1302 			goto done;
1303 		scan.channels[j++] = psdata & LTR501_PS_DATA_MASK;
1304 	}
1305 
1306 	iio_push_to_buffers_with_timestamp(indio_dev, &scan,
1307 					   iio_get_time_ns(indio_dev));
1308 
1309 done:
1310 	iio_trigger_notify_done(indio_dev->trig);
1311 
1312 	return IRQ_HANDLED;
1313 }
1314 
1315 static irqreturn_t ltr501_interrupt_handler(int irq, void *private)
1316 {
1317 	struct iio_dev *indio_dev = private;
1318 	struct ltr501_data *data = iio_priv(indio_dev);
1319 	int ret, status;
1320 
1321 	ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
1322 	if (ret < 0) {
1323 		dev_err(&data->client->dev,
1324 			"irq read int reg failed\n");
1325 		return IRQ_HANDLED;
1326 	}
1327 
1328 	if (status & LTR501_STATUS_ALS_INTR)
1329 		iio_push_event(indio_dev,
1330 			       IIO_UNMOD_EVENT_CODE(IIO_INTENSITY, 0,
1331 						    IIO_EV_TYPE_THRESH,
1332 						    IIO_EV_DIR_EITHER),
1333 			       iio_get_time_ns(indio_dev));
1334 
1335 	if (status & LTR501_STATUS_PS_INTR)
1336 		iio_push_event(indio_dev,
1337 			       IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
1338 						    IIO_EV_TYPE_THRESH,
1339 						    IIO_EV_DIR_EITHER),
1340 			       iio_get_time_ns(indio_dev));
1341 
1342 	return IRQ_HANDLED;
1343 }
1344 
1345 static int ltr501_init(struct ltr501_data *data)
1346 {
1347 	int ret, status;
1348 
1349 	ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
1350 	if (ret < 0)
1351 		return ret;
1352 
1353 	data->als_contr = status | data->chip_info->als_mode_active;
1354 
1355 	ret = regmap_read(data->regmap, LTR501_PS_CONTR, &status);
1356 	if (ret < 0)
1357 		return ret;
1358 
1359 	data->ps_contr = status | LTR501_CONTR_ACTIVE;
1360 
1361 	ret = ltr501_read_intr_prst(data, IIO_INTENSITY, &data->als_period);
1362 	if (ret < 0)
1363 		return ret;
1364 
1365 	ret = ltr501_read_intr_prst(data, IIO_PROXIMITY, &data->ps_period);
1366 	if (ret < 0)
1367 		return ret;
1368 
1369 	return ltr501_write_contr(data, data->als_contr, data->ps_contr);
1370 }
1371 
1372 static bool ltr501_is_volatile_reg(struct device *dev, unsigned int reg)
1373 {
1374 	switch (reg) {
1375 	case LTR501_ALS_DATA1:
1376 	case LTR501_ALS_DATA1_UPPER:
1377 	case LTR501_ALS_DATA0:
1378 	case LTR501_ALS_DATA0_UPPER:
1379 	case LTR501_ALS_PS_STATUS:
1380 	case LTR501_PS_DATA:
1381 	case LTR501_PS_DATA_UPPER:
1382 		return true;
1383 	default:
1384 		return false;
1385 	}
1386 }
1387 
1388 static const struct regmap_config ltr501_regmap_config = {
1389 	.name =  LTR501_REGMAP_NAME,
1390 	.reg_bits = 8,
1391 	.val_bits = 8,
1392 	.max_register = LTR501_MAX_REG,
1393 	.cache_type = REGCACHE_RBTREE,
1394 	.volatile_reg = ltr501_is_volatile_reg,
1395 };
1396 
1397 static void ltr501_disable_regulators(void *d)
1398 {
1399 	struct ltr501_data *data = d;
1400 
1401 	regulator_bulk_disable(ARRAY_SIZE(data->regulators), data->regulators);
1402 }
1403 
1404 static int ltr501_powerdown(struct ltr501_data *data)
1405 {
1406 	return ltr501_write_contr(data, data->als_contr &
1407 				  ~data->chip_info->als_mode_active,
1408 				  data->ps_contr & ~LTR501_CONTR_ACTIVE);
1409 }
1410 
1411 static const char *ltr501_match_acpi_device(struct device *dev, int *chip_idx)
1412 {
1413 	const struct acpi_device_id *id;
1414 
1415 	id = acpi_match_device(dev->driver->acpi_match_table, dev);
1416 	if (!id)
1417 		return NULL;
1418 	*chip_idx = id->driver_data;
1419 	return dev_name(dev);
1420 }
1421 
1422 static int ltr501_probe(struct i2c_client *client,
1423 			const struct i2c_device_id *id)
1424 {
1425 	struct ltr501_data *data;
1426 	struct iio_dev *indio_dev;
1427 	struct regmap *regmap;
1428 	int ret, partid, chip_idx = 0;
1429 	const char *name = NULL;
1430 
1431 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
1432 	if (!indio_dev)
1433 		return -ENOMEM;
1434 
1435 	regmap = devm_regmap_init_i2c(client, &ltr501_regmap_config);
1436 	if (IS_ERR(regmap)) {
1437 		dev_err(&client->dev, "Regmap initialization failed.\n");
1438 		return PTR_ERR(regmap);
1439 	}
1440 
1441 	data = iio_priv(indio_dev);
1442 	i2c_set_clientdata(client, indio_dev);
1443 	data->client = client;
1444 	data->regmap = regmap;
1445 	mutex_init(&data->lock_als);
1446 	mutex_init(&data->lock_ps);
1447 
1448 	data->regulators[0].supply = "vdd";
1449 	data->regulators[1].supply = "vddio";
1450 	ret = devm_regulator_bulk_get(&client->dev,
1451 				      ARRAY_SIZE(data->regulators),
1452 				      data->regulators);
1453 	if (ret)
1454 		return dev_err_probe(&client->dev, ret,
1455 				     "Failed to get regulators\n");
1456 
1457 	ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
1458 				    data->regulators);
1459 	if (ret)
1460 		return ret;
1461 
1462 	ret = devm_add_action_or_reset(&client->dev,
1463 				       ltr501_disable_regulators, data);
1464 	if (ret)
1465 		return ret;
1466 
1467 	data->reg_it = devm_regmap_field_alloc(&client->dev, regmap,
1468 					       reg_field_it);
1469 	if (IS_ERR(data->reg_it)) {
1470 		dev_err(&client->dev, "Integ time reg field init failed.\n");
1471 		return PTR_ERR(data->reg_it);
1472 	}
1473 
1474 	data->reg_als_intr = devm_regmap_field_alloc(&client->dev, regmap,
1475 						     reg_field_als_intr);
1476 	if (IS_ERR(data->reg_als_intr)) {
1477 		dev_err(&client->dev, "ALS intr mode reg field init failed\n");
1478 		return PTR_ERR(data->reg_als_intr);
1479 	}
1480 
1481 	data->reg_ps_intr = devm_regmap_field_alloc(&client->dev, regmap,
1482 						    reg_field_ps_intr);
1483 	if (IS_ERR(data->reg_ps_intr)) {
1484 		dev_err(&client->dev, "PS intr mode reg field init failed.\n");
1485 		return PTR_ERR(data->reg_ps_intr);
1486 	}
1487 
1488 	data->reg_als_rate = devm_regmap_field_alloc(&client->dev, regmap,
1489 						     reg_field_als_rate);
1490 	if (IS_ERR(data->reg_als_rate)) {
1491 		dev_err(&client->dev, "ALS samp rate field init failed.\n");
1492 		return PTR_ERR(data->reg_als_rate);
1493 	}
1494 
1495 	data->reg_ps_rate = devm_regmap_field_alloc(&client->dev, regmap,
1496 						    reg_field_ps_rate);
1497 	if (IS_ERR(data->reg_ps_rate)) {
1498 		dev_err(&client->dev, "PS samp rate field init failed.\n");
1499 		return PTR_ERR(data->reg_ps_rate);
1500 	}
1501 
1502 	data->reg_als_prst = devm_regmap_field_alloc(&client->dev, regmap,
1503 						     reg_field_als_prst);
1504 	if (IS_ERR(data->reg_als_prst)) {
1505 		dev_err(&client->dev, "ALS prst reg field init failed\n");
1506 		return PTR_ERR(data->reg_als_prst);
1507 	}
1508 
1509 	data->reg_ps_prst = devm_regmap_field_alloc(&client->dev, regmap,
1510 						    reg_field_ps_prst);
1511 	if (IS_ERR(data->reg_ps_prst)) {
1512 		dev_err(&client->dev, "PS prst reg field init failed.\n");
1513 		return PTR_ERR(data->reg_ps_prst);
1514 	}
1515 
1516 	ret = regmap_read(data->regmap, LTR501_PART_ID, &partid);
1517 	if (ret < 0)
1518 		return ret;
1519 
1520 	if (id) {
1521 		name = id->name;
1522 		chip_idx = id->driver_data;
1523 	} else  if (ACPI_HANDLE(&client->dev)) {
1524 		name = ltr501_match_acpi_device(&client->dev, &chip_idx);
1525 	} else {
1526 		return -ENODEV;
1527 	}
1528 
1529 	data->chip_info = &ltr501_chip_info_tbl[chip_idx];
1530 
1531 	if ((partid >> 4) != data->chip_info->partid)
1532 		return -ENODEV;
1533 
1534 	indio_dev->info = data->chip_info->info;
1535 	indio_dev->channels = data->chip_info->channels;
1536 	indio_dev->num_channels = data->chip_info->no_channels;
1537 	indio_dev->name = name;
1538 	indio_dev->modes = INDIO_DIRECT_MODE;
1539 
1540 	ret = ltr501_init(data);
1541 	if (ret < 0)
1542 		return ret;
1543 
1544 	if (client->irq > 0) {
1545 		ret = devm_request_threaded_irq(&client->dev, client->irq,
1546 						NULL, ltr501_interrupt_handler,
1547 						IRQF_TRIGGER_FALLING |
1548 						IRQF_ONESHOT,
1549 						"ltr501_thresh_event",
1550 						indio_dev);
1551 		if (ret) {
1552 			dev_err(&client->dev, "request irq (%d) failed\n",
1553 				client->irq);
1554 			return ret;
1555 		}
1556 	} else {
1557 		indio_dev->info = data->chip_info->info_no_irq;
1558 	}
1559 
1560 	ret = iio_triggered_buffer_setup(indio_dev, NULL,
1561 					 ltr501_trigger_handler, NULL);
1562 	if (ret)
1563 		goto powerdown_on_error;
1564 
1565 	ret = iio_device_register(indio_dev);
1566 	if (ret)
1567 		goto error_unreg_buffer;
1568 
1569 	return 0;
1570 
1571 error_unreg_buffer:
1572 	iio_triggered_buffer_cleanup(indio_dev);
1573 powerdown_on_error:
1574 	ltr501_powerdown(data);
1575 	return ret;
1576 }
1577 
1578 static int ltr501_remove(struct i2c_client *client)
1579 {
1580 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
1581 
1582 	iio_device_unregister(indio_dev);
1583 	iio_triggered_buffer_cleanup(indio_dev);
1584 	ltr501_powerdown(iio_priv(indio_dev));
1585 
1586 	return 0;
1587 }
1588 
1589 #ifdef CONFIG_PM_SLEEP
1590 static int ltr501_suspend(struct device *dev)
1591 {
1592 	struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1593 					    to_i2c_client(dev)));
1594 	return ltr501_powerdown(data);
1595 }
1596 
1597 static int ltr501_resume(struct device *dev)
1598 {
1599 	struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1600 					    to_i2c_client(dev)));
1601 
1602 	return ltr501_write_contr(data, data->als_contr,
1603 		data->ps_contr);
1604 }
1605 #endif
1606 
1607 static SIMPLE_DEV_PM_OPS(ltr501_pm_ops, ltr501_suspend, ltr501_resume);
1608 
1609 static const struct acpi_device_id ltr_acpi_match[] = {
1610 	{"LTER0501", ltr501},
1611 	{"LTER0559", ltr559},
1612 	{"LTER0301", ltr301},
1613 	{ },
1614 };
1615 MODULE_DEVICE_TABLE(acpi, ltr_acpi_match);
1616 
1617 static const struct i2c_device_id ltr501_id[] = {
1618 	{ "ltr501", ltr501},
1619 	{ "ltr559", ltr559},
1620 	{ "ltr301", ltr301},
1621 	{ "ltr303", ltr303},
1622 	{ }
1623 };
1624 MODULE_DEVICE_TABLE(i2c, ltr501_id);
1625 
1626 static const struct of_device_id ltr501_of_match[] = {
1627 	{ .compatible = "liteon,ltr501", },
1628 	{ .compatible = "liteon,ltr559", },
1629 	{ .compatible = "liteon,ltr301", },
1630 	{ .compatible = "liteon,ltr303", },
1631 	{}
1632 };
1633 MODULE_DEVICE_TABLE(of, ltr501_of_match);
1634 
1635 static struct i2c_driver ltr501_driver = {
1636 	.driver = {
1637 		.name   = LTR501_DRV_NAME,
1638 		.of_match_table = ltr501_of_match,
1639 		.pm	= &ltr501_pm_ops,
1640 		.acpi_match_table = ACPI_PTR(ltr_acpi_match),
1641 	},
1642 	.probe  = ltr501_probe,
1643 	.remove	= ltr501_remove,
1644 	.id_table = ltr501_id,
1645 };
1646 
1647 module_i2c_driver(ltr501_driver);
1648 
1649 MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>");
1650 MODULE_DESCRIPTION("Lite-On LTR501 ambient light and proximity sensor driver");
1651 MODULE_LICENSE("GPL");
1652