xref: /openbmc/linux/drivers/iio/light/ltr501.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ltr501.c - Support for Lite-On LTR501 ambient light and proximity sensor
4  *
5  * Copyright 2014 Peter Meerwald <pmeerw@pmeerw.net>
6  *
7  * 7-bit I2C slave address 0x23
8  *
9  * TODO: IR LED characteristics
10  */
11 
12 #include <linux/module.h>
13 #include <linux/i2c.h>
14 #include <linux/err.h>
15 #include <linux/delay.h>
16 #include <linux/regmap.h>
17 #include <linux/acpi.h>
18 #include <linux/regulator/consumer.h>
19 
20 #include <linux/iio/iio.h>
21 #include <linux/iio/events.h>
22 #include <linux/iio/sysfs.h>
23 #include <linux/iio/trigger_consumer.h>
24 #include <linux/iio/buffer.h>
25 #include <linux/iio/triggered_buffer.h>
26 
27 #define LTR501_DRV_NAME "ltr501"
28 
29 #define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */
30 #define LTR501_PS_CONTR 0x81 /* PS operation mode */
31 #define LTR501_PS_MEAS_RATE 0x84 /* measurement rate*/
32 #define LTR501_ALS_MEAS_RATE 0x85 /* ALS integ time, measurement rate*/
33 #define LTR501_PART_ID 0x86
34 #define LTR501_MANUFAC_ID 0x87
35 #define LTR501_ALS_DATA1 0x88 /* 16-bit, little endian */
36 #define LTR501_ALS_DATA1_UPPER 0x89 /* upper 8 bits of LTR501_ALS_DATA1 */
37 #define LTR501_ALS_DATA0 0x8a /* 16-bit, little endian */
38 #define LTR501_ALS_DATA0_UPPER 0x8b /* upper 8 bits of LTR501_ALS_DATA0 */
39 #define LTR501_ALS_PS_STATUS 0x8c
40 #define LTR501_PS_DATA 0x8d /* 16-bit, little endian */
41 #define LTR501_PS_DATA_UPPER 0x8e /* upper 8 bits of LTR501_PS_DATA */
42 #define LTR501_INTR 0x8f /* output mode, polarity, mode */
43 #define LTR501_PS_THRESH_UP 0x90 /* 11 bit, ps upper threshold */
44 #define LTR501_PS_THRESH_LOW 0x92 /* 11 bit, ps lower threshold */
45 #define LTR501_ALS_THRESH_UP 0x97 /* 16 bit, ALS upper threshold */
46 #define LTR501_ALS_THRESH_LOW 0x99 /* 16 bit, ALS lower threshold */
47 #define LTR501_INTR_PRST 0x9e /* ps thresh, als thresh */
48 #define LTR501_MAX_REG 0x9f
49 
50 #define LTR501_ALS_CONTR_SW_RESET BIT(2)
51 #define LTR501_CONTR_PS_GAIN_MASK (BIT(3) | BIT(2))
52 #define LTR501_CONTR_PS_GAIN_SHIFT 2
53 #define LTR501_CONTR_ALS_GAIN_MASK BIT(3)
54 #define LTR501_CONTR_ACTIVE BIT(1)
55 
56 #define LTR501_STATUS_ALS_INTR BIT(3)
57 #define LTR501_STATUS_ALS_RDY BIT(2)
58 #define LTR501_STATUS_PS_INTR BIT(1)
59 #define LTR501_STATUS_PS_RDY BIT(0)
60 
61 #define LTR501_PS_DATA_MASK 0x7ff
62 #define LTR501_PS_THRESH_MASK 0x7ff
63 #define LTR501_ALS_THRESH_MASK 0xffff
64 
65 #define LTR501_ALS_DEF_PERIOD 500000
66 #define LTR501_PS_DEF_PERIOD 100000
67 
68 #define LTR501_REGMAP_NAME "ltr501_regmap"
69 
70 #define LTR501_LUX_CONV(vis_coeff, vis_data, ir_coeff, ir_data) \
71 			((vis_coeff * vis_data) - (ir_coeff * ir_data))
72 
73 static const int int_time_mapping[] = {100000, 50000, 200000, 400000};
74 
75 static const struct reg_field reg_field_it =
76 				REG_FIELD(LTR501_ALS_MEAS_RATE, 3, 4);
77 static const struct reg_field reg_field_als_intr =
78 				REG_FIELD(LTR501_INTR, 1, 1);
79 static const struct reg_field reg_field_ps_intr =
80 				REG_FIELD(LTR501_INTR, 0, 0);
81 static const struct reg_field reg_field_als_rate =
82 				REG_FIELD(LTR501_ALS_MEAS_RATE, 0, 2);
83 static const struct reg_field reg_field_ps_rate =
84 				REG_FIELD(LTR501_PS_MEAS_RATE, 0, 3);
85 static const struct reg_field reg_field_als_prst =
86 				REG_FIELD(LTR501_INTR_PRST, 0, 3);
87 static const struct reg_field reg_field_ps_prst =
88 				REG_FIELD(LTR501_INTR_PRST, 4, 7);
89 
90 struct ltr501_samp_table {
91 	int freq_val;  /* repetition frequency in micro HZ*/
92 	int time_val; /* repetition rate in micro seconds */
93 };
94 
95 #define LTR501_RESERVED_GAIN -1
96 
97 enum {
98 	ltr501 = 0,
99 	ltr559,
100 	ltr301,
101 };
102 
103 struct ltr501_gain {
104 	int scale;
105 	int uscale;
106 };
107 
108 static const struct ltr501_gain ltr501_als_gain_tbl[] = {
109 	{1, 0},
110 	{0, 5000},
111 };
112 
113 static const struct ltr501_gain ltr559_als_gain_tbl[] = {
114 	{1, 0},
115 	{0, 500000},
116 	{0, 250000},
117 	{0, 125000},
118 	{LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
119 	{LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
120 	{0, 20000},
121 	{0, 10000},
122 };
123 
124 static const struct ltr501_gain ltr501_ps_gain_tbl[] = {
125 	{1, 0},
126 	{0, 250000},
127 	{0, 125000},
128 	{0, 62500},
129 };
130 
131 static const struct ltr501_gain ltr559_ps_gain_tbl[] = {
132 	{0, 62500}, /* x16 gain */
133 	{0, 31250}, /* x32 gain */
134 	{0, 15625}, /* bits X1 are for x64 gain */
135 	{0, 15624},
136 };
137 
138 struct ltr501_chip_info {
139 	u8 partid;
140 	const struct ltr501_gain *als_gain;
141 	int als_gain_tbl_size;
142 	const struct ltr501_gain *ps_gain;
143 	int ps_gain_tbl_size;
144 	u8 als_mode_active;
145 	u8 als_gain_mask;
146 	u8 als_gain_shift;
147 	struct iio_chan_spec const *channels;
148 	const int no_channels;
149 	const struct iio_info *info;
150 	const struct iio_info *info_no_irq;
151 };
152 
153 struct ltr501_data {
154 	struct i2c_client *client;
155 	struct regulator_bulk_data regulators[2];
156 	struct mutex lock_als, lock_ps;
157 	const struct ltr501_chip_info *chip_info;
158 	u8 als_contr, ps_contr;
159 	int als_period, ps_period; /* period in micro seconds */
160 	struct regmap *regmap;
161 	struct regmap_field *reg_it;
162 	struct regmap_field *reg_als_intr;
163 	struct regmap_field *reg_ps_intr;
164 	struct regmap_field *reg_als_rate;
165 	struct regmap_field *reg_ps_rate;
166 	struct regmap_field *reg_als_prst;
167 	struct regmap_field *reg_ps_prst;
168 };
169 
170 static const struct ltr501_samp_table ltr501_als_samp_table[] = {
171 			{20000000, 50000}, {10000000, 100000},
172 			{5000000, 200000}, {2000000, 500000},
173 			{1000000, 1000000}, {500000, 2000000},
174 			{500000, 2000000}, {500000, 2000000}
175 };
176 
177 static const struct ltr501_samp_table ltr501_ps_samp_table[] = {
178 			{20000000, 50000}, {14285714, 70000},
179 			{10000000, 100000}, {5000000, 200000},
180 			{2000000, 500000}, {1000000, 1000000},
181 			{500000, 2000000}, {500000, 2000000},
182 			{500000, 2000000}
183 };
184 
185 static int ltr501_match_samp_freq(const struct ltr501_samp_table *tab,
186 					   int len, int val, int val2)
187 {
188 	int i, freq;
189 
190 	freq = val * 1000000 + val2;
191 
192 	for (i = 0; i < len; i++) {
193 		if (tab[i].freq_val == freq)
194 			return i;
195 	}
196 
197 	return -EINVAL;
198 }
199 
200 static int ltr501_als_read_samp_freq(const struct ltr501_data *data,
201 				     int *val, int *val2)
202 {
203 	int ret, i;
204 
205 	ret = regmap_field_read(data->reg_als_rate, &i);
206 	if (ret < 0)
207 		return ret;
208 
209 	if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
210 		return -EINVAL;
211 
212 	*val = ltr501_als_samp_table[i].freq_val / 1000000;
213 	*val2 = ltr501_als_samp_table[i].freq_val % 1000000;
214 
215 	return IIO_VAL_INT_PLUS_MICRO;
216 }
217 
218 static int ltr501_ps_read_samp_freq(const struct ltr501_data *data,
219 				    int *val, int *val2)
220 {
221 	int ret, i;
222 
223 	ret = regmap_field_read(data->reg_ps_rate, &i);
224 	if (ret < 0)
225 		return ret;
226 
227 	if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
228 		return -EINVAL;
229 
230 	*val = ltr501_ps_samp_table[i].freq_val / 1000000;
231 	*val2 = ltr501_ps_samp_table[i].freq_val % 1000000;
232 
233 	return IIO_VAL_INT_PLUS_MICRO;
234 }
235 
236 static int ltr501_als_write_samp_freq(struct ltr501_data *data,
237 				      int val, int val2)
238 {
239 	int i, ret;
240 
241 	i = ltr501_match_samp_freq(ltr501_als_samp_table,
242 				   ARRAY_SIZE(ltr501_als_samp_table),
243 				   val, val2);
244 
245 	if (i < 0)
246 		return i;
247 
248 	mutex_lock(&data->lock_als);
249 	ret = regmap_field_write(data->reg_als_rate, i);
250 	mutex_unlock(&data->lock_als);
251 
252 	return ret;
253 }
254 
255 static int ltr501_ps_write_samp_freq(struct ltr501_data *data,
256 				     int val, int val2)
257 {
258 	int i, ret;
259 
260 	i = ltr501_match_samp_freq(ltr501_ps_samp_table,
261 				   ARRAY_SIZE(ltr501_ps_samp_table),
262 				   val, val2);
263 
264 	if (i < 0)
265 		return i;
266 
267 	mutex_lock(&data->lock_ps);
268 	ret = regmap_field_write(data->reg_ps_rate, i);
269 	mutex_unlock(&data->lock_ps);
270 
271 	return ret;
272 }
273 
274 static int ltr501_als_read_samp_period(const struct ltr501_data *data, int *val)
275 {
276 	int ret, i;
277 
278 	ret = regmap_field_read(data->reg_als_rate, &i);
279 	if (ret < 0)
280 		return ret;
281 
282 	if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
283 		return -EINVAL;
284 
285 	*val = ltr501_als_samp_table[i].time_val;
286 
287 	return IIO_VAL_INT;
288 }
289 
290 static int ltr501_ps_read_samp_period(const struct ltr501_data *data, int *val)
291 {
292 	int ret, i;
293 
294 	ret = regmap_field_read(data->reg_ps_rate, &i);
295 	if (ret < 0)
296 		return ret;
297 
298 	if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
299 		return -EINVAL;
300 
301 	*val = ltr501_ps_samp_table[i].time_val;
302 
303 	return IIO_VAL_INT;
304 }
305 
306 /* IR and visible spectrum coeff's are given in data sheet */
307 static unsigned long ltr501_calculate_lux(u16 vis_data, u16 ir_data)
308 {
309 	unsigned long ratio, lux;
310 
311 	if (vis_data == 0)
312 		return 0;
313 
314 	/* multiply numerator by 100 to avoid handling ratio < 1 */
315 	ratio = DIV_ROUND_UP(ir_data * 100, ir_data + vis_data);
316 
317 	if (ratio < 45)
318 		lux = LTR501_LUX_CONV(1774, vis_data, -1105, ir_data);
319 	else if (ratio >= 45 && ratio < 64)
320 		lux = LTR501_LUX_CONV(3772, vis_data, 1336, ir_data);
321 	else if (ratio >= 64 && ratio < 85)
322 		lux = LTR501_LUX_CONV(1690, vis_data, 169, ir_data);
323 	else
324 		lux = 0;
325 
326 	return lux / 1000;
327 }
328 
329 static int ltr501_drdy(const struct ltr501_data *data, u8 drdy_mask)
330 {
331 	int tries = 100;
332 	int ret, status;
333 
334 	while (tries--) {
335 		ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
336 		if (ret < 0)
337 			return ret;
338 		if ((status & drdy_mask) == drdy_mask)
339 			return 0;
340 		msleep(25);
341 	}
342 
343 	dev_err(&data->client->dev, "ltr501_drdy() failed, data not ready\n");
344 	return -EIO;
345 }
346 
347 static int ltr501_set_it_time(struct ltr501_data *data, int it)
348 {
349 	int ret, i, index = -1, status;
350 
351 	for (i = 0; i < ARRAY_SIZE(int_time_mapping); i++) {
352 		if (int_time_mapping[i] == it) {
353 			index = i;
354 			break;
355 		}
356 	}
357 	/* Make sure integ time index is valid */
358 	if (index < 0)
359 		return -EINVAL;
360 
361 	ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
362 	if (ret < 0)
363 		return ret;
364 
365 	if (status & LTR501_CONTR_ALS_GAIN_MASK) {
366 		/*
367 		 * 200 ms and 400 ms integ time can only be
368 		 * used in dynamic range 1
369 		 */
370 		if (index > 1)
371 			return -EINVAL;
372 	} else
373 		/* 50 ms integ time can only be used in dynamic range 2 */
374 		if (index == 1)
375 			return -EINVAL;
376 
377 	return regmap_field_write(data->reg_it, index);
378 }
379 
380 /* read int time in micro seconds */
381 static int ltr501_read_it_time(const struct ltr501_data *data,
382 			       int *val, int *val2)
383 {
384 	int ret, index;
385 
386 	ret = regmap_field_read(data->reg_it, &index);
387 	if (ret < 0)
388 		return ret;
389 
390 	/* Make sure integ time index is valid */
391 	if (index < 0 || index >= ARRAY_SIZE(int_time_mapping))
392 		return -EINVAL;
393 
394 	*val2 = int_time_mapping[index];
395 	*val = 0;
396 
397 	return IIO_VAL_INT_PLUS_MICRO;
398 }
399 
400 static int ltr501_read_als(const struct ltr501_data *data, __le16 buf[2])
401 {
402 	int ret;
403 
404 	ret = ltr501_drdy(data, LTR501_STATUS_ALS_RDY);
405 	if (ret < 0)
406 		return ret;
407 	/* always read both ALS channels in given order */
408 	return regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
409 				buf, 2 * sizeof(__le16));
410 }
411 
412 static int ltr501_read_ps(const struct ltr501_data *data)
413 {
414 	__le16 status;
415 	int ret;
416 
417 	ret = ltr501_drdy(data, LTR501_STATUS_PS_RDY);
418 	if (ret < 0)
419 		return ret;
420 
421 	ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
422 			       &status, sizeof(status));
423 	if (ret < 0)
424 		return ret;
425 
426 	return le16_to_cpu(status);
427 }
428 
429 static int ltr501_read_intr_prst(const struct ltr501_data *data,
430 				 enum iio_chan_type type,
431 				 int *val2)
432 {
433 	int ret, samp_period, prst;
434 
435 	switch (type) {
436 	case IIO_INTENSITY:
437 		ret = regmap_field_read(data->reg_als_prst, &prst);
438 		if (ret < 0)
439 			return ret;
440 
441 		ret = ltr501_als_read_samp_period(data, &samp_period);
442 
443 		if (ret < 0)
444 			return ret;
445 		*val2 = samp_period * prst;
446 		return IIO_VAL_INT_PLUS_MICRO;
447 	case IIO_PROXIMITY:
448 		ret = regmap_field_read(data->reg_ps_prst, &prst);
449 		if (ret < 0)
450 			return ret;
451 
452 		ret = ltr501_ps_read_samp_period(data, &samp_period);
453 
454 		if (ret < 0)
455 			return ret;
456 
457 		*val2 = samp_period * prst;
458 		return IIO_VAL_INT_PLUS_MICRO;
459 	default:
460 		return -EINVAL;
461 	}
462 
463 	return -EINVAL;
464 }
465 
466 static int ltr501_write_intr_prst(struct ltr501_data *data,
467 				  enum iio_chan_type type,
468 				  int val, int val2)
469 {
470 	int ret, samp_period, new_val;
471 	unsigned long period;
472 
473 	if (val < 0 || val2 < 0)
474 		return -EINVAL;
475 
476 	/* period in microseconds */
477 	period = ((val * 1000000) + val2);
478 
479 	switch (type) {
480 	case IIO_INTENSITY:
481 		ret = ltr501_als_read_samp_period(data, &samp_period);
482 		if (ret < 0)
483 			return ret;
484 
485 		/* period should be atleast equal to sampling period */
486 		if (period < samp_period)
487 			return -EINVAL;
488 
489 		new_val = DIV_ROUND_UP(period, samp_period);
490 		if (new_val < 0 || new_val > 0x0f)
491 			return -EINVAL;
492 
493 		mutex_lock(&data->lock_als);
494 		ret = regmap_field_write(data->reg_als_prst, new_val);
495 		mutex_unlock(&data->lock_als);
496 		if (ret >= 0)
497 			data->als_period = period;
498 
499 		return ret;
500 	case IIO_PROXIMITY:
501 		ret = ltr501_ps_read_samp_period(data, &samp_period);
502 		if (ret < 0)
503 			return ret;
504 
505 		/* period should be atleast equal to rate */
506 		if (period < samp_period)
507 			return -EINVAL;
508 
509 		new_val = DIV_ROUND_UP(period, samp_period);
510 		if (new_val < 0 || new_val > 0x0f)
511 			return -EINVAL;
512 
513 		mutex_lock(&data->lock_ps);
514 		ret = regmap_field_write(data->reg_ps_prst, new_val);
515 		mutex_unlock(&data->lock_ps);
516 		if (ret >= 0)
517 			data->ps_period = period;
518 
519 		return ret;
520 	default:
521 		return -EINVAL;
522 	}
523 
524 	return -EINVAL;
525 }
526 
527 static const struct iio_event_spec ltr501_als_event_spec[] = {
528 	{
529 		.type = IIO_EV_TYPE_THRESH,
530 		.dir = IIO_EV_DIR_RISING,
531 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
532 	}, {
533 		.type = IIO_EV_TYPE_THRESH,
534 		.dir = IIO_EV_DIR_FALLING,
535 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
536 	}, {
537 		.type = IIO_EV_TYPE_THRESH,
538 		.dir = IIO_EV_DIR_EITHER,
539 		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
540 				 BIT(IIO_EV_INFO_PERIOD),
541 	},
542 
543 };
544 
545 static const struct iio_event_spec ltr501_pxs_event_spec[] = {
546 	{
547 		.type = IIO_EV_TYPE_THRESH,
548 		.dir = IIO_EV_DIR_RISING,
549 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
550 	}, {
551 		.type = IIO_EV_TYPE_THRESH,
552 		.dir = IIO_EV_DIR_FALLING,
553 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
554 	}, {
555 		.type = IIO_EV_TYPE_THRESH,
556 		.dir = IIO_EV_DIR_EITHER,
557 		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
558 				 BIT(IIO_EV_INFO_PERIOD),
559 	},
560 };
561 
562 #define LTR501_INTENSITY_CHANNEL(_idx, _addr, _mod, _shared, \
563 				 _evspec, _evsize) { \
564 	.type = IIO_INTENSITY, \
565 	.modified = 1, \
566 	.address = (_addr), \
567 	.channel2 = (_mod), \
568 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
569 	.info_mask_shared_by_type = (_shared), \
570 	.scan_index = (_idx), \
571 	.scan_type = { \
572 		.sign = 'u', \
573 		.realbits = 16, \
574 		.storagebits = 16, \
575 		.endianness = IIO_CPU, \
576 	}, \
577 	.event_spec = _evspec,\
578 	.num_event_specs = _evsize,\
579 }
580 
581 #define LTR501_LIGHT_CHANNEL() { \
582 	.type = IIO_LIGHT, \
583 	.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
584 	.scan_index = -1, \
585 }
586 
587 static const struct iio_chan_spec ltr501_channels[] = {
588 	LTR501_LIGHT_CHANNEL(),
589 	LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
590 				 ltr501_als_event_spec,
591 				 ARRAY_SIZE(ltr501_als_event_spec)),
592 	LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
593 				 BIT(IIO_CHAN_INFO_SCALE) |
594 				 BIT(IIO_CHAN_INFO_INT_TIME) |
595 				 BIT(IIO_CHAN_INFO_SAMP_FREQ),
596 				 NULL, 0),
597 	{
598 		.type = IIO_PROXIMITY,
599 		.address = LTR501_PS_DATA,
600 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
601 			BIT(IIO_CHAN_INFO_SCALE),
602 		.scan_index = 2,
603 		.scan_type = {
604 			.sign = 'u',
605 			.realbits = 11,
606 			.storagebits = 16,
607 			.endianness = IIO_CPU,
608 		},
609 		.event_spec = ltr501_pxs_event_spec,
610 		.num_event_specs = ARRAY_SIZE(ltr501_pxs_event_spec),
611 	},
612 	IIO_CHAN_SOFT_TIMESTAMP(3),
613 };
614 
615 static const struct iio_chan_spec ltr301_channels[] = {
616 	LTR501_LIGHT_CHANNEL(),
617 	LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
618 				 ltr501_als_event_spec,
619 				 ARRAY_SIZE(ltr501_als_event_spec)),
620 	LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
621 				 BIT(IIO_CHAN_INFO_SCALE) |
622 				 BIT(IIO_CHAN_INFO_INT_TIME) |
623 				 BIT(IIO_CHAN_INFO_SAMP_FREQ),
624 				 NULL, 0),
625 	IIO_CHAN_SOFT_TIMESTAMP(2),
626 };
627 
628 static int ltr501_read_raw(struct iio_dev *indio_dev,
629 			   struct iio_chan_spec const *chan,
630 			   int *val, int *val2, long mask)
631 {
632 	struct ltr501_data *data = iio_priv(indio_dev);
633 	__le16 buf[2];
634 	int ret, i;
635 
636 	switch (mask) {
637 	case IIO_CHAN_INFO_PROCESSED:
638 		switch (chan->type) {
639 		case IIO_LIGHT:
640 			ret = iio_device_claim_direct_mode(indio_dev);
641 			if (ret)
642 				return ret;
643 
644 			mutex_lock(&data->lock_als);
645 			ret = ltr501_read_als(data, buf);
646 			mutex_unlock(&data->lock_als);
647 			iio_device_release_direct_mode(indio_dev);
648 			if (ret < 0)
649 				return ret;
650 			*val = ltr501_calculate_lux(le16_to_cpu(buf[1]),
651 						    le16_to_cpu(buf[0]));
652 			return IIO_VAL_INT;
653 		default:
654 			return -EINVAL;
655 		}
656 	case IIO_CHAN_INFO_RAW:
657 		ret = iio_device_claim_direct_mode(indio_dev);
658 		if (ret)
659 			return ret;
660 
661 		switch (chan->type) {
662 		case IIO_INTENSITY:
663 			mutex_lock(&data->lock_als);
664 			ret = ltr501_read_als(data, buf);
665 			mutex_unlock(&data->lock_als);
666 			if (ret < 0)
667 				break;
668 			*val = le16_to_cpu(chan->address == LTR501_ALS_DATA1 ?
669 					   buf[0] : buf[1]);
670 			ret = IIO_VAL_INT;
671 			break;
672 		case IIO_PROXIMITY:
673 			mutex_lock(&data->lock_ps);
674 			ret = ltr501_read_ps(data);
675 			mutex_unlock(&data->lock_ps);
676 			if (ret < 0)
677 				break;
678 			*val = ret & LTR501_PS_DATA_MASK;
679 			ret = IIO_VAL_INT;
680 			break;
681 		default:
682 			ret = -EINVAL;
683 			break;
684 		}
685 
686 		iio_device_release_direct_mode(indio_dev);
687 		return ret;
688 
689 	case IIO_CHAN_INFO_SCALE:
690 		switch (chan->type) {
691 		case IIO_INTENSITY:
692 			i = (data->als_contr & data->chip_info->als_gain_mask)
693 			     >> data->chip_info->als_gain_shift;
694 			*val = data->chip_info->als_gain[i].scale;
695 			*val2 = data->chip_info->als_gain[i].uscale;
696 			return IIO_VAL_INT_PLUS_MICRO;
697 		case IIO_PROXIMITY:
698 			i = (data->ps_contr & LTR501_CONTR_PS_GAIN_MASK) >>
699 				LTR501_CONTR_PS_GAIN_SHIFT;
700 			*val = data->chip_info->ps_gain[i].scale;
701 			*val2 = data->chip_info->ps_gain[i].uscale;
702 			return IIO_VAL_INT_PLUS_MICRO;
703 		default:
704 			return -EINVAL;
705 		}
706 	case IIO_CHAN_INFO_INT_TIME:
707 		switch (chan->type) {
708 		case IIO_INTENSITY:
709 			return ltr501_read_it_time(data, val, val2);
710 		default:
711 			return -EINVAL;
712 		}
713 	case IIO_CHAN_INFO_SAMP_FREQ:
714 		switch (chan->type) {
715 		case IIO_INTENSITY:
716 			return ltr501_als_read_samp_freq(data, val, val2);
717 		case IIO_PROXIMITY:
718 			return ltr501_ps_read_samp_freq(data, val, val2);
719 		default:
720 			return -EINVAL;
721 		}
722 	}
723 	return -EINVAL;
724 }
725 
726 static int ltr501_get_gain_index(const struct ltr501_gain *gain, int size,
727 				 int val, int val2)
728 {
729 	int i;
730 
731 	for (i = 0; i < size; i++)
732 		if (val == gain[i].scale && val2 == gain[i].uscale)
733 			return i;
734 
735 	return -1;
736 }
737 
738 static int ltr501_write_raw(struct iio_dev *indio_dev,
739 			    struct iio_chan_spec const *chan,
740 			    int val, int val2, long mask)
741 {
742 	struct ltr501_data *data = iio_priv(indio_dev);
743 	int i, ret, freq_val, freq_val2;
744 	const struct ltr501_chip_info *info = data->chip_info;
745 
746 	ret = iio_device_claim_direct_mode(indio_dev);
747 	if (ret)
748 		return ret;
749 
750 	switch (mask) {
751 	case IIO_CHAN_INFO_SCALE:
752 		switch (chan->type) {
753 		case IIO_INTENSITY:
754 			i = ltr501_get_gain_index(info->als_gain,
755 						  info->als_gain_tbl_size,
756 						  val, val2);
757 			if (i < 0) {
758 				ret = -EINVAL;
759 				break;
760 			}
761 
762 			data->als_contr &= ~info->als_gain_mask;
763 			data->als_contr |= i << info->als_gain_shift;
764 
765 			ret = regmap_write(data->regmap, LTR501_ALS_CONTR,
766 					   data->als_contr);
767 			break;
768 		case IIO_PROXIMITY:
769 			i = ltr501_get_gain_index(info->ps_gain,
770 						  info->ps_gain_tbl_size,
771 						  val, val2);
772 			if (i < 0) {
773 				ret = -EINVAL;
774 				break;
775 			}
776 			data->ps_contr &= ~LTR501_CONTR_PS_GAIN_MASK;
777 			data->ps_contr |= i << LTR501_CONTR_PS_GAIN_SHIFT;
778 
779 			ret = regmap_write(data->regmap, LTR501_PS_CONTR,
780 					   data->ps_contr);
781 			break;
782 		default:
783 			ret = -EINVAL;
784 			break;
785 		}
786 		break;
787 
788 	case IIO_CHAN_INFO_INT_TIME:
789 		switch (chan->type) {
790 		case IIO_INTENSITY:
791 			if (val != 0) {
792 				ret = -EINVAL;
793 				break;
794 			}
795 			mutex_lock(&data->lock_als);
796 			ret = ltr501_set_it_time(data, val2);
797 			mutex_unlock(&data->lock_als);
798 			break;
799 		default:
800 			ret = -EINVAL;
801 			break;
802 		}
803 		break;
804 
805 	case IIO_CHAN_INFO_SAMP_FREQ:
806 		switch (chan->type) {
807 		case IIO_INTENSITY:
808 			ret = ltr501_als_read_samp_freq(data, &freq_val,
809 							&freq_val2);
810 			if (ret < 0)
811 				break;
812 
813 			ret = ltr501_als_write_samp_freq(data, val, val2);
814 			if (ret < 0)
815 				break;
816 
817 			/* update persistence count when changing frequency */
818 			ret = ltr501_write_intr_prst(data, chan->type,
819 						     0, data->als_period);
820 
821 			if (ret < 0)
822 				ret = ltr501_als_write_samp_freq(data, freq_val,
823 								 freq_val2);
824 			break;
825 		case IIO_PROXIMITY:
826 			ret = ltr501_ps_read_samp_freq(data, &freq_val,
827 						       &freq_val2);
828 			if (ret < 0)
829 				break;
830 
831 			ret = ltr501_ps_write_samp_freq(data, val, val2);
832 			if (ret < 0)
833 				break;
834 
835 			/* update persistence count when changing frequency */
836 			ret = ltr501_write_intr_prst(data, chan->type,
837 						     0, data->ps_period);
838 
839 			if (ret < 0)
840 				ret = ltr501_ps_write_samp_freq(data, freq_val,
841 								freq_val2);
842 			break;
843 		default:
844 			ret = -EINVAL;
845 			break;
846 		}
847 		break;
848 
849 	default:
850 		ret = -EINVAL;
851 		break;
852 	}
853 
854 	iio_device_release_direct_mode(indio_dev);
855 	return ret;
856 }
857 
858 static int ltr501_read_thresh(const struct iio_dev *indio_dev,
859 			      const struct iio_chan_spec *chan,
860 			      enum iio_event_type type,
861 			      enum iio_event_direction dir,
862 			      enum iio_event_info info,
863 			      int *val, int *val2)
864 {
865 	const struct ltr501_data *data = iio_priv(indio_dev);
866 	int ret, thresh_data;
867 
868 	switch (chan->type) {
869 	case IIO_INTENSITY:
870 		switch (dir) {
871 		case IIO_EV_DIR_RISING:
872 			ret = regmap_bulk_read(data->regmap,
873 					       LTR501_ALS_THRESH_UP,
874 					       &thresh_data, 2);
875 			if (ret < 0)
876 				return ret;
877 			*val = thresh_data & LTR501_ALS_THRESH_MASK;
878 			return IIO_VAL_INT;
879 		case IIO_EV_DIR_FALLING:
880 			ret = regmap_bulk_read(data->regmap,
881 					       LTR501_ALS_THRESH_LOW,
882 					       &thresh_data, 2);
883 			if (ret < 0)
884 				return ret;
885 			*val = thresh_data & LTR501_ALS_THRESH_MASK;
886 			return IIO_VAL_INT;
887 		default:
888 			return -EINVAL;
889 		}
890 	case IIO_PROXIMITY:
891 		switch (dir) {
892 		case IIO_EV_DIR_RISING:
893 			ret = regmap_bulk_read(data->regmap,
894 					       LTR501_PS_THRESH_UP,
895 					       &thresh_data, 2);
896 			if (ret < 0)
897 				return ret;
898 			*val = thresh_data & LTR501_PS_THRESH_MASK;
899 			return IIO_VAL_INT;
900 		case IIO_EV_DIR_FALLING:
901 			ret = regmap_bulk_read(data->regmap,
902 					       LTR501_PS_THRESH_LOW,
903 					       &thresh_data, 2);
904 			if (ret < 0)
905 				return ret;
906 			*val = thresh_data & LTR501_PS_THRESH_MASK;
907 			return IIO_VAL_INT;
908 		default:
909 			return -EINVAL;
910 		}
911 	default:
912 		return -EINVAL;
913 	}
914 
915 	return -EINVAL;
916 }
917 
918 static int ltr501_write_thresh(struct iio_dev *indio_dev,
919 			       const struct iio_chan_spec *chan,
920 			       enum iio_event_type type,
921 			       enum iio_event_direction dir,
922 			       enum iio_event_info info,
923 			       int val, int val2)
924 {
925 	struct ltr501_data *data = iio_priv(indio_dev);
926 	int ret;
927 
928 	if (val < 0)
929 		return -EINVAL;
930 
931 	switch (chan->type) {
932 	case IIO_INTENSITY:
933 		if (val > LTR501_ALS_THRESH_MASK)
934 			return -EINVAL;
935 		switch (dir) {
936 		case IIO_EV_DIR_RISING:
937 			mutex_lock(&data->lock_als);
938 			ret = regmap_bulk_write(data->regmap,
939 						LTR501_ALS_THRESH_UP,
940 						&val, 2);
941 			mutex_unlock(&data->lock_als);
942 			return ret;
943 		case IIO_EV_DIR_FALLING:
944 			mutex_lock(&data->lock_als);
945 			ret = regmap_bulk_write(data->regmap,
946 						LTR501_ALS_THRESH_LOW,
947 						&val, 2);
948 			mutex_unlock(&data->lock_als);
949 			return ret;
950 		default:
951 			return -EINVAL;
952 		}
953 	case IIO_PROXIMITY:
954 		if (val > LTR501_PS_THRESH_MASK)
955 			return -EINVAL;
956 		switch (dir) {
957 		case IIO_EV_DIR_RISING:
958 			mutex_lock(&data->lock_ps);
959 			ret = regmap_bulk_write(data->regmap,
960 						LTR501_PS_THRESH_UP,
961 						&val, 2);
962 			mutex_unlock(&data->lock_ps);
963 			return ret;
964 		case IIO_EV_DIR_FALLING:
965 			mutex_lock(&data->lock_ps);
966 			ret = regmap_bulk_write(data->regmap,
967 						LTR501_PS_THRESH_LOW,
968 						&val, 2);
969 			mutex_unlock(&data->lock_ps);
970 			return ret;
971 		default:
972 			return -EINVAL;
973 		}
974 	default:
975 		return -EINVAL;
976 	}
977 
978 	return -EINVAL;
979 }
980 
981 static int ltr501_read_event(struct iio_dev *indio_dev,
982 			     const struct iio_chan_spec *chan,
983 			     enum iio_event_type type,
984 			     enum iio_event_direction dir,
985 			     enum iio_event_info info,
986 			     int *val, int *val2)
987 {
988 	int ret;
989 
990 	switch (info) {
991 	case IIO_EV_INFO_VALUE:
992 		return ltr501_read_thresh(indio_dev, chan, type, dir,
993 					  info, val, val2);
994 	case IIO_EV_INFO_PERIOD:
995 		ret = ltr501_read_intr_prst(iio_priv(indio_dev),
996 					    chan->type, val2);
997 		*val = *val2 / 1000000;
998 		*val2 = *val2 % 1000000;
999 		return ret;
1000 	default:
1001 		return -EINVAL;
1002 	}
1003 
1004 	return -EINVAL;
1005 }
1006 
1007 static int ltr501_write_event(struct iio_dev *indio_dev,
1008 			      const struct iio_chan_spec *chan,
1009 			      enum iio_event_type type,
1010 			      enum iio_event_direction dir,
1011 			      enum iio_event_info info,
1012 			      int val, int val2)
1013 {
1014 	switch (info) {
1015 	case IIO_EV_INFO_VALUE:
1016 		if (val2 != 0)
1017 			return -EINVAL;
1018 		return ltr501_write_thresh(indio_dev, chan, type, dir,
1019 					   info, val, val2);
1020 	case IIO_EV_INFO_PERIOD:
1021 		return ltr501_write_intr_prst(iio_priv(indio_dev), chan->type,
1022 					      val, val2);
1023 	default:
1024 		return -EINVAL;
1025 	}
1026 
1027 	return -EINVAL;
1028 }
1029 
1030 static int ltr501_read_event_config(struct iio_dev *indio_dev,
1031 				    const struct iio_chan_spec *chan,
1032 				    enum iio_event_type type,
1033 				    enum iio_event_direction dir)
1034 {
1035 	struct ltr501_data *data = iio_priv(indio_dev);
1036 	int ret, status;
1037 
1038 	switch (chan->type) {
1039 	case IIO_INTENSITY:
1040 		ret = regmap_field_read(data->reg_als_intr, &status);
1041 		if (ret < 0)
1042 			return ret;
1043 		return status;
1044 	case IIO_PROXIMITY:
1045 		ret = regmap_field_read(data->reg_ps_intr, &status);
1046 		if (ret < 0)
1047 			return ret;
1048 		return status;
1049 	default:
1050 		return -EINVAL;
1051 	}
1052 
1053 	return -EINVAL;
1054 }
1055 
1056 static int ltr501_write_event_config(struct iio_dev *indio_dev,
1057 				     const struct iio_chan_spec *chan,
1058 				     enum iio_event_type type,
1059 				     enum iio_event_direction dir, int state)
1060 {
1061 	struct ltr501_data *data = iio_priv(indio_dev);
1062 	int ret;
1063 
1064 	/* only 1 and 0 are valid inputs */
1065 	if (state != 1  && state != 0)
1066 		return -EINVAL;
1067 
1068 	switch (chan->type) {
1069 	case IIO_INTENSITY:
1070 		mutex_lock(&data->lock_als);
1071 		ret = regmap_field_write(data->reg_als_intr, state);
1072 		mutex_unlock(&data->lock_als);
1073 		return ret;
1074 	case IIO_PROXIMITY:
1075 		mutex_lock(&data->lock_ps);
1076 		ret = regmap_field_write(data->reg_ps_intr, state);
1077 		mutex_unlock(&data->lock_ps);
1078 		return ret;
1079 	default:
1080 		return -EINVAL;
1081 	}
1082 
1083 	return -EINVAL;
1084 }
1085 
1086 static ssize_t ltr501_show_proximity_scale_avail(struct device *dev,
1087 						 struct device_attribute *attr,
1088 						 char *buf)
1089 {
1090 	struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1091 	const struct ltr501_chip_info *info = data->chip_info;
1092 	ssize_t len = 0;
1093 	int i;
1094 
1095 	for (i = 0; i < info->ps_gain_tbl_size; i++) {
1096 		if (info->ps_gain[i].scale == LTR501_RESERVED_GAIN)
1097 			continue;
1098 		len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1099 				 info->ps_gain[i].scale,
1100 				 info->ps_gain[i].uscale);
1101 	}
1102 
1103 	buf[len - 1] = '\n';
1104 
1105 	return len;
1106 }
1107 
1108 static ssize_t ltr501_show_intensity_scale_avail(struct device *dev,
1109 						 struct device_attribute *attr,
1110 						 char *buf)
1111 {
1112 	struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1113 	const struct ltr501_chip_info *info = data->chip_info;
1114 	ssize_t len = 0;
1115 	int i;
1116 
1117 	for (i = 0; i < info->als_gain_tbl_size; i++) {
1118 		if (info->als_gain[i].scale == LTR501_RESERVED_GAIN)
1119 			continue;
1120 		len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1121 				 info->als_gain[i].scale,
1122 				 info->als_gain[i].uscale);
1123 	}
1124 
1125 	buf[len - 1] = '\n';
1126 
1127 	return len;
1128 }
1129 
1130 static IIO_CONST_ATTR_INT_TIME_AVAIL("0.05 0.1 0.2 0.4");
1131 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("20 10 5 2 1 0.5");
1132 
1133 static IIO_DEVICE_ATTR(in_proximity_scale_available, S_IRUGO,
1134 		       ltr501_show_proximity_scale_avail, NULL, 0);
1135 static IIO_DEVICE_ATTR(in_intensity_scale_available, S_IRUGO,
1136 		       ltr501_show_intensity_scale_avail, NULL, 0);
1137 
1138 static struct attribute *ltr501_attributes[] = {
1139 	&iio_dev_attr_in_proximity_scale_available.dev_attr.attr,
1140 	&iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1141 	&iio_const_attr_integration_time_available.dev_attr.attr,
1142 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
1143 	NULL
1144 };
1145 
1146 static struct attribute *ltr301_attributes[] = {
1147 	&iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1148 	&iio_const_attr_integration_time_available.dev_attr.attr,
1149 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
1150 	NULL
1151 };
1152 
1153 static const struct attribute_group ltr501_attribute_group = {
1154 	.attrs = ltr501_attributes,
1155 };
1156 
1157 static const struct attribute_group ltr301_attribute_group = {
1158 	.attrs = ltr301_attributes,
1159 };
1160 
1161 static const struct iio_info ltr501_info_no_irq = {
1162 	.read_raw = ltr501_read_raw,
1163 	.write_raw = ltr501_write_raw,
1164 	.attrs = &ltr501_attribute_group,
1165 };
1166 
1167 static const struct iio_info ltr501_info = {
1168 	.read_raw = ltr501_read_raw,
1169 	.write_raw = ltr501_write_raw,
1170 	.attrs = &ltr501_attribute_group,
1171 	.read_event_value	= &ltr501_read_event,
1172 	.write_event_value	= &ltr501_write_event,
1173 	.read_event_config	= &ltr501_read_event_config,
1174 	.write_event_config	= &ltr501_write_event_config,
1175 };
1176 
1177 static const struct iio_info ltr301_info_no_irq = {
1178 	.read_raw = ltr501_read_raw,
1179 	.write_raw = ltr501_write_raw,
1180 	.attrs = &ltr301_attribute_group,
1181 };
1182 
1183 static const struct iio_info ltr301_info = {
1184 	.read_raw = ltr501_read_raw,
1185 	.write_raw = ltr501_write_raw,
1186 	.attrs = &ltr301_attribute_group,
1187 	.read_event_value	= &ltr501_read_event,
1188 	.write_event_value	= &ltr501_write_event,
1189 	.read_event_config	= &ltr501_read_event_config,
1190 	.write_event_config	= &ltr501_write_event_config,
1191 };
1192 
1193 static const struct ltr501_chip_info ltr501_chip_info_tbl[] = {
1194 	[ltr501] = {
1195 		.partid = 0x08,
1196 		.als_gain = ltr501_als_gain_tbl,
1197 		.als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1198 		.ps_gain = ltr501_ps_gain_tbl,
1199 		.ps_gain_tbl_size = ARRAY_SIZE(ltr501_ps_gain_tbl),
1200 		.als_mode_active = BIT(0) | BIT(1),
1201 		.als_gain_mask = BIT(3),
1202 		.als_gain_shift = 3,
1203 		.info = &ltr501_info,
1204 		.info_no_irq = &ltr501_info_no_irq,
1205 		.channels = ltr501_channels,
1206 		.no_channels = ARRAY_SIZE(ltr501_channels),
1207 	},
1208 	[ltr559] = {
1209 		.partid = 0x09,
1210 		.als_gain = ltr559_als_gain_tbl,
1211 		.als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl),
1212 		.ps_gain = ltr559_ps_gain_tbl,
1213 		.ps_gain_tbl_size = ARRAY_SIZE(ltr559_ps_gain_tbl),
1214 		.als_mode_active = BIT(0),
1215 		.als_gain_mask = BIT(2) | BIT(3) | BIT(4),
1216 		.als_gain_shift = 2,
1217 		.info = &ltr501_info,
1218 		.info_no_irq = &ltr501_info_no_irq,
1219 		.channels = ltr501_channels,
1220 		.no_channels = ARRAY_SIZE(ltr501_channels),
1221 	},
1222 	[ltr301] = {
1223 		.partid = 0x08,
1224 		.als_gain = ltr501_als_gain_tbl,
1225 		.als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1226 		.als_mode_active = BIT(0) | BIT(1),
1227 		.als_gain_mask = BIT(3),
1228 		.als_gain_shift = 3,
1229 		.info = &ltr301_info,
1230 		.info_no_irq = &ltr301_info_no_irq,
1231 		.channels = ltr301_channels,
1232 		.no_channels = ARRAY_SIZE(ltr301_channels),
1233 	},
1234 };
1235 
1236 static int ltr501_write_contr(struct ltr501_data *data, u8 als_val, u8 ps_val)
1237 {
1238 	int ret;
1239 
1240 	ret = regmap_write(data->regmap, LTR501_ALS_CONTR, als_val);
1241 	if (ret < 0)
1242 		return ret;
1243 
1244 	return regmap_write(data->regmap, LTR501_PS_CONTR, ps_val);
1245 }
1246 
1247 static irqreturn_t ltr501_trigger_handler(int irq, void *p)
1248 {
1249 	struct iio_poll_func *pf = p;
1250 	struct iio_dev *indio_dev = pf->indio_dev;
1251 	struct ltr501_data *data = iio_priv(indio_dev);
1252 	struct {
1253 		u16 channels[3];
1254 		s64 ts __aligned(8);
1255 	} scan;
1256 	__le16 als_buf[2];
1257 	u8 mask = 0;
1258 	int j = 0;
1259 	int ret, psdata;
1260 
1261 	memset(&scan, 0, sizeof(scan));
1262 
1263 	/* figure out which data needs to be ready */
1264 	if (test_bit(0, indio_dev->active_scan_mask) ||
1265 	    test_bit(1, indio_dev->active_scan_mask))
1266 		mask |= LTR501_STATUS_ALS_RDY;
1267 	if (test_bit(2, indio_dev->active_scan_mask))
1268 		mask |= LTR501_STATUS_PS_RDY;
1269 
1270 	ret = ltr501_drdy(data, mask);
1271 	if (ret < 0)
1272 		goto done;
1273 
1274 	if (mask & LTR501_STATUS_ALS_RDY) {
1275 		ret = regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
1276 				       als_buf, sizeof(als_buf));
1277 		if (ret < 0)
1278 			return ret;
1279 		if (test_bit(0, indio_dev->active_scan_mask))
1280 			scan.channels[j++] = le16_to_cpu(als_buf[1]);
1281 		if (test_bit(1, indio_dev->active_scan_mask))
1282 			scan.channels[j++] = le16_to_cpu(als_buf[0]);
1283 	}
1284 
1285 	if (mask & LTR501_STATUS_PS_RDY) {
1286 		ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
1287 				       &psdata, 2);
1288 		if (ret < 0)
1289 			goto done;
1290 		scan.channels[j++] = psdata & LTR501_PS_DATA_MASK;
1291 	}
1292 
1293 	iio_push_to_buffers_with_timestamp(indio_dev, &scan,
1294 					   iio_get_time_ns(indio_dev));
1295 
1296 done:
1297 	iio_trigger_notify_done(indio_dev->trig);
1298 
1299 	return IRQ_HANDLED;
1300 }
1301 
1302 static irqreturn_t ltr501_interrupt_handler(int irq, void *private)
1303 {
1304 	struct iio_dev *indio_dev = private;
1305 	struct ltr501_data *data = iio_priv(indio_dev);
1306 	int ret, status;
1307 
1308 	ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
1309 	if (ret < 0) {
1310 		dev_err(&data->client->dev,
1311 			"irq read int reg failed\n");
1312 		return IRQ_HANDLED;
1313 	}
1314 
1315 	if (status & LTR501_STATUS_ALS_INTR)
1316 		iio_push_event(indio_dev,
1317 			       IIO_UNMOD_EVENT_CODE(IIO_INTENSITY, 0,
1318 						    IIO_EV_TYPE_THRESH,
1319 						    IIO_EV_DIR_EITHER),
1320 			       iio_get_time_ns(indio_dev));
1321 
1322 	if (status & LTR501_STATUS_PS_INTR)
1323 		iio_push_event(indio_dev,
1324 			       IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
1325 						    IIO_EV_TYPE_THRESH,
1326 						    IIO_EV_DIR_EITHER),
1327 			       iio_get_time_ns(indio_dev));
1328 
1329 	return IRQ_HANDLED;
1330 }
1331 
1332 static int ltr501_init(struct ltr501_data *data)
1333 {
1334 	int ret, status;
1335 
1336 	ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
1337 	if (ret < 0)
1338 		return ret;
1339 
1340 	data->als_contr = status | data->chip_info->als_mode_active;
1341 
1342 	ret = regmap_read(data->regmap, LTR501_PS_CONTR, &status);
1343 	if (ret < 0)
1344 		return ret;
1345 
1346 	data->ps_contr = status | LTR501_CONTR_ACTIVE;
1347 
1348 	ret = ltr501_read_intr_prst(data, IIO_INTENSITY, &data->als_period);
1349 	if (ret < 0)
1350 		return ret;
1351 
1352 	ret = ltr501_read_intr_prst(data, IIO_PROXIMITY, &data->ps_period);
1353 	if (ret < 0)
1354 		return ret;
1355 
1356 	return ltr501_write_contr(data, data->als_contr, data->ps_contr);
1357 }
1358 
1359 static bool ltr501_is_volatile_reg(struct device *dev, unsigned int reg)
1360 {
1361 	switch (reg) {
1362 	case LTR501_ALS_DATA1:
1363 	case LTR501_ALS_DATA1_UPPER:
1364 	case LTR501_ALS_DATA0:
1365 	case LTR501_ALS_DATA0_UPPER:
1366 	case LTR501_ALS_PS_STATUS:
1367 	case LTR501_PS_DATA:
1368 	case LTR501_PS_DATA_UPPER:
1369 		return true;
1370 	default:
1371 		return false;
1372 	}
1373 }
1374 
1375 static const struct regmap_config ltr501_regmap_config = {
1376 	.name =  LTR501_REGMAP_NAME,
1377 	.reg_bits = 8,
1378 	.val_bits = 8,
1379 	.max_register = LTR501_MAX_REG,
1380 	.cache_type = REGCACHE_RBTREE,
1381 	.volatile_reg = ltr501_is_volatile_reg,
1382 };
1383 
1384 static void ltr501_disable_regulators(void *d)
1385 {
1386 	struct ltr501_data *data = d;
1387 
1388 	regulator_bulk_disable(ARRAY_SIZE(data->regulators), data->regulators);
1389 }
1390 
1391 static int ltr501_powerdown(struct ltr501_data *data)
1392 {
1393 	return ltr501_write_contr(data, data->als_contr &
1394 				  ~data->chip_info->als_mode_active,
1395 				  data->ps_contr & ~LTR501_CONTR_ACTIVE);
1396 }
1397 
1398 static const char *ltr501_match_acpi_device(struct device *dev, int *chip_idx)
1399 {
1400 	const struct acpi_device_id *id;
1401 
1402 	id = acpi_match_device(dev->driver->acpi_match_table, dev);
1403 	if (!id)
1404 		return NULL;
1405 	*chip_idx = id->driver_data;
1406 	return dev_name(dev);
1407 }
1408 
1409 static int ltr501_probe(struct i2c_client *client,
1410 			const struct i2c_device_id *id)
1411 {
1412 	struct ltr501_data *data;
1413 	struct iio_dev *indio_dev;
1414 	struct regmap *regmap;
1415 	int ret, partid, chip_idx = 0;
1416 	const char *name = NULL;
1417 
1418 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
1419 	if (!indio_dev)
1420 		return -ENOMEM;
1421 
1422 	regmap = devm_regmap_init_i2c(client, &ltr501_regmap_config);
1423 	if (IS_ERR(regmap)) {
1424 		dev_err(&client->dev, "Regmap initialization failed.\n");
1425 		return PTR_ERR(regmap);
1426 	}
1427 
1428 	data = iio_priv(indio_dev);
1429 	i2c_set_clientdata(client, indio_dev);
1430 	data->client = client;
1431 	data->regmap = regmap;
1432 	mutex_init(&data->lock_als);
1433 	mutex_init(&data->lock_ps);
1434 
1435 	data->regulators[0].supply = "vdd";
1436 	data->regulators[1].supply = "vddio";
1437 	ret = devm_regulator_bulk_get(&client->dev,
1438 				      ARRAY_SIZE(data->regulators),
1439 				      data->regulators);
1440 	if (ret)
1441 		return dev_err_probe(&client->dev, ret,
1442 				     "Failed to get regulators\n");
1443 
1444 	ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
1445 				    data->regulators);
1446 	if (ret)
1447 		return ret;
1448 
1449 	ret = devm_add_action_or_reset(&client->dev,
1450 				       ltr501_disable_regulators, data);
1451 	if (ret)
1452 		return ret;
1453 
1454 	data->reg_it = devm_regmap_field_alloc(&client->dev, regmap,
1455 					       reg_field_it);
1456 	if (IS_ERR(data->reg_it)) {
1457 		dev_err(&client->dev, "Integ time reg field init failed.\n");
1458 		return PTR_ERR(data->reg_it);
1459 	}
1460 
1461 	data->reg_als_intr = devm_regmap_field_alloc(&client->dev, regmap,
1462 						     reg_field_als_intr);
1463 	if (IS_ERR(data->reg_als_intr)) {
1464 		dev_err(&client->dev, "ALS intr mode reg field init failed\n");
1465 		return PTR_ERR(data->reg_als_intr);
1466 	}
1467 
1468 	data->reg_ps_intr = devm_regmap_field_alloc(&client->dev, regmap,
1469 						    reg_field_ps_intr);
1470 	if (IS_ERR(data->reg_ps_intr)) {
1471 		dev_err(&client->dev, "PS intr mode reg field init failed.\n");
1472 		return PTR_ERR(data->reg_ps_intr);
1473 	}
1474 
1475 	data->reg_als_rate = devm_regmap_field_alloc(&client->dev, regmap,
1476 						     reg_field_als_rate);
1477 	if (IS_ERR(data->reg_als_rate)) {
1478 		dev_err(&client->dev, "ALS samp rate field init failed.\n");
1479 		return PTR_ERR(data->reg_als_rate);
1480 	}
1481 
1482 	data->reg_ps_rate = devm_regmap_field_alloc(&client->dev, regmap,
1483 						    reg_field_ps_rate);
1484 	if (IS_ERR(data->reg_ps_rate)) {
1485 		dev_err(&client->dev, "PS samp rate field init failed.\n");
1486 		return PTR_ERR(data->reg_ps_rate);
1487 	}
1488 
1489 	data->reg_als_prst = devm_regmap_field_alloc(&client->dev, regmap,
1490 						     reg_field_als_prst);
1491 	if (IS_ERR(data->reg_als_prst)) {
1492 		dev_err(&client->dev, "ALS prst reg field init failed\n");
1493 		return PTR_ERR(data->reg_als_prst);
1494 	}
1495 
1496 	data->reg_ps_prst = devm_regmap_field_alloc(&client->dev, regmap,
1497 						    reg_field_ps_prst);
1498 	if (IS_ERR(data->reg_ps_prst)) {
1499 		dev_err(&client->dev, "PS prst reg field init failed.\n");
1500 		return PTR_ERR(data->reg_ps_prst);
1501 	}
1502 
1503 	ret = regmap_read(data->regmap, LTR501_PART_ID, &partid);
1504 	if (ret < 0)
1505 		return ret;
1506 
1507 	if (id) {
1508 		name = id->name;
1509 		chip_idx = id->driver_data;
1510 	} else  if (ACPI_HANDLE(&client->dev)) {
1511 		name = ltr501_match_acpi_device(&client->dev, &chip_idx);
1512 	} else {
1513 		return -ENODEV;
1514 	}
1515 
1516 	data->chip_info = &ltr501_chip_info_tbl[chip_idx];
1517 
1518 	if ((partid >> 4) != data->chip_info->partid)
1519 		return -ENODEV;
1520 
1521 	indio_dev->info = data->chip_info->info;
1522 	indio_dev->channels = data->chip_info->channels;
1523 	indio_dev->num_channels = data->chip_info->no_channels;
1524 	indio_dev->name = name;
1525 	indio_dev->modes = INDIO_DIRECT_MODE;
1526 
1527 	ret = ltr501_init(data);
1528 	if (ret < 0)
1529 		return ret;
1530 
1531 	if (client->irq > 0) {
1532 		ret = devm_request_threaded_irq(&client->dev, client->irq,
1533 						NULL, ltr501_interrupt_handler,
1534 						IRQF_TRIGGER_FALLING |
1535 						IRQF_ONESHOT,
1536 						"ltr501_thresh_event",
1537 						indio_dev);
1538 		if (ret) {
1539 			dev_err(&client->dev, "request irq (%d) failed\n",
1540 				client->irq);
1541 			return ret;
1542 		}
1543 	} else {
1544 		indio_dev->info = data->chip_info->info_no_irq;
1545 	}
1546 
1547 	ret = iio_triggered_buffer_setup(indio_dev, NULL,
1548 					 ltr501_trigger_handler, NULL);
1549 	if (ret)
1550 		goto powerdown_on_error;
1551 
1552 	ret = iio_device_register(indio_dev);
1553 	if (ret)
1554 		goto error_unreg_buffer;
1555 
1556 	return 0;
1557 
1558 error_unreg_buffer:
1559 	iio_triggered_buffer_cleanup(indio_dev);
1560 powerdown_on_error:
1561 	ltr501_powerdown(data);
1562 	return ret;
1563 }
1564 
1565 static int ltr501_remove(struct i2c_client *client)
1566 {
1567 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
1568 
1569 	iio_device_unregister(indio_dev);
1570 	iio_triggered_buffer_cleanup(indio_dev);
1571 	ltr501_powerdown(iio_priv(indio_dev));
1572 
1573 	return 0;
1574 }
1575 
1576 #ifdef CONFIG_PM_SLEEP
1577 static int ltr501_suspend(struct device *dev)
1578 {
1579 	struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1580 					    to_i2c_client(dev)));
1581 	return ltr501_powerdown(data);
1582 }
1583 
1584 static int ltr501_resume(struct device *dev)
1585 {
1586 	struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1587 					    to_i2c_client(dev)));
1588 
1589 	return ltr501_write_contr(data, data->als_contr,
1590 		data->ps_contr);
1591 }
1592 #endif
1593 
1594 static SIMPLE_DEV_PM_OPS(ltr501_pm_ops, ltr501_suspend, ltr501_resume);
1595 
1596 static const struct acpi_device_id ltr_acpi_match[] = {
1597 	{"LTER0501", ltr501},
1598 	{"LTER0559", ltr559},
1599 	{"LTER0301", ltr301},
1600 	{ },
1601 };
1602 MODULE_DEVICE_TABLE(acpi, ltr_acpi_match);
1603 
1604 static const struct i2c_device_id ltr501_id[] = {
1605 	{ "ltr501", ltr501},
1606 	{ "ltr559", ltr559},
1607 	{ "ltr301", ltr301},
1608 	{ }
1609 };
1610 MODULE_DEVICE_TABLE(i2c, ltr501_id);
1611 
1612 static const struct of_device_id ltr501_of_match[] = {
1613 	{ .compatible = "liteon,ltr501", },
1614 	{ .compatible = "liteon,ltr559", },
1615 	{ .compatible = "liteon,ltr301", },
1616 	{}
1617 };
1618 MODULE_DEVICE_TABLE(of, ltr501_of_match);
1619 
1620 static struct i2c_driver ltr501_driver = {
1621 	.driver = {
1622 		.name   = LTR501_DRV_NAME,
1623 		.of_match_table = ltr501_of_match,
1624 		.pm	= &ltr501_pm_ops,
1625 		.acpi_match_table = ACPI_PTR(ltr_acpi_match),
1626 	},
1627 	.probe  = ltr501_probe,
1628 	.remove	= ltr501_remove,
1629 	.id_table = ltr501_id,
1630 };
1631 
1632 module_i2c_driver(ltr501_driver);
1633 
1634 MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>");
1635 MODULE_DESCRIPTION("Lite-On LTR501 ambient light and proximity sensor driver");
1636 MODULE_LICENSE("GPL");
1637