xref: /openbmc/linux/drivers/iio/light/ltr501.c (revision 92b19ff5)
1 /*
2  * ltr501.c - Support for Lite-On LTR501 ambient light and proximity sensor
3  *
4  * Copyright 2014 Peter Meerwald <pmeerw@pmeerw.net>
5  *
6  * This file is subject to the terms and conditions of version 2 of
7  * the GNU General Public License.  See the file COPYING in the main
8  * directory of this archive for more details.
9  *
10  * 7-bit I2C slave address 0x23
11  *
12  * TODO: IR LED characteristics
13  */
14 
15 #include <linux/module.h>
16 #include <linux/i2c.h>
17 #include <linux/err.h>
18 #include <linux/delay.h>
19 #include <linux/regmap.h>
20 #include <linux/acpi.h>
21 
22 #include <linux/iio/iio.h>
23 #include <linux/iio/events.h>
24 #include <linux/iio/sysfs.h>
25 #include <linux/iio/trigger_consumer.h>
26 #include <linux/iio/buffer.h>
27 #include <linux/iio/triggered_buffer.h>
28 
29 #define LTR501_DRV_NAME "ltr501"
30 
31 #define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */
32 #define LTR501_PS_CONTR 0x81 /* PS operation mode */
33 #define LTR501_PS_MEAS_RATE 0x84 /* measurement rate*/
34 #define LTR501_ALS_MEAS_RATE 0x85 /* ALS integ time, measurement rate*/
35 #define LTR501_PART_ID 0x86
36 #define LTR501_MANUFAC_ID 0x87
37 #define LTR501_ALS_DATA1 0x88 /* 16-bit, little endian */
38 #define LTR501_ALS_DATA0 0x8a /* 16-bit, little endian */
39 #define LTR501_ALS_PS_STATUS 0x8c
40 #define LTR501_PS_DATA 0x8d /* 16-bit, little endian */
41 #define LTR501_INTR 0x8f /* output mode, polarity, mode */
42 #define LTR501_PS_THRESH_UP 0x90 /* 11 bit, ps upper threshold */
43 #define LTR501_PS_THRESH_LOW 0x92 /* 11 bit, ps lower threshold */
44 #define LTR501_ALS_THRESH_UP 0x97 /* 16 bit, ALS upper threshold */
45 #define LTR501_ALS_THRESH_LOW 0x99 /* 16 bit, ALS lower threshold */
46 #define LTR501_INTR_PRST 0x9e /* ps thresh, als thresh */
47 #define LTR501_MAX_REG 0x9f
48 
49 #define LTR501_ALS_CONTR_SW_RESET BIT(2)
50 #define LTR501_CONTR_PS_GAIN_MASK (BIT(3) | BIT(2))
51 #define LTR501_CONTR_PS_GAIN_SHIFT 2
52 #define LTR501_CONTR_ALS_GAIN_MASK BIT(3)
53 #define LTR501_CONTR_ACTIVE BIT(1)
54 
55 #define LTR501_STATUS_ALS_INTR BIT(3)
56 #define LTR501_STATUS_ALS_RDY BIT(2)
57 #define LTR501_STATUS_PS_INTR BIT(1)
58 #define LTR501_STATUS_PS_RDY BIT(0)
59 
60 #define LTR501_PS_DATA_MASK 0x7ff
61 #define LTR501_PS_THRESH_MASK 0x7ff
62 #define LTR501_ALS_THRESH_MASK 0xffff
63 
64 #define LTR501_ALS_DEF_PERIOD 500000
65 #define LTR501_PS_DEF_PERIOD 100000
66 
67 #define LTR501_REGMAP_NAME "ltr501_regmap"
68 
69 #define LTR501_LUX_CONV(vis_coeff, vis_data, ir_coeff, ir_data) \
70 			((vis_coeff * vis_data) - (ir_coeff * ir_data))
71 
72 static const int int_time_mapping[] = {100000, 50000, 200000, 400000};
73 
74 static const struct reg_field reg_field_it =
75 				REG_FIELD(LTR501_ALS_MEAS_RATE, 3, 4);
76 static const struct reg_field reg_field_als_intr =
77 				REG_FIELD(LTR501_INTR, 0, 0);
78 static const struct reg_field reg_field_ps_intr =
79 				REG_FIELD(LTR501_INTR, 1, 1);
80 static const struct reg_field reg_field_als_rate =
81 				REG_FIELD(LTR501_ALS_MEAS_RATE, 0, 2);
82 static const struct reg_field reg_field_ps_rate =
83 				REG_FIELD(LTR501_PS_MEAS_RATE, 0, 3);
84 static const struct reg_field reg_field_als_prst =
85 				REG_FIELD(LTR501_INTR_PRST, 0, 3);
86 static const struct reg_field reg_field_ps_prst =
87 				REG_FIELD(LTR501_INTR_PRST, 4, 7);
88 
89 struct ltr501_samp_table {
90 	int freq_val;  /* repetition frequency in micro HZ*/
91 	int time_val; /* repetition rate in micro seconds */
92 };
93 
94 #define LTR501_RESERVED_GAIN -1
95 
96 enum {
97 	ltr501 = 0,
98 	ltr559,
99 	ltr301,
100 };
101 
102 struct ltr501_gain {
103 	int scale;
104 	int uscale;
105 };
106 
107 static struct ltr501_gain ltr501_als_gain_tbl[] = {
108 	{1, 0},
109 	{0, 5000},
110 };
111 
112 static struct ltr501_gain ltr559_als_gain_tbl[] = {
113 	{1, 0},
114 	{0, 500000},
115 	{0, 250000},
116 	{0, 125000},
117 	{LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
118 	{LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
119 	{0, 20000},
120 	{0, 10000},
121 };
122 
123 static struct ltr501_gain ltr501_ps_gain_tbl[] = {
124 	{1, 0},
125 	{0, 250000},
126 	{0, 125000},
127 	{0, 62500},
128 };
129 
130 static struct ltr501_gain ltr559_ps_gain_tbl[] = {
131 	{0, 62500}, /* x16 gain */
132 	{0, 31250}, /* x32 gain */
133 	{0, 15625}, /* bits X1 are for x64 gain */
134 	{0, 15624},
135 };
136 
137 struct ltr501_chip_info {
138 	u8 partid;
139 	struct ltr501_gain *als_gain;
140 	int als_gain_tbl_size;
141 	struct ltr501_gain *ps_gain;
142 	int ps_gain_tbl_size;
143 	u8 als_mode_active;
144 	u8 als_gain_mask;
145 	u8 als_gain_shift;
146 	struct iio_chan_spec const *channels;
147 	const int no_channels;
148 	const struct iio_info *info;
149 	const struct iio_info *info_no_irq;
150 };
151 
152 struct ltr501_data {
153 	struct i2c_client *client;
154 	struct mutex lock_als, lock_ps;
155 	struct ltr501_chip_info *chip_info;
156 	u8 als_contr, ps_contr;
157 	int als_period, ps_period; /* period in micro seconds */
158 	struct regmap *regmap;
159 	struct regmap_field *reg_it;
160 	struct regmap_field *reg_als_intr;
161 	struct regmap_field *reg_ps_intr;
162 	struct regmap_field *reg_als_rate;
163 	struct regmap_field *reg_ps_rate;
164 	struct regmap_field *reg_als_prst;
165 	struct regmap_field *reg_ps_prst;
166 };
167 
168 static const struct ltr501_samp_table ltr501_als_samp_table[] = {
169 			{20000000, 50000}, {10000000, 100000},
170 			{5000000, 200000}, {2000000, 500000},
171 			{1000000, 1000000}, {500000, 2000000},
172 			{500000, 2000000}, {500000, 2000000}
173 };
174 
175 static const struct ltr501_samp_table ltr501_ps_samp_table[] = {
176 			{20000000, 50000}, {14285714, 70000},
177 			{10000000, 100000}, {5000000, 200000},
178 			{2000000, 500000}, {1000000, 1000000},
179 			{500000, 2000000}, {500000, 2000000},
180 			{500000, 2000000}
181 };
182 
183 static unsigned int ltr501_match_samp_freq(const struct ltr501_samp_table *tab,
184 					   int len, int val, int val2)
185 {
186 	int i, freq;
187 
188 	freq = val * 1000000 + val2;
189 
190 	for (i = 0; i < len; i++) {
191 		if (tab[i].freq_val == freq)
192 			return i;
193 	}
194 
195 	return -EINVAL;
196 }
197 
198 static int ltr501_als_read_samp_freq(struct ltr501_data *data,
199 				     int *val, int *val2)
200 {
201 	int ret, i;
202 
203 	ret = regmap_field_read(data->reg_als_rate, &i);
204 	if (ret < 0)
205 		return ret;
206 
207 	if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
208 		return -EINVAL;
209 
210 	*val = ltr501_als_samp_table[i].freq_val / 1000000;
211 	*val2 = ltr501_als_samp_table[i].freq_val % 1000000;
212 
213 	return IIO_VAL_INT_PLUS_MICRO;
214 }
215 
216 static int ltr501_ps_read_samp_freq(struct ltr501_data *data,
217 				    int *val, int *val2)
218 {
219 	int ret, i;
220 
221 	ret = regmap_field_read(data->reg_ps_rate, &i);
222 	if (ret < 0)
223 		return ret;
224 
225 	if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
226 		return -EINVAL;
227 
228 	*val = ltr501_ps_samp_table[i].freq_val / 1000000;
229 	*val2 = ltr501_ps_samp_table[i].freq_val % 1000000;
230 
231 	return IIO_VAL_INT_PLUS_MICRO;
232 }
233 
234 static int ltr501_als_write_samp_freq(struct ltr501_data *data,
235 				      int val, int val2)
236 {
237 	int i, ret;
238 
239 	i = ltr501_match_samp_freq(ltr501_als_samp_table,
240 				   ARRAY_SIZE(ltr501_als_samp_table),
241 				   val, val2);
242 
243 	if (i < 0)
244 		return i;
245 
246 	mutex_lock(&data->lock_als);
247 	ret = regmap_field_write(data->reg_als_rate, i);
248 	mutex_unlock(&data->lock_als);
249 
250 	return ret;
251 }
252 
253 static int ltr501_ps_write_samp_freq(struct ltr501_data *data,
254 				     int val, int val2)
255 {
256 	int i, ret;
257 
258 	i = ltr501_match_samp_freq(ltr501_ps_samp_table,
259 				   ARRAY_SIZE(ltr501_ps_samp_table),
260 				   val, val2);
261 
262 	if (i < 0)
263 		return i;
264 
265 	mutex_lock(&data->lock_ps);
266 	ret = regmap_field_write(data->reg_ps_rate, i);
267 	mutex_unlock(&data->lock_ps);
268 
269 	return ret;
270 }
271 
272 static int ltr501_als_read_samp_period(struct ltr501_data *data, int *val)
273 {
274 	int ret, i;
275 
276 	ret = regmap_field_read(data->reg_als_rate, &i);
277 	if (ret < 0)
278 		return ret;
279 
280 	if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
281 		return -EINVAL;
282 
283 	*val = ltr501_als_samp_table[i].time_val;
284 
285 	return IIO_VAL_INT;
286 }
287 
288 static int ltr501_ps_read_samp_period(struct ltr501_data *data, int *val)
289 {
290 	int ret, i;
291 
292 	ret = regmap_field_read(data->reg_ps_rate, &i);
293 	if (ret < 0)
294 		return ret;
295 
296 	if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
297 		return -EINVAL;
298 
299 	*val = ltr501_ps_samp_table[i].time_val;
300 
301 	return IIO_VAL_INT;
302 }
303 
304 /* IR and visible spectrum coeff's are given in data sheet */
305 static unsigned long ltr501_calculate_lux(u16 vis_data, u16 ir_data)
306 {
307 	unsigned long ratio, lux;
308 
309 	if (vis_data == 0)
310 		return 0;
311 
312 	/* multiply numerator by 100 to avoid handling ratio < 1 */
313 	ratio = DIV_ROUND_UP(ir_data * 100, ir_data + vis_data);
314 
315 	if (ratio < 45)
316 		lux = LTR501_LUX_CONV(1774, vis_data, -1105, ir_data);
317 	else if (ratio >= 45 && ratio < 64)
318 		lux = LTR501_LUX_CONV(3772, vis_data, 1336, ir_data);
319 	else if (ratio >= 64 && ratio < 85)
320 		lux = LTR501_LUX_CONV(1690, vis_data, 169, ir_data);
321 	else
322 		lux = 0;
323 
324 	return lux / 1000;
325 }
326 
327 static int ltr501_drdy(struct ltr501_data *data, u8 drdy_mask)
328 {
329 	int tries = 100;
330 	int ret, status;
331 
332 	while (tries--) {
333 		ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
334 		if (ret < 0)
335 			return ret;
336 		if ((status & drdy_mask) == drdy_mask)
337 			return 0;
338 		msleep(25);
339 	}
340 
341 	dev_err(&data->client->dev, "ltr501_drdy() failed, data not ready\n");
342 	return -EIO;
343 }
344 
345 static int ltr501_set_it_time(struct ltr501_data *data, int it)
346 {
347 	int ret, i, index = -1, status;
348 
349 	for (i = 0; i < ARRAY_SIZE(int_time_mapping); i++) {
350 		if (int_time_mapping[i] == it) {
351 			index = i;
352 			break;
353 		}
354 	}
355 	/* Make sure integ time index is valid */
356 	if (index < 0)
357 		return -EINVAL;
358 
359 	ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
360 	if (ret < 0)
361 		return ret;
362 
363 	if (status & LTR501_CONTR_ALS_GAIN_MASK) {
364 		/*
365 		 * 200 ms and 400 ms integ time can only be
366 		 * used in dynamic range 1
367 		 */
368 		if (index > 1)
369 			return -EINVAL;
370 	} else
371 		/* 50 ms integ time can only be used in dynamic range 2 */
372 		if (index == 1)
373 			return -EINVAL;
374 
375 	return regmap_field_write(data->reg_it, index);
376 }
377 
378 /* read int time in micro seconds */
379 static int ltr501_read_it_time(struct ltr501_data *data, int *val, int *val2)
380 {
381 	int ret, index;
382 
383 	ret = regmap_field_read(data->reg_it, &index);
384 	if (ret < 0)
385 		return ret;
386 
387 	/* Make sure integ time index is valid */
388 	if (index < 0 || index >= ARRAY_SIZE(int_time_mapping))
389 		return -EINVAL;
390 
391 	*val2 = int_time_mapping[index];
392 	*val = 0;
393 
394 	return IIO_VAL_INT_PLUS_MICRO;
395 }
396 
397 static int ltr501_read_als(struct ltr501_data *data, __le16 buf[2])
398 {
399 	int ret;
400 
401 	ret = ltr501_drdy(data, LTR501_STATUS_ALS_RDY);
402 	if (ret < 0)
403 		return ret;
404 	/* always read both ALS channels in given order */
405 	return regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
406 				buf, 2 * sizeof(__le16));
407 }
408 
409 static int ltr501_read_ps(struct ltr501_data *data)
410 {
411 	int ret, status;
412 
413 	ret = ltr501_drdy(data, LTR501_STATUS_PS_RDY);
414 	if (ret < 0)
415 		return ret;
416 
417 	ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
418 			       &status, 2);
419 	if (ret < 0)
420 		return ret;
421 
422 	return status;
423 }
424 
425 static int ltr501_read_intr_prst(struct ltr501_data *data,
426 				 enum iio_chan_type type,
427 				 int *val2)
428 {
429 	int ret, samp_period, prst;
430 
431 	switch (type) {
432 	case IIO_INTENSITY:
433 		ret = regmap_field_read(data->reg_als_prst, &prst);
434 		if (ret < 0)
435 			return ret;
436 
437 		ret = ltr501_als_read_samp_period(data, &samp_period);
438 
439 		if (ret < 0)
440 			return ret;
441 		*val2 = samp_period * prst;
442 		return IIO_VAL_INT_PLUS_MICRO;
443 	case IIO_PROXIMITY:
444 		ret = regmap_field_read(data->reg_ps_prst, &prst);
445 		if (ret < 0)
446 			return ret;
447 
448 		ret = ltr501_ps_read_samp_period(data, &samp_period);
449 
450 		if (ret < 0)
451 			return ret;
452 
453 		*val2 = samp_period * prst;
454 		return IIO_VAL_INT_PLUS_MICRO;
455 	default:
456 		return -EINVAL;
457 	}
458 
459 	return -EINVAL;
460 }
461 
462 static int ltr501_write_intr_prst(struct ltr501_data *data,
463 				  enum iio_chan_type type,
464 				  int val, int val2)
465 {
466 	int ret, samp_period, new_val;
467 	unsigned long period;
468 
469 	if (val < 0 || val2 < 0)
470 		return -EINVAL;
471 
472 	/* period in microseconds */
473 	period = ((val * 1000000) + val2);
474 
475 	switch (type) {
476 	case IIO_INTENSITY:
477 		ret = ltr501_als_read_samp_period(data, &samp_period);
478 		if (ret < 0)
479 			return ret;
480 
481 		/* period should be atleast equal to sampling period */
482 		if (period < samp_period)
483 			return -EINVAL;
484 
485 		new_val = DIV_ROUND_UP(period, samp_period);
486 		if (new_val < 0 || new_val > 0x0f)
487 			return -EINVAL;
488 
489 		mutex_lock(&data->lock_als);
490 		ret = regmap_field_write(data->reg_als_prst, new_val);
491 		mutex_unlock(&data->lock_als);
492 		if (ret >= 0)
493 			data->als_period = period;
494 
495 		return ret;
496 	case IIO_PROXIMITY:
497 		ret = ltr501_ps_read_samp_period(data, &samp_period);
498 		if (ret < 0)
499 			return ret;
500 
501 		/* period should be atleast equal to rate */
502 		if (period < samp_period)
503 			return -EINVAL;
504 
505 		new_val = DIV_ROUND_UP(period, samp_period);
506 		if (new_val < 0 || new_val > 0x0f)
507 			return -EINVAL;
508 
509 		mutex_lock(&data->lock_ps);
510 		ret = regmap_field_write(data->reg_ps_prst, new_val);
511 		mutex_unlock(&data->lock_ps);
512 		if (ret >= 0)
513 			data->ps_period = period;
514 
515 		return ret;
516 	default:
517 		return -EINVAL;
518 	}
519 
520 	return -EINVAL;
521 }
522 
523 static const struct iio_event_spec ltr501_als_event_spec[] = {
524 	{
525 		.type = IIO_EV_TYPE_THRESH,
526 		.dir = IIO_EV_DIR_RISING,
527 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
528 	}, {
529 		.type = IIO_EV_TYPE_THRESH,
530 		.dir = IIO_EV_DIR_FALLING,
531 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
532 	}, {
533 		.type = IIO_EV_TYPE_THRESH,
534 		.dir = IIO_EV_DIR_EITHER,
535 		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
536 				 BIT(IIO_EV_INFO_PERIOD),
537 	},
538 
539 };
540 
541 static const struct iio_event_spec ltr501_pxs_event_spec[] = {
542 	{
543 		.type = IIO_EV_TYPE_THRESH,
544 		.dir = IIO_EV_DIR_RISING,
545 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
546 	}, {
547 		.type = IIO_EV_TYPE_THRESH,
548 		.dir = IIO_EV_DIR_FALLING,
549 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
550 	}, {
551 		.type = IIO_EV_TYPE_THRESH,
552 		.dir = IIO_EV_DIR_EITHER,
553 		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
554 				 BIT(IIO_EV_INFO_PERIOD),
555 	},
556 };
557 
558 #define LTR501_INTENSITY_CHANNEL(_idx, _addr, _mod, _shared, \
559 				 _evspec, _evsize) { \
560 	.type = IIO_INTENSITY, \
561 	.modified = 1, \
562 	.address = (_addr), \
563 	.channel2 = (_mod), \
564 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
565 	.info_mask_shared_by_type = (_shared), \
566 	.scan_index = (_idx), \
567 	.scan_type = { \
568 		.sign = 'u', \
569 		.realbits = 16, \
570 		.storagebits = 16, \
571 		.endianness = IIO_CPU, \
572 	}, \
573 	.event_spec = _evspec,\
574 	.num_event_specs = _evsize,\
575 }
576 
577 #define LTR501_LIGHT_CHANNEL() { \
578 	.type = IIO_LIGHT, \
579 	.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
580 	.scan_index = -1, \
581 }
582 
583 static const struct iio_chan_spec ltr501_channels[] = {
584 	LTR501_LIGHT_CHANNEL(),
585 	LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
586 				 ltr501_als_event_spec,
587 				 ARRAY_SIZE(ltr501_als_event_spec)),
588 	LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
589 				 BIT(IIO_CHAN_INFO_SCALE) |
590 				 BIT(IIO_CHAN_INFO_INT_TIME) |
591 				 BIT(IIO_CHAN_INFO_SAMP_FREQ),
592 				 NULL, 0),
593 	{
594 		.type = IIO_PROXIMITY,
595 		.address = LTR501_PS_DATA,
596 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
597 			BIT(IIO_CHAN_INFO_SCALE),
598 		.scan_index = 2,
599 		.scan_type = {
600 			.sign = 'u',
601 			.realbits = 11,
602 			.storagebits = 16,
603 			.endianness = IIO_CPU,
604 		},
605 		.event_spec = ltr501_pxs_event_spec,
606 		.num_event_specs = ARRAY_SIZE(ltr501_pxs_event_spec),
607 	},
608 	IIO_CHAN_SOFT_TIMESTAMP(3),
609 };
610 
611 static const struct iio_chan_spec ltr301_channels[] = {
612 	LTR501_LIGHT_CHANNEL(),
613 	LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
614 				 ltr501_als_event_spec,
615 				 ARRAY_SIZE(ltr501_als_event_spec)),
616 	LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
617 				 BIT(IIO_CHAN_INFO_SCALE) |
618 				 BIT(IIO_CHAN_INFO_INT_TIME) |
619 				 BIT(IIO_CHAN_INFO_SAMP_FREQ),
620 				 NULL, 0),
621 	IIO_CHAN_SOFT_TIMESTAMP(2),
622 };
623 
624 static int ltr501_read_raw(struct iio_dev *indio_dev,
625 			   struct iio_chan_spec const *chan,
626 			   int *val, int *val2, long mask)
627 {
628 	struct ltr501_data *data = iio_priv(indio_dev);
629 	__le16 buf[2];
630 	int ret, i;
631 
632 	switch (mask) {
633 	case IIO_CHAN_INFO_PROCESSED:
634 		if (iio_buffer_enabled(indio_dev))
635 			return -EBUSY;
636 
637 		switch (chan->type) {
638 		case IIO_LIGHT:
639 			mutex_lock(&data->lock_als);
640 			ret = ltr501_read_als(data, buf);
641 			mutex_unlock(&data->lock_als);
642 			if (ret < 0)
643 				return ret;
644 			*val = ltr501_calculate_lux(le16_to_cpu(buf[1]),
645 						    le16_to_cpu(buf[0]));
646 			return IIO_VAL_INT;
647 		default:
648 			return -EINVAL;
649 		}
650 	case IIO_CHAN_INFO_RAW:
651 		if (iio_buffer_enabled(indio_dev))
652 			return -EBUSY;
653 
654 		switch (chan->type) {
655 		case IIO_INTENSITY:
656 			mutex_lock(&data->lock_als);
657 			ret = ltr501_read_als(data, buf);
658 			mutex_unlock(&data->lock_als);
659 			if (ret < 0)
660 				return ret;
661 			*val = le16_to_cpu(chan->address == LTR501_ALS_DATA1 ?
662 					   buf[0] : buf[1]);
663 			return IIO_VAL_INT;
664 		case IIO_PROXIMITY:
665 			mutex_lock(&data->lock_ps);
666 			ret = ltr501_read_ps(data);
667 			mutex_unlock(&data->lock_ps);
668 			if (ret < 0)
669 				return ret;
670 			*val = ret & LTR501_PS_DATA_MASK;
671 			return IIO_VAL_INT;
672 		default:
673 			return -EINVAL;
674 		}
675 	case IIO_CHAN_INFO_SCALE:
676 		switch (chan->type) {
677 		case IIO_INTENSITY:
678 			i = (data->als_contr & data->chip_info->als_gain_mask)
679 			     >> data->chip_info->als_gain_shift;
680 			*val = data->chip_info->als_gain[i].scale;
681 			*val2 = data->chip_info->als_gain[i].uscale;
682 			return IIO_VAL_INT_PLUS_MICRO;
683 		case IIO_PROXIMITY:
684 			i = (data->ps_contr & LTR501_CONTR_PS_GAIN_MASK) >>
685 				LTR501_CONTR_PS_GAIN_SHIFT;
686 			*val = data->chip_info->ps_gain[i].scale;
687 			*val2 = data->chip_info->ps_gain[i].uscale;
688 			return IIO_VAL_INT_PLUS_MICRO;
689 		default:
690 			return -EINVAL;
691 		}
692 	case IIO_CHAN_INFO_INT_TIME:
693 		switch (chan->type) {
694 		case IIO_INTENSITY:
695 			return ltr501_read_it_time(data, val, val2);
696 		default:
697 			return -EINVAL;
698 		}
699 	case IIO_CHAN_INFO_SAMP_FREQ:
700 		switch (chan->type) {
701 		case IIO_INTENSITY:
702 			return ltr501_als_read_samp_freq(data, val, val2);
703 		case IIO_PROXIMITY:
704 			return ltr501_ps_read_samp_freq(data, val, val2);
705 		default:
706 			return -EINVAL;
707 		}
708 	}
709 	return -EINVAL;
710 }
711 
712 static int ltr501_get_gain_index(struct ltr501_gain *gain, int size,
713 				 int val, int val2)
714 {
715 	int i;
716 
717 	for (i = 0; i < size; i++)
718 		if (val == gain[i].scale && val2 == gain[i].uscale)
719 			return i;
720 
721 	return -1;
722 }
723 
724 static int ltr501_write_raw(struct iio_dev *indio_dev,
725 			    struct iio_chan_spec const *chan,
726 			    int val, int val2, long mask)
727 {
728 	struct ltr501_data *data = iio_priv(indio_dev);
729 	int i, ret, freq_val, freq_val2;
730 	struct ltr501_chip_info *info = data->chip_info;
731 
732 	if (iio_buffer_enabled(indio_dev))
733 		return -EBUSY;
734 
735 	switch (mask) {
736 	case IIO_CHAN_INFO_SCALE:
737 		switch (chan->type) {
738 		case IIO_INTENSITY:
739 			i = ltr501_get_gain_index(info->als_gain,
740 						  info->als_gain_tbl_size,
741 						  val, val2);
742 			if (i < 0)
743 				return -EINVAL;
744 
745 			data->als_contr &= ~info->als_gain_mask;
746 			data->als_contr |= i << info->als_gain_shift;
747 
748 			return regmap_write(data->regmap, LTR501_ALS_CONTR,
749 					    data->als_contr);
750 		case IIO_PROXIMITY:
751 			i = ltr501_get_gain_index(info->ps_gain,
752 						  info->ps_gain_tbl_size,
753 						  val, val2);
754 			if (i < 0)
755 				return -EINVAL;
756 			data->ps_contr &= ~LTR501_CONTR_PS_GAIN_MASK;
757 			data->ps_contr |= i << LTR501_CONTR_PS_GAIN_SHIFT;
758 
759 			return regmap_write(data->regmap, LTR501_PS_CONTR,
760 					    data->ps_contr);
761 		default:
762 			return -EINVAL;
763 		}
764 	case IIO_CHAN_INFO_INT_TIME:
765 		switch (chan->type) {
766 		case IIO_INTENSITY:
767 			if (val != 0)
768 				return -EINVAL;
769 			mutex_lock(&data->lock_als);
770 			i = ltr501_set_it_time(data, val2);
771 			mutex_unlock(&data->lock_als);
772 			return i;
773 		default:
774 			return -EINVAL;
775 		}
776 	case IIO_CHAN_INFO_SAMP_FREQ:
777 		switch (chan->type) {
778 		case IIO_INTENSITY:
779 			ret = ltr501_als_read_samp_freq(data, &freq_val,
780 							&freq_val2);
781 			if (ret < 0)
782 				return ret;
783 
784 			ret = ltr501_als_write_samp_freq(data, val, val2);
785 			if (ret < 0)
786 				return ret;
787 
788 			/* update persistence count when changing frequency */
789 			ret = ltr501_write_intr_prst(data, chan->type,
790 						     0, data->als_period);
791 
792 			if (ret < 0)
793 				return ltr501_als_write_samp_freq(data,
794 								  freq_val,
795 								  freq_val2);
796 			return ret;
797 		case IIO_PROXIMITY:
798 			ret = ltr501_ps_read_samp_freq(data, &freq_val,
799 						       &freq_val2);
800 			if (ret < 0)
801 				return ret;
802 
803 			ret = ltr501_ps_write_samp_freq(data, val, val2);
804 			if (ret < 0)
805 				return ret;
806 
807 			/* update persistence count when changing frequency */
808 			ret = ltr501_write_intr_prst(data, chan->type,
809 						     0, data->ps_period);
810 
811 			if (ret < 0)
812 				return ltr501_ps_write_samp_freq(data,
813 								 freq_val,
814 								 freq_val2);
815 			return ret;
816 		default:
817 			return -EINVAL;
818 		}
819 	}
820 	return -EINVAL;
821 }
822 
823 static int ltr501_read_thresh(struct iio_dev *indio_dev,
824 			      const struct iio_chan_spec *chan,
825 			      enum iio_event_type type,
826 			      enum iio_event_direction dir,
827 			      enum iio_event_info info,
828 			      int *val, int *val2)
829 {
830 	struct ltr501_data *data = iio_priv(indio_dev);
831 	int ret, thresh_data;
832 
833 	switch (chan->type) {
834 	case IIO_INTENSITY:
835 		switch (dir) {
836 		case IIO_EV_DIR_RISING:
837 			ret = regmap_bulk_read(data->regmap,
838 					       LTR501_ALS_THRESH_UP,
839 					       &thresh_data, 2);
840 			if (ret < 0)
841 				return ret;
842 			*val = thresh_data & LTR501_ALS_THRESH_MASK;
843 			return IIO_VAL_INT;
844 		case IIO_EV_DIR_FALLING:
845 			ret = regmap_bulk_read(data->regmap,
846 					       LTR501_ALS_THRESH_LOW,
847 					       &thresh_data, 2);
848 			if (ret < 0)
849 				return ret;
850 			*val = thresh_data & LTR501_ALS_THRESH_MASK;
851 			return IIO_VAL_INT;
852 		default:
853 			return -EINVAL;
854 		}
855 	case IIO_PROXIMITY:
856 		switch (dir) {
857 		case IIO_EV_DIR_RISING:
858 			ret = regmap_bulk_read(data->regmap,
859 					       LTR501_PS_THRESH_UP,
860 					       &thresh_data, 2);
861 			if (ret < 0)
862 				return ret;
863 			*val = thresh_data & LTR501_PS_THRESH_MASK;
864 			return IIO_VAL_INT;
865 		case IIO_EV_DIR_FALLING:
866 			ret = regmap_bulk_read(data->regmap,
867 					       LTR501_PS_THRESH_LOW,
868 					       &thresh_data, 2);
869 			if (ret < 0)
870 				return ret;
871 			*val = thresh_data & LTR501_PS_THRESH_MASK;
872 			return IIO_VAL_INT;
873 		default:
874 			return -EINVAL;
875 		}
876 	default:
877 		return -EINVAL;
878 	}
879 
880 	return -EINVAL;
881 }
882 
883 static int ltr501_write_thresh(struct iio_dev *indio_dev,
884 			       const struct iio_chan_spec *chan,
885 			       enum iio_event_type type,
886 			       enum iio_event_direction dir,
887 			       enum iio_event_info info,
888 			       int val, int val2)
889 {
890 	struct ltr501_data *data = iio_priv(indio_dev);
891 	int ret;
892 
893 	if (val < 0)
894 		return -EINVAL;
895 
896 	switch (chan->type) {
897 	case IIO_INTENSITY:
898 		if (val > LTR501_ALS_THRESH_MASK)
899 			return -EINVAL;
900 		switch (dir) {
901 		case IIO_EV_DIR_RISING:
902 			mutex_lock(&data->lock_als);
903 			ret = regmap_bulk_write(data->regmap,
904 						LTR501_ALS_THRESH_UP,
905 						&val, 2);
906 			mutex_unlock(&data->lock_als);
907 			return ret;
908 		case IIO_EV_DIR_FALLING:
909 			mutex_lock(&data->lock_als);
910 			ret = regmap_bulk_write(data->regmap,
911 						LTR501_ALS_THRESH_LOW,
912 						&val, 2);
913 			mutex_unlock(&data->lock_als);
914 			return ret;
915 		default:
916 			return -EINVAL;
917 		}
918 	case IIO_PROXIMITY:
919 		if (val > LTR501_PS_THRESH_MASK)
920 			return -EINVAL;
921 		switch (dir) {
922 		case IIO_EV_DIR_RISING:
923 			mutex_lock(&data->lock_ps);
924 			ret = regmap_bulk_write(data->regmap,
925 						LTR501_PS_THRESH_UP,
926 						&val, 2);
927 			mutex_unlock(&data->lock_ps);
928 			return ret;
929 		case IIO_EV_DIR_FALLING:
930 			mutex_lock(&data->lock_ps);
931 			ret = regmap_bulk_write(data->regmap,
932 						LTR501_PS_THRESH_LOW,
933 						&val, 2);
934 			mutex_unlock(&data->lock_ps);
935 			return ret;
936 		default:
937 			return -EINVAL;
938 		}
939 	default:
940 		return -EINVAL;
941 	}
942 
943 	return -EINVAL;
944 }
945 
946 static int ltr501_read_event(struct iio_dev *indio_dev,
947 			     const struct iio_chan_spec *chan,
948 			     enum iio_event_type type,
949 			     enum iio_event_direction dir,
950 			     enum iio_event_info info,
951 			     int *val, int *val2)
952 {
953 	int ret;
954 
955 	switch (info) {
956 	case IIO_EV_INFO_VALUE:
957 		return ltr501_read_thresh(indio_dev, chan, type, dir,
958 					  info, val, val2);
959 	case IIO_EV_INFO_PERIOD:
960 		ret = ltr501_read_intr_prst(iio_priv(indio_dev),
961 					    chan->type, val2);
962 		*val = *val2 / 1000000;
963 		*val2 = *val2 % 1000000;
964 		return ret;
965 	default:
966 		return -EINVAL;
967 	}
968 
969 	return -EINVAL;
970 }
971 
972 static int ltr501_write_event(struct iio_dev *indio_dev,
973 			      const struct iio_chan_spec *chan,
974 			      enum iio_event_type type,
975 			      enum iio_event_direction dir,
976 			      enum iio_event_info info,
977 			      int val, int val2)
978 {
979 	switch (info) {
980 	case IIO_EV_INFO_VALUE:
981 		if (val2 != 0)
982 			return -EINVAL;
983 		return ltr501_write_thresh(indio_dev, chan, type, dir,
984 					   info, val, val2);
985 	case IIO_EV_INFO_PERIOD:
986 		return ltr501_write_intr_prst(iio_priv(indio_dev), chan->type,
987 					      val, val2);
988 	default:
989 		return -EINVAL;
990 	}
991 
992 	return -EINVAL;
993 }
994 
995 static int ltr501_read_event_config(struct iio_dev *indio_dev,
996 				    const struct iio_chan_spec *chan,
997 				    enum iio_event_type type,
998 				    enum iio_event_direction dir)
999 {
1000 	struct ltr501_data *data = iio_priv(indio_dev);
1001 	int ret, status;
1002 
1003 	switch (chan->type) {
1004 	case IIO_INTENSITY:
1005 		ret = regmap_field_read(data->reg_als_intr, &status);
1006 		if (ret < 0)
1007 			return ret;
1008 		return status;
1009 	case IIO_PROXIMITY:
1010 		ret = regmap_field_read(data->reg_ps_intr, &status);
1011 		if (ret < 0)
1012 			return ret;
1013 		return status;
1014 	default:
1015 		return -EINVAL;
1016 	}
1017 
1018 	return -EINVAL;
1019 }
1020 
1021 static int ltr501_write_event_config(struct iio_dev *indio_dev,
1022 				     const struct iio_chan_spec *chan,
1023 				     enum iio_event_type type,
1024 				     enum iio_event_direction dir, int state)
1025 {
1026 	struct ltr501_data *data = iio_priv(indio_dev);
1027 	int ret;
1028 
1029 	/* only 1 and 0 are valid inputs */
1030 	if (state != 1  && state != 0)
1031 		return -EINVAL;
1032 
1033 	switch (chan->type) {
1034 	case IIO_INTENSITY:
1035 		mutex_lock(&data->lock_als);
1036 		ret = regmap_field_write(data->reg_als_intr, state);
1037 		mutex_unlock(&data->lock_als);
1038 		return ret;
1039 	case IIO_PROXIMITY:
1040 		mutex_lock(&data->lock_ps);
1041 		ret = regmap_field_write(data->reg_ps_intr, state);
1042 		mutex_unlock(&data->lock_ps);
1043 		return ret;
1044 	default:
1045 		return -EINVAL;
1046 	}
1047 
1048 	return -EINVAL;
1049 }
1050 
1051 static ssize_t ltr501_show_proximity_scale_avail(struct device *dev,
1052 						 struct device_attribute *attr,
1053 						 char *buf)
1054 {
1055 	struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1056 	struct ltr501_chip_info *info = data->chip_info;
1057 	ssize_t len = 0;
1058 	int i;
1059 
1060 	for (i = 0; i < info->ps_gain_tbl_size; i++) {
1061 		if (info->ps_gain[i].scale == LTR501_RESERVED_GAIN)
1062 			continue;
1063 		len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1064 				 info->ps_gain[i].scale,
1065 				 info->ps_gain[i].uscale);
1066 	}
1067 
1068 	buf[len - 1] = '\n';
1069 
1070 	return len;
1071 }
1072 
1073 static ssize_t ltr501_show_intensity_scale_avail(struct device *dev,
1074 						 struct device_attribute *attr,
1075 						 char *buf)
1076 {
1077 	struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1078 	struct ltr501_chip_info *info = data->chip_info;
1079 	ssize_t len = 0;
1080 	int i;
1081 
1082 	for (i = 0; i < info->als_gain_tbl_size; i++) {
1083 		if (info->als_gain[i].scale == LTR501_RESERVED_GAIN)
1084 			continue;
1085 		len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1086 				 info->als_gain[i].scale,
1087 				 info->als_gain[i].uscale);
1088 	}
1089 
1090 	buf[len - 1] = '\n';
1091 
1092 	return len;
1093 }
1094 
1095 static IIO_CONST_ATTR_INT_TIME_AVAIL("0.05 0.1 0.2 0.4");
1096 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("20 10 5 2 1 0.5");
1097 
1098 static IIO_DEVICE_ATTR(in_proximity_scale_available, S_IRUGO,
1099 		       ltr501_show_proximity_scale_avail, NULL, 0);
1100 static IIO_DEVICE_ATTR(in_intensity_scale_available, S_IRUGO,
1101 		       ltr501_show_intensity_scale_avail, NULL, 0);
1102 
1103 static struct attribute *ltr501_attributes[] = {
1104 	&iio_dev_attr_in_proximity_scale_available.dev_attr.attr,
1105 	&iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1106 	&iio_const_attr_integration_time_available.dev_attr.attr,
1107 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
1108 	NULL
1109 };
1110 
1111 static struct attribute *ltr301_attributes[] = {
1112 	&iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1113 	&iio_const_attr_integration_time_available.dev_attr.attr,
1114 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
1115 	NULL
1116 };
1117 
1118 static const struct attribute_group ltr501_attribute_group = {
1119 	.attrs = ltr501_attributes,
1120 };
1121 
1122 static const struct attribute_group ltr301_attribute_group = {
1123 	.attrs = ltr301_attributes,
1124 };
1125 
1126 static const struct iio_info ltr501_info_no_irq = {
1127 	.read_raw = ltr501_read_raw,
1128 	.write_raw = ltr501_write_raw,
1129 	.attrs = &ltr501_attribute_group,
1130 	.driver_module = THIS_MODULE,
1131 };
1132 
1133 static const struct iio_info ltr501_info = {
1134 	.read_raw = ltr501_read_raw,
1135 	.write_raw = ltr501_write_raw,
1136 	.attrs = &ltr501_attribute_group,
1137 	.read_event_value	= &ltr501_read_event,
1138 	.write_event_value	= &ltr501_write_event,
1139 	.read_event_config	= &ltr501_read_event_config,
1140 	.write_event_config	= &ltr501_write_event_config,
1141 	.driver_module = THIS_MODULE,
1142 };
1143 
1144 static const struct iio_info ltr301_info_no_irq = {
1145 	.read_raw = ltr501_read_raw,
1146 	.write_raw = ltr501_write_raw,
1147 	.attrs = &ltr301_attribute_group,
1148 	.driver_module = THIS_MODULE,
1149 };
1150 
1151 static const struct iio_info ltr301_info = {
1152 	.read_raw = ltr501_read_raw,
1153 	.write_raw = ltr501_write_raw,
1154 	.attrs = &ltr301_attribute_group,
1155 	.read_event_value	= &ltr501_read_event,
1156 	.write_event_value	= &ltr501_write_event,
1157 	.read_event_config	= &ltr501_read_event_config,
1158 	.write_event_config	= &ltr501_write_event_config,
1159 	.driver_module = THIS_MODULE,
1160 };
1161 
1162 static struct ltr501_chip_info ltr501_chip_info_tbl[] = {
1163 	[ltr501] = {
1164 		.partid = 0x08,
1165 		.als_gain = ltr501_als_gain_tbl,
1166 		.als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1167 		.ps_gain = ltr501_ps_gain_tbl,
1168 		.ps_gain_tbl_size = ARRAY_SIZE(ltr501_ps_gain_tbl),
1169 		.als_mode_active = BIT(0) | BIT(1),
1170 		.als_gain_mask = BIT(3),
1171 		.als_gain_shift = 3,
1172 		.info = &ltr501_info,
1173 		.info_no_irq = &ltr501_info_no_irq,
1174 		.channels = ltr501_channels,
1175 		.no_channels = ARRAY_SIZE(ltr501_channels),
1176 	},
1177 	[ltr559] = {
1178 		.partid = 0x09,
1179 		.als_gain = ltr559_als_gain_tbl,
1180 		.als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl),
1181 		.ps_gain = ltr559_ps_gain_tbl,
1182 		.ps_gain_tbl_size = ARRAY_SIZE(ltr559_ps_gain_tbl),
1183 		.als_mode_active = BIT(1),
1184 		.als_gain_mask = BIT(2) | BIT(3) | BIT(4),
1185 		.als_gain_shift = 2,
1186 		.info = &ltr501_info,
1187 		.info_no_irq = &ltr501_info_no_irq,
1188 		.channels = ltr501_channels,
1189 		.no_channels = ARRAY_SIZE(ltr501_channels),
1190 	},
1191 	[ltr301] = {
1192 		.partid = 0x08,
1193 		.als_gain = ltr501_als_gain_tbl,
1194 		.als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1195 		.als_mode_active = BIT(0) | BIT(1),
1196 		.als_gain_mask = BIT(3),
1197 		.als_gain_shift = 3,
1198 		.info = &ltr301_info,
1199 		.info_no_irq = &ltr301_info_no_irq,
1200 		.channels = ltr301_channels,
1201 		.no_channels = ARRAY_SIZE(ltr301_channels),
1202 	},
1203 };
1204 
1205 static int ltr501_write_contr(struct ltr501_data *data, u8 als_val, u8 ps_val)
1206 {
1207 	int ret;
1208 
1209 	ret = regmap_write(data->regmap, LTR501_ALS_CONTR, als_val);
1210 	if (ret < 0)
1211 		return ret;
1212 
1213 	return regmap_write(data->regmap, LTR501_PS_CONTR, ps_val);
1214 }
1215 
1216 static irqreturn_t ltr501_trigger_handler(int irq, void *p)
1217 {
1218 	struct iio_poll_func *pf = p;
1219 	struct iio_dev *indio_dev = pf->indio_dev;
1220 	struct ltr501_data *data = iio_priv(indio_dev);
1221 	u16 buf[8];
1222 	__le16 als_buf[2];
1223 	u8 mask = 0;
1224 	int j = 0;
1225 	int ret, psdata;
1226 
1227 	memset(buf, 0, sizeof(buf));
1228 
1229 	/* figure out which data needs to be ready */
1230 	if (test_bit(0, indio_dev->active_scan_mask) ||
1231 	    test_bit(1, indio_dev->active_scan_mask))
1232 		mask |= LTR501_STATUS_ALS_RDY;
1233 	if (test_bit(2, indio_dev->active_scan_mask))
1234 		mask |= LTR501_STATUS_PS_RDY;
1235 
1236 	ret = ltr501_drdy(data, mask);
1237 	if (ret < 0)
1238 		goto done;
1239 
1240 	if (mask & LTR501_STATUS_ALS_RDY) {
1241 		ret = regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
1242 				       (u8 *)als_buf, sizeof(als_buf));
1243 		if (ret < 0)
1244 			return ret;
1245 		if (test_bit(0, indio_dev->active_scan_mask))
1246 			buf[j++] = le16_to_cpu(als_buf[1]);
1247 		if (test_bit(1, indio_dev->active_scan_mask))
1248 			buf[j++] = le16_to_cpu(als_buf[0]);
1249 	}
1250 
1251 	if (mask & LTR501_STATUS_PS_RDY) {
1252 		ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
1253 				       &psdata, 2);
1254 		if (ret < 0)
1255 			goto done;
1256 		buf[j++] = psdata & LTR501_PS_DATA_MASK;
1257 	}
1258 
1259 	iio_push_to_buffers_with_timestamp(indio_dev, buf, iio_get_time_ns());
1260 
1261 done:
1262 	iio_trigger_notify_done(indio_dev->trig);
1263 
1264 	return IRQ_HANDLED;
1265 }
1266 
1267 static irqreturn_t ltr501_interrupt_handler(int irq, void *private)
1268 {
1269 	struct iio_dev *indio_dev = private;
1270 	struct ltr501_data *data = iio_priv(indio_dev);
1271 	int ret, status;
1272 
1273 	ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
1274 	if (ret < 0) {
1275 		dev_err(&data->client->dev,
1276 			"irq read int reg failed\n");
1277 		return IRQ_HANDLED;
1278 	}
1279 
1280 	if (status & LTR501_STATUS_ALS_INTR)
1281 		iio_push_event(indio_dev,
1282 			       IIO_UNMOD_EVENT_CODE(IIO_INTENSITY, 0,
1283 						    IIO_EV_TYPE_THRESH,
1284 						    IIO_EV_DIR_EITHER),
1285 			       iio_get_time_ns());
1286 
1287 	if (status & LTR501_STATUS_PS_INTR)
1288 		iio_push_event(indio_dev,
1289 			       IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
1290 						    IIO_EV_TYPE_THRESH,
1291 						    IIO_EV_DIR_EITHER),
1292 			       iio_get_time_ns());
1293 
1294 	return IRQ_HANDLED;
1295 }
1296 
1297 static int ltr501_init(struct ltr501_data *data)
1298 {
1299 	int ret, status;
1300 
1301 	ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
1302 	if (ret < 0)
1303 		return ret;
1304 
1305 	data->als_contr = status | data->chip_info->als_mode_active;
1306 
1307 	ret = regmap_read(data->regmap, LTR501_PS_CONTR, &status);
1308 	if (ret < 0)
1309 		return ret;
1310 
1311 	data->ps_contr = status | LTR501_CONTR_ACTIVE;
1312 
1313 	ret = ltr501_read_intr_prst(data, IIO_INTENSITY, &data->als_period);
1314 	if (ret < 0)
1315 		return ret;
1316 
1317 	ret = ltr501_read_intr_prst(data, IIO_PROXIMITY, &data->ps_period);
1318 	if (ret < 0)
1319 		return ret;
1320 
1321 	return ltr501_write_contr(data, data->als_contr, data->ps_contr);
1322 }
1323 
1324 static bool ltr501_is_volatile_reg(struct device *dev, unsigned int reg)
1325 {
1326 	switch (reg) {
1327 	case LTR501_ALS_DATA1:
1328 	case LTR501_ALS_DATA0:
1329 	case LTR501_ALS_PS_STATUS:
1330 	case LTR501_PS_DATA:
1331 		return true;
1332 	default:
1333 		return false;
1334 	}
1335 }
1336 
1337 static struct regmap_config ltr501_regmap_config = {
1338 	.name =  LTR501_REGMAP_NAME,
1339 	.reg_bits = 8,
1340 	.val_bits = 8,
1341 	.max_register = LTR501_MAX_REG,
1342 	.cache_type = REGCACHE_RBTREE,
1343 	.volatile_reg = ltr501_is_volatile_reg,
1344 };
1345 
1346 static int ltr501_powerdown(struct ltr501_data *data)
1347 {
1348 	return ltr501_write_contr(data, data->als_contr &
1349 				  ~data->chip_info->als_mode_active,
1350 				  data->ps_contr & ~LTR501_CONTR_ACTIVE);
1351 }
1352 
1353 static const char *ltr501_match_acpi_device(struct device *dev, int *chip_idx)
1354 {
1355 	const struct acpi_device_id *id;
1356 
1357 	id = acpi_match_device(dev->driver->acpi_match_table, dev);
1358 	if (!id)
1359 		return NULL;
1360 	*chip_idx = id->driver_data;
1361 	return dev_name(dev);
1362 }
1363 
1364 static int ltr501_probe(struct i2c_client *client,
1365 			const struct i2c_device_id *id)
1366 {
1367 	struct ltr501_data *data;
1368 	struct iio_dev *indio_dev;
1369 	struct regmap *regmap;
1370 	int ret, partid, chip_idx = 0;
1371 	const char *name = NULL;
1372 
1373 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
1374 	if (!indio_dev)
1375 		return -ENOMEM;
1376 
1377 	regmap = devm_regmap_init_i2c(client, &ltr501_regmap_config);
1378 	if (IS_ERR(regmap)) {
1379 		dev_err(&client->dev, "Regmap initialization failed.\n");
1380 		return PTR_ERR(regmap);
1381 	}
1382 
1383 	data = iio_priv(indio_dev);
1384 	i2c_set_clientdata(client, indio_dev);
1385 	data->client = client;
1386 	data->regmap = regmap;
1387 	mutex_init(&data->lock_als);
1388 	mutex_init(&data->lock_ps);
1389 
1390 	data->reg_it = devm_regmap_field_alloc(&client->dev, regmap,
1391 					       reg_field_it);
1392 	if (IS_ERR(data->reg_it)) {
1393 		dev_err(&client->dev, "Integ time reg field init failed.\n");
1394 		return PTR_ERR(data->reg_it);
1395 	}
1396 
1397 	data->reg_als_intr = devm_regmap_field_alloc(&client->dev, regmap,
1398 						     reg_field_als_intr);
1399 	if (IS_ERR(data->reg_als_intr)) {
1400 		dev_err(&client->dev, "ALS intr mode reg field init failed\n");
1401 		return PTR_ERR(data->reg_als_intr);
1402 	}
1403 
1404 	data->reg_ps_intr = devm_regmap_field_alloc(&client->dev, regmap,
1405 						    reg_field_ps_intr);
1406 	if (IS_ERR(data->reg_ps_intr)) {
1407 		dev_err(&client->dev, "PS intr mode reg field init failed.\n");
1408 		return PTR_ERR(data->reg_ps_intr);
1409 	}
1410 
1411 	data->reg_als_rate = devm_regmap_field_alloc(&client->dev, regmap,
1412 						     reg_field_als_rate);
1413 	if (IS_ERR(data->reg_als_rate)) {
1414 		dev_err(&client->dev, "ALS samp rate field init failed.\n");
1415 		return PTR_ERR(data->reg_als_rate);
1416 	}
1417 
1418 	data->reg_ps_rate = devm_regmap_field_alloc(&client->dev, regmap,
1419 						    reg_field_ps_rate);
1420 	if (IS_ERR(data->reg_ps_rate)) {
1421 		dev_err(&client->dev, "PS samp rate field init failed.\n");
1422 		return PTR_ERR(data->reg_ps_rate);
1423 	}
1424 
1425 	data->reg_als_prst = devm_regmap_field_alloc(&client->dev, regmap,
1426 						     reg_field_als_prst);
1427 	if (IS_ERR(data->reg_als_prst)) {
1428 		dev_err(&client->dev, "ALS prst reg field init failed\n");
1429 		return PTR_ERR(data->reg_als_prst);
1430 	}
1431 
1432 	data->reg_ps_prst = devm_regmap_field_alloc(&client->dev, regmap,
1433 						    reg_field_ps_prst);
1434 	if (IS_ERR(data->reg_ps_prst)) {
1435 		dev_err(&client->dev, "PS prst reg field init failed.\n");
1436 		return PTR_ERR(data->reg_ps_prst);
1437 	}
1438 
1439 	ret = regmap_read(data->regmap, LTR501_PART_ID, &partid);
1440 	if (ret < 0)
1441 		return ret;
1442 
1443 	if (id) {
1444 		name = id->name;
1445 		chip_idx = id->driver_data;
1446 	} else  if (ACPI_HANDLE(&client->dev)) {
1447 		name = ltr501_match_acpi_device(&client->dev, &chip_idx);
1448 	} else {
1449 		return -ENODEV;
1450 	}
1451 
1452 	data->chip_info = &ltr501_chip_info_tbl[chip_idx];
1453 
1454 	if ((partid >> 4) != data->chip_info->partid)
1455 		return -ENODEV;
1456 
1457 	indio_dev->dev.parent = &client->dev;
1458 	indio_dev->info = data->chip_info->info;
1459 	indio_dev->channels = data->chip_info->channels;
1460 	indio_dev->num_channels = data->chip_info->no_channels;
1461 	indio_dev->name = name;
1462 	indio_dev->modes = INDIO_DIRECT_MODE;
1463 
1464 	ret = ltr501_init(data);
1465 	if (ret < 0)
1466 		return ret;
1467 
1468 	if (client->irq > 0) {
1469 		ret = devm_request_threaded_irq(&client->dev, client->irq,
1470 						NULL, ltr501_interrupt_handler,
1471 						IRQF_TRIGGER_FALLING |
1472 						IRQF_ONESHOT,
1473 						"ltr501_thresh_event",
1474 						indio_dev);
1475 		if (ret) {
1476 			dev_err(&client->dev, "request irq (%d) failed\n",
1477 				client->irq);
1478 			return ret;
1479 		}
1480 	} else {
1481 		indio_dev->info = data->chip_info->info_no_irq;
1482 	}
1483 
1484 	ret = iio_triggered_buffer_setup(indio_dev, NULL,
1485 					 ltr501_trigger_handler, NULL);
1486 	if (ret)
1487 		goto powerdown_on_error;
1488 
1489 	ret = iio_device_register(indio_dev);
1490 	if (ret)
1491 		goto error_unreg_buffer;
1492 
1493 	return 0;
1494 
1495 error_unreg_buffer:
1496 	iio_triggered_buffer_cleanup(indio_dev);
1497 powerdown_on_error:
1498 	ltr501_powerdown(data);
1499 	return ret;
1500 }
1501 
1502 static int ltr501_remove(struct i2c_client *client)
1503 {
1504 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
1505 
1506 	iio_device_unregister(indio_dev);
1507 	iio_triggered_buffer_cleanup(indio_dev);
1508 	ltr501_powerdown(iio_priv(indio_dev));
1509 
1510 	return 0;
1511 }
1512 
1513 #ifdef CONFIG_PM_SLEEP
1514 static int ltr501_suspend(struct device *dev)
1515 {
1516 	struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1517 					    to_i2c_client(dev)));
1518 	return ltr501_powerdown(data);
1519 }
1520 
1521 static int ltr501_resume(struct device *dev)
1522 {
1523 	struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1524 					    to_i2c_client(dev)));
1525 
1526 	return ltr501_write_contr(data, data->als_contr,
1527 		data->ps_contr);
1528 }
1529 #endif
1530 
1531 static SIMPLE_DEV_PM_OPS(ltr501_pm_ops, ltr501_suspend, ltr501_resume);
1532 
1533 static const struct acpi_device_id ltr_acpi_match[] = {
1534 	{"LTER0501", ltr501},
1535 	{"LTER0559", ltr559},
1536 	{"LTER0301", ltr301},
1537 	{ },
1538 };
1539 MODULE_DEVICE_TABLE(acpi, ltr_acpi_match);
1540 
1541 static const struct i2c_device_id ltr501_id[] = {
1542 	{ "ltr501", ltr501},
1543 	{ "ltr559", ltr559},
1544 	{ "ltr301", ltr301},
1545 	{ }
1546 };
1547 MODULE_DEVICE_TABLE(i2c, ltr501_id);
1548 
1549 static struct i2c_driver ltr501_driver = {
1550 	.driver = {
1551 		.name   = LTR501_DRV_NAME,
1552 		.pm	= &ltr501_pm_ops,
1553 		.acpi_match_table = ACPI_PTR(ltr_acpi_match),
1554 		.owner  = THIS_MODULE,
1555 	},
1556 	.probe  = ltr501_probe,
1557 	.remove	= ltr501_remove,
1558 	.id_table = ltr501_id,
1559 };
1560 
1561 module_i2c_driver(ltr501_driver);
1562 
1563 MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>");
1564 MODULE_DESCRIPTION("Lite-On LTR501 ambient light and proximity sensor driver");
1565 MODULE_LICENSE("GPL");
1566