1 /* 2 * ltr501.c - Support for Lite-On LTR501 ambient light and proximity sensor 3 * 4 * Copyright 2014 Peter Meerwald <pmeerw@pmeerw.net> 5 * 6 * This file is subject to the terms and conditions of version 2 of 7 * the GNU General Public License. See the file COPYING in the main 8 * directory of this archive for more details. 9 * 10 * 7-bit I2C slave address 0x23 11 * 12 * TODO: IR LED characteristics 13 */ 14 15 #include <linux/module.h> 16 #include <linux/i2c.h> 17 #include <linux/err.h> 18 #include <linux/delay.h> 19 #include <linux/regmap.h> 20 #include <linux/acpi.h> 21 22 #include <linux/iio/iio.h> 23 #include <linux/iio/events.h> 24 #include <linux/iio/sysfs.h> 25 #include <linux/iio/trigger_consumer.h> 26 #include <linux/iio/buffer.h> 27 #include <linux/iio/triggered_buffer.h> 28 29 #define LTR501_DRV_NAME "ltr501" 30 31 #define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */ 32 #define LTR501_PS_CONTR 0x81 /* PS operation mode */ 33 #define LTR501_PS_MEAS_RATE 0x84 /* measurement rate*/ 34 #define LTR501_ALS_MEAS_RATE 0x85 /* ALS integ time, measurement rate*/ 35 #define LTR501_PART_ID 0x86 36 #define LTR501_MANUFAC_ID 0x87 37 #define LTR501_ALS_DATA1 0x88 /* 16-bit, little endian */ 38 #define LTR501_ALS_DATA0 0x8a /* 16-bit, little endian */ 39 #define LTR501_ALS_PS_STATUS 0x8c 40 #define LTR501_PS_DATA 0x8d /* 16-bit, little endian */ 41 #define LTR501_INTR 0x8f /* output mode, polarity, mode */ 42 #define LTR501_PS_THRESH_UP 0x90 /* 11 bit, ps upper threshold */ 43 #define LTR501_PS_THRESH_LOW 0x92 /* 11 bit, ps lower threshold */ 44 #define LTR501_ALS_THRESH_UP 0x97 /* 16 bit, ALS upper threshold */ 45 #define LTR501_ALS_THRESH_LOW 0x99 /* 16 bit, ALS lower threshold */ 46 #define LTR501_INTR_PRST 0x9e /* ps thresh, als thresh */ 47 #define LTR501_MAX_REG 0x9f 48 49 #define LTR501_ALS_CONTR_SW_RESET BIT(2) 50 #define LTR501_CONTR_PS_GAIN_MASK (BIT(3) | BIT(2)) 51 #define LTR501_CONTR_PS_GAIN_SHIFT 2 52 #define LTR501_CONTR_ALS_GAIN_MASK BIT(3) 53 #define LTR501_CONTR_ACTIVE BIT(1) 54 55 #define LTR501_STATUS_ALS_INTR BIT(3) 56 #define LTR501_STATUS_ALS_RDY BIT(2) 57 #define LTR501_STATUS_PS_INTR BIT(1) 58 #define LTR501_STATUS_PS_RDY BIT(0) 59 60 #define LTR501_PS_DATA_MASK 0x7ff 61 #define LTR501_PS_THRESH_MASK 0x7ff 62 #define LTR501_ALS_THRESH_MASK 0xffff 63 64 #define LTR501_ALS_DEF_PERIOD 500000 65 #define LTR501_PS_DEF_PERIOD 100000 66 67 #define LTR501_REGMAP_NAME "ltr501_regmap" 68 69 #define LTR501_LUX_CONV(vis_coeff, vis_data, ir_coeff, ir_data) \ 70 ((vis_coeff * vis_data) - (ir_coeff * ir_data)) 71 72 static const int int_time_mapping[] = {100000, 50000, 200000, 400000}; 73 74 static const struct reg_field reg_field_it = 75 REG_FIELD(LTR501_ALS_MEAS_RATE, 3, 4); 76 static const struct reg_field reg_field_als_intr = 77 REG_FIELD(LTR501_INTR, 0, 0); 78 static const struct reg_field reg_field_ps_intr = 79 REG_FIELD(LTR501_INTR, 1, 1); 80 static const struct reg_field reg_field_als_rate = 81 REG_FIELD(LTR501_ALS_MEAS_RATE, 0, 2); 82 static const struct reg_field reg_field_ps_rate = 83 REG_FIELD(LTR501_PS_MEAS_RATE, 0, 3); 84 static const struct reg_field reg_field_als_prst = 85 REG_FIELD(LTR501_INTR_PRST, 0, 3); 86 static const struct reg_field reg_field_ps_prst = 87 REG_FIELD(LTR501_INTR_PRST, 4, 7); 88 89 struct ltr501_samp_table { 90 int freq_val; /* repetition frequency in micro HZ*/ 91 int time_val; /* repetition rate in micro seconds */ 92 }; 93 94 #define LTR501_RESERVED_GAIN -1 95 96 enum { 97 ltr501 = 0, 98 ltr559, 99 ltr301, 100 }; 101 102 struct ltr501_gain { 103 int scale; 104 int uscale; 105 }; 106 107 static struct ltr501_gain ltr501_als_gain_tbl[] = { 108 {1, 0}, 109 {0, 5000}, 110 }; 111 112 static struct ltr501_gain ltr559_als_gain_tbl[] = { 113 {1, 0}, 114 {0, 500000}, 115 {0, 250000}, 116 {0, 125000}, 117 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN}, 118 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN}, 119 {0, 20000}, 120 {0, 10000}, 121 }; 122 123 static struct ltr501_gain ltr501_ps_gain_tbl[] = { 124 {1, 0}, 125 {0, 250000}, 126 {0, 125000}, 127 {0, 62500}, 128 }; 129 130 static struct ltr501_gain ltr559_ps_gain_tbl[] = { 131 {0, 62500}, /* x16 gain */ 132 {0, 31250}, /* x32 gain */ 133 {0, 15625}, /* bits X1 are for x64 gain */ 134 {0, 15624}, 135 }; 136 137 struct ltr501_chip_info { 138 u8 partid; 139 struct ltr501_gain *als_gain; 140 int als_gain_tbl_size; 141 struct ltr501_gain *ps_gain; 142 int ps_gain_tbl_size; 143 u8 als_mode_active; 144 u8 als_gain_mask; 145 u8 als_gain_shift; 146 struct iio_chan_spec const *channels; 147 const int no_channels; 148 const struct iio_info *info; 149 const struct iio_info *info_no_irq; 150 }; 151 152 struct ltr501_data { 153 struct i2c_client *client; 154 struct mutex lock_als, lock_ps; 155 struct ltr501_chip_info *chip_info; 156 u8 als_contr, ps_contr; 157 int als_period, ps_period; /* period in micro seconds */ 158 struct regmap *regmap; 159 struct regmap_field *reg_it; 160 struct regmap_field *reg_als_intr; 161 struct regmap_field *reg_ps_intr; 162 struct regmap_field *reg_als_rate; 163 struct regmap_field *reg_ps_rate; 164 struct regmap_field *reg_als_prst; 165 struct regmap_field *reg_ps_prst; 166 }; 167 168 static const struct ltr501_samp_table ltr501_als_samp_table[] = { 169 {20000000, 50000}, {10000000, 100000}, 170 {5000000, 200000}, {2000000, 500000}, 171 {1000000, 1000000}, {500000, 2000000}, 172 {500000, 2000000}, {500000, 2000000} 173 }; 174 175 static const struct ltr501_samp_table ltr501_ps_samp_table[] = { 176 {20000000, 50000}, {14285714, 70000}, 177 {10000000, 100000}, {5000000, 200000}, 178 {2000000, 500000}, {1000000, 1000000}, 179 {500000, 2000000}, {500000, 2000000}, 180 {500000, 2000000} 181 }; 182 183 static int ltr501_match_samp_freq(const struct ltr501_samp_table *tab, 184 int len, int val, int val2) 185 { 186 int i, freq; 187 188 freq = val * 1000000 + val2; 189 190 for (i = 0; i < len; i++) { 191 if (tab[i].freq_val == freq) 192 return i; 193 } 194 195 return -EINVAL; 196 } 197 198 static int ltr501_als_read_samp_freq(struct ltr501_data *data, 199 int *val, int *val2) 200 { 201 int ret, i; 202 203 ret = regmap_field_read(data->reg_als_rate, &i); 204 if (ret < 0) 205 return ret; 206 207 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table)) 208 return -EINVAL; 209 210 *val = ltr501_als_samp_table[i].freq_val / 1000000; 211 *val2 = ltr501_als_samp_table[i].freq_val % 1000000; 212 213 return IIO_VAL_INT_PLUS_MICRO; 214 } 215 216 static int ltr501_ps_read_samp_freq(struct ltr501_data *data, 217 int *val, int *val2) 218 { 219 int ret, i; 220 221 ret = regmap_field_read(data->reg_ps_rate, &i); 222 if (ret < 0) 223 return ret; 224 225 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table)) 226 return -EINVAL; 227 228 *val = ltr501_ps_samp_table[i].freq_val / 1000000; 229 *val2 = ltr501_ps_samp_table[i].freq_val % 1000000; 230 231 return IIO_VAL_INT_PLUS_MICRO; 232 } 233 234 static int ltr501_als_write_samp_freq(struct ltr501_data *data, 235 int val, int val2) 236 { 237 int i, ret; 238 239 i = ltr501_match_samp_freq(ltr501_als_samp_table, 240 ARRAY_SIZE(ltr501_als_samp_table), 241 val, val2); 242 243 if (i < 0) 244 return i; 245 246 mutex_lock(&data->lock_als); 247 ret = regmap_field_write(data->reg_als_rate, i); 248 mutex_unlock(&data->lock_als); 249 250 return ret; 251 } 252 253 static int ltr501_ps_write_samp_freq(struct ltr501_data *data, 254 int val, int val2) 255 { 256 int i, ret; 257 258 i = ltr501_match_samp_freq(ltr501_ps_samp_table, 259 ARRAY_SIZE(ltr501_ps_samp_table), 260 val, val2); 261 262 if (i < 0) 263 return i; 264 265 mutex_lock(&data->lock_ps); 266 ret = regmap_field_write(data->reg_ps_rate, i); 267 mutex_unlock(&data->lock_ps); 268 269 return ret; 270 } 271 272 static int ltr501_als_read_samp_period(struct ltr501_data *data, int *val) 273 { 274 int ret, i; 275 276 ret = regmap_field_read(data->reg_als_rate, &i); 277 if (ret < 0) 278 return ret; 279 280 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table)) 281 return -EINVAL; 282 283 *val = ltr501_als_samp_table[i].time_val; 284 285 return IIO_VAL_INT; 286 } 287 288 static int ltr501_ps_read_samp_period(struct ltr501_data *data, int *val) 289 { 290 int ret, i; 291 292 ret = regmap_field_read(data->reg_ps_rate, &i); 293 if (ret < 0) 294 return ret; 295 296 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table)) 297 return -EINVAL; 298 299 *val = ltr501_ps_samp_table[i].time_val; 300 301 return IIO_VAL_INT; 302 } 303 304 /* IR and visible spectrum coeff's are given in data sheet */ 305 static unsigned long ltr501_calculate_lux(u16 vis_data, u16 ir_data) 306 { 307 unsigned long ratio, lux; 308 309 if (vis_data == 0) 310 return 0; 311 312 /* multiply numerator by 100 to avoid handling ratio < 1 */ 313 ratio = DIV_ROUND_UP(ir_data * 100, ir_data + vis_data); 314 315 if (ratio < 45) 316 lux = LTR501_LUX_CONV(1774, vis_data, -1105, ir_data); 317 else if (ratio >= 45 && ratio < 64) 318 lux = LTR501_LUX_CONV(3772, vis_data, 1336, ir_data); 319 else if (ratio >= 64 && ratio < 85) 320 lux = LTR501_LUX_CONV(1690, vis_data, 169, ir_data); 321 else 322 lux = 0; 323 324 return lux / 1000; 325 } 326 327 static int ltr501_drdy(struct ltr501_data *data, u8 drdy_mask) 328 { 329 int tries = 100; 330 int ret, status; 331 332 while (tries--) { 333 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status); 334 if (ret < 0) 335 return ret; 336 if ((status & drdy_mask) == drdy_mask) 337 return 0; 338 msleep(25); 339 } 340 341 dev_err(&data->client->dev, "ltr501_drdy() failed, data not ready\n"); 342 return -EIO; 343 } 344 345 static int ltr501_set_it_time(struct ltr501_data *data, int it) 346 { 347 int ret, i, index = -1, status; 348 349 for (i = 0; i < ARRAY_SIZE(int_time_mapping); i++) { 350 if (int_time_mapping[i] == it) { 351 index = i; 352 break; 353 } 354 } 355 /* Make sure integ time index is valid */ 356 if (index < 0) 357 return -EINVAL; 358 359 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status); 360 if (ret < 0) 361 return ret; 362 363 if (status & LTR501_CONTR_ALS_GAIN_MASK) { 364 /* 365 * 200 ms and 400 ms integ time can only be 366 * used in dynamic range 1 367 */ 368 if (index > 1) 369 return -EINVAL; 370 } else 371 /* 50 ms integ time can only be used in dynamic range 2 */ 372 if (index == 1) 373 return -EINVAL; 374 375 return regmap_field_write(data->reg_it, index); 376 } 377 378 /* read int time in micro seconds */ 379 static int ltr501_read_it_time(struct ltr501_data *data, int *val, int *val2) 380 { 381 int ret, index; 382 383 ret = regmap_field_read(data->reg_it, &index); 384 if (ret < 0) 385 return ret; 386 387 /* Make sure integ time index is valid */ 388 if (index < 0 || index >= ARRAY_SIZE(int_time_mapping)) 389 return -EINVAL; 390 391 *val2 = int_time_mapping[index]; 392 *val = 0; 393 394 return IIO_VAL_INT_PLUS_MICRO; 395 } 396 397 static int ltr501_read_als(struct ltr501_data *data, __le16 buf[2]) 398 { 399 int ret; 400 401 ret = ltr501_drdy(data, LTR501_STATUS_ALS_RDY); 402 if (ret < 0) 403 return ret; 404 /* always read both ALS channels in given order */ 405 return regmap_bulk_read(data->regmap, LTR501_ALS_DATA1, 406 buf, 2 * sizeof(__le16)); 407 } 408 409 static int ltr501_read_ps(struct ltr501_data *data) 410 { 411 int ret, status; 412 413 ret = ltr501_drdy(data, LTR501_STATUS_PS_RDY); 414 if (ret < 0) 415 return ret; 416 417 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA, 418 &status, 2); 419 if (ret < 0) 420 return ret; 421 422 return status; 423 } 424 425 static int ltr501_read_intr_prst(struct ltr501_data *data, 426 enum iio_chan_type type, 427 int *val2) 428 { 429 int ret, samp_period, prst; 430 431 switch (type) { 432 case IIO_INTENSITY: 433 ret = regmap_field_read(data->reg_als_prst, &prst); 434 if (ret < 0) 435 return ret; 436 437 ret = ltr501_als_read_samp_period(data, &samp_period); 438 439 if (ret < 0) 440 return ret; 441 *val2 = samp_period * prst; 442 return IIO_VAL_INT_PLUS_MICRO; 443 case IIO_PROXIMITY: 444 ret = regmap_field_read(data->reg_ps_prst, &prst); 445 if (ret < 0) 446 return ret; 447 448 ret = ltr501_ps_read_samp_period(data, &samp_period); 449 450 if (ret < 0) 451 return ret; 452 453 *val2 = samp_period * prst; 454 return IIO_VAL_INT_PLUS_MICRO; 455 default: 456 return -EINVAL; 457 } 458 459 return -EINVAL; 460 } 461 462 static int ltr501_write_intr_prst(struct ltr501_data *data, 463 enum iio_chan_type type, 464 int val, int val2) 465 { 466 int ret, samp_period, new_val; 467 unsigned long period; 468 469 if (val < 0 || val2 < 0) 470 return -EINVAL; 471 472 /* period in microseconds */ 473 period = ((val * 1000000) + val2); 474 475 switch (type) { 476 case IIO_INTENSITY: 477 ret = ltr501_als_read_samp_period(data, &samp_period); 478 if (ret < 0) 479 return ret; 480 481 /* period should be atleast equal to sampling period */ 482 if (period < samp_period) 483 return -EINVAL; 484 485 new_val = DIV_ROUND_UP(period, samp_period); 486 if (new_val < 0 || new_val > 0x0f) 487 return -EINVAL; 488 489 mutex_lock(&data->lock_als); 490 ret = regmap_field_write(data->reg_als_prst, new_val); 491 mutex_unlock(&data->lock_als); 492 if (ret >= 0) 493 data->als_period = period; 494 495 return ret; 496 case IIO_PROXIMITY: 497 ret = ltr501_ps_read_samp_period(data, &samp_period); 498 if (ret < 0) 499 return ret; 500 501 /* period should be atleast equal to rate */ 502 if (period < samp_period) 503 return -EINVAL; 504 505 new_val = DIV_ROUND_UP(period, samp_period); 506 if (new_val < 0 || new_val > 0x0f) 507 return -EINVAL; 508 509 mutex_lock(&data->lock_ps); 510 ret = regmap_field_write(data->reg_ps_prst, new_val); 511 mutex_unlock(&data->lock_ps); 512 if (ret >= 0) 513 data->ps_period = period; 514 515 return ret; 516 default: 517 return -EINVAL; 518 } 519 520 return -EINVAL; 521 } 522 523 static const struct iio_event_spec ltr501_als_event_spec[] = { 524 { 525 .type = IIO_EV_TYPE_THRESH, 526 .dir = IIO_EV_DIR_RISING, 527 .mask_separate = BIT(IIO_EV_INFO_VALUE), 528 }, { 529 .type = IIO_EV_TYPE_THRESH, 530 .dir = IIO_EV_DIR_FALLING, 531 .mask_separate = BIT(IIO_EV_INFO_VALUE), 532 }, { 533 .type = IIO_EV_TYPE_THRESH, 534 .dir = IIO_EV_DIR_EITHER, 535 .mask_separate = BIT(IIO_EV_INFO_ENABLE) | 536 BIT(IIO_EV_INFO_PERIOD), 537 }, 538 539 }; 540 541 static const struct iio_event_spec ltr501_pxs_event_spec[] = { 542 { 543 .type = IIO_EV_TYPE_THRESH, 544 .dir = IIO_EV_DIR_RISING, 545 .mask_separate = BIT(IIO_EV_INFO_VALUE), 546 }, { 547 .type = IIO_EV_TYPE_THRESH, 548 .dir = IIO_EV_DIR_FALLING, 549 .mask_separate = BIT(IIO_EV_INFO_VALUE), 550 }, { 551 .type = IIO_EV_TYPE_THRESH, 552 .dir = IIO_EV_DIR_EITHER, 553 .mask_separate = BIT(IIO_EV_INFO_ENABLE) | 554 BIT(IIO_EV_INFO_PERIOD), 555 }, 556 }; 557 558 #define LTR501_INTENSITY_CHANNEL(_idx, _addr, _mod, _shared, \ 559 _evspec, _evsize) { \ 560 .type = IIO_INTENSITY, \ 561 .modified = 1, \ 562 .address = (_addr), \ 563 .channel2 = (_mod), \ 564 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 565 .info_mask_shared_by_type = (_shared), \ 566 .scan_index = (_idx), \ 567 .scan_type = { \ 568 .sign = 'u', \ 569 .realbits = 16, \ 570 .storagebits = 16, \ 571 .endianness = IIO_CPU, \ 572 }, \ 573 .event_spec = _evspec,\ 574 .num_event_specs = _evsize,\ 575 } 576 577 #define LTR501_LIGHT_CHANNEL() { \ 578 .type = IIO_LIGHT, \ 579 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \ 580 .scan_index = -1, \ 581 } 582 583 static const struct iio_chan_spec ltr501_channels[] = { 584 LTR501_LIGHT_CHANNEL(), 585 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0, 586 ltr501_als_event_spec, 587 ARRAY_SIZE(ltr501_als_event_spec)), 588 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR, 589 BIT(IIO_CHAN_INFO_SCALE) | 590 BIT(IIO_CHAN_INFO_INT_TIME) | 591 BIT(IIO_CHAN_INFO_SAMP_FREQ), 592 NULL, 0), 593 { 594 .type = IIO_PROXIMITY, 595 .address = LTR501_PS_DATA, 596 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | 597 BIT(IIO_CHAN_INFO_SCALE), 598 .scan_index = 2, 599 .scan_type = { 600 .sign = 'u', 601 .realbits = 11, 602 .storagebits = 16, 603 .endianness = IIO_CPU, 604 }, 605 .event_spec = ltr501_pxs_event_spec, 606 .num_event_specs = ARRAY_SIZE(ltr501_pxs_event_spec), 607 }, 608 IIO_CHAN_SOFT_TIMESTAMP(3), 609 }; 610 611 static const struct iio_chan_spec ltr301_channels[] = { 612 LTR501_LIGHT_CHANNEL(), 613 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0, 614 ltr501_als_event_spec, 615 ARRAY_SIZE(ltr501_als_event_spec)), 616 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR, 617 BIT(IIO_CHAN_INFO_SCALE) | 618 BIT(IIO_CHAN_INFO_INT_TIME) | 619 BIT(IIO_CHAN_INFO_SAMP_FREQ), 620 NULL, 0), 621 IIO_CHAN_SOFT_TIMESTAMP(2), 622 }; 623 624 static int ltr501_read_raw(struct iio_dev *indio_dev, 625 struct iio_chan_spec const *chan, 626 int *val, int *val2, long mask) 627 { 628 struct ltr501_data *data = iio_priv(indio_dev); 629 __le16 buf[2]; 630 int ret, i; 631 632 switch (mask) { 633 case IIO_CHAN_INFO_PROCESSED: 634 if (iio_buffer_enabled(indio_dev)) 635 return -EBUSY; 636 637 switch (chan->type) { 638 case IIO_LIGHT: 639 mutex_lock(&data->lock_als); 640 ret = ltr501_read_als(data, buf); 641 mutex_unlock(&data->lock_als); 642 if (ret < 0) 643 return ret; 644 *val = ltr501_calculate_lux(le16_to_cpu(buf[1]), 645 le16_to_cpu(buf[0])); 646 return IIO_VAL_INT; 647 default: 648 return -EINVAL; 649 } 650 case IIO_CHAN_INFO_RAW: 651 if (iio_buffer_enabled(indio_dev)) 652 return -EBUSY; 653 654 switch (chan->type) { 655 case IIO_INTENSITY: 656 mutex_lock(&data->lock_als); 657 ret = ltr501_read_als(data, buf); 658 mutex_unlock(&data->lock_als); 659 if (ret < 0) 660 return ret; 661 *val = le16_to_cpu(chan->address == LTR501_ALS_DATA1 ? 662 buf[0] : buf[1]); 663 return IIO_VAL_INT; 664 case IIO_PROXIMITY: 665 mutex_lock(&data->lock_ps); 666 ret = ltr501_read_ps(data); 667 mutex_unlock(&data->lock_ps); 668 if (ret < 0) 669 return ret; 670 *val = ret & LTR501_PS_DATA_MASK; 671 return IIO_VAL_INT; 672 default: 673 return -EINVAL; 674 } 675 case IIO_CHAN_INFO_SCALE: 676 switch (chan->type) { 677 case IIO_INTENSITY: 678 i = (data->als_contr & data->chip_info->als_gain_mask) 679 >> data->chip_info->als_gain_shift; 680 *val = data->chip_info->als_gain[i].scale; 681 *val2 = data->chip_info->als_gain[i].uscale; 682 return IIO_VAL_INT_PLUS_MICRO; 683 case IIO_PROXIMITY: 684 i = (data->ps_contr & LTR501_CONTR_PS_GAIN_MASK) >> 685 LTR501_CONTR_PS_GAIN_SHIFT; 686 *val = data->chip_info->ps_gain[i].scale; 687 *val2 = data->chip_info->ps_gain[i].uscale; 688 return IIO_VAL_INT_PLUS_MICRO; 689 default: 690 return -EINVAL; 691 } 692 case IIO_CHAN_INFO_INT_TIME: 693 switch (chan->type) { 694 case IIO_INTENSITY: 695 return ltr501_read_it_time(data, val, val2); 696 default: 697 return -EINVAL; 698 } 699 case IIO_CHAN_INFO_SAMP_FREQ: 700 switch (chan->type) { 701 case IIO_INTENSITY: 702 return ltr501_als_read_samp_freq(data, val, val2); 703 case IIO_PROXIMITY: 704 return ltr501_ps_read_samp_freq(data, val, val2); 705 default: 706 return -EINVAL; 707 } 708 } 709 return -EINVAL; 710 } 711 712 static int ltr501_get_gain_index(struct ltr501_gain *gain, int size, 713 int val, int val2) 714 { 715 int i; 716 717 for (i = 0; i < size; i++) 718 if (val == gain[i].scale && val2 == gain[i].uscale) 719 return i; 720 721 return -1; 722 } 723 724 static int ltr501_write_raw(struct iio_dev *indio_dev, 725 struct iio_chan_spec const *chan, 726 int val, int val2, long mask) 727 { 728 struct ltr501_data *data = iio_priv(indio_dev); 729 int i, ret, freq_val, freq_val2; 730 struct ltr501_chip_info *info = data->chip_info; 731 732 if (iio_buffer_enabled(indio_dev)) 733 return -EBUSY; 734 735 switch (mask) { 736 case IIO_CHAN_INFO_SCALE: 737 switch (chan->type) { 738 case IIO_INTENSITY: 739 i = ltr501_get_gain_index(info->als_gain, 740 info->als_gain_tbl_size, 741 val, val2); 742 if (i < 0) 743 return -EINVAL; 744 745 data->als_contr &= ~info->als_gain_mask; 746 data->als_contr |= i << info->als_gain_shift; 747 748 return regmap_write(data->regmap, LTR501_ALS_CONTR, 749 data->als_contr); 750 case IIO_PROXIMITY: 751 i = ltr501_get_gain_index(info->ps_gain, 752 info->ps_gain_tbl_size, 753 val, val2); 754 if (i < 0) 755 return -EINVAL; 756 data->ps_contr &= ~LTR501_CONTR_PS_GAIN_MASK; 757 data->ps_contr |= i << LTR501_CONTR_PS_GAIN_SHIFT; 758 759 return regmap_write(data->regmap, LTR501_PS_CONTR, 760 data->ps_contr); 761 default: 762 return -EINVAL; 763 } 764 case IIO_CHAN_INFO_INT_TIME: 765 switch (chan->type) { 766 case IIO_INTENSITY: 767 if (val != 0) 768 return -EINVAL; 769 mutex_lock(&data->lock_als); 770 i = ltr501_set_it_time(data, val2); 771 mutex_unlock(&data->lock_als); 772 return i; 773 default: 774 return -EINVAL; 775 } 776 case IIO_CHAN_INFO_SAMP_FREQ: 777 switch (chan->type) { 778 case IIO_INTENSITY: 779 ret = ltr501_als_read_samp_freq(data, &freq_val, 780 &freq_val2); 781 if (ret < 0) 782 return ret; 783 784 ret = ltr501_als_write_samp_freq(data, val, val2); 785 if (ret < 0) 786 return ret; 787 788 /* update persistence count when changing frequency */ 789 ret = ltr501_write_intr_prst(data, chan->type, 790 0, data->als_period); 791 792 if (ret < 0) 793 return ltr501_als_write_samp_freq(data, 794 freq_val, 795 freq_val2); 796 return ret; 797 case IIO_PROXIMITY: 798 ret = ltr501_ps_read_samp_freq(data, &freq_val, 799 &freq_val2); 800 if (ret < 0) 801 return ret; 802 803 ret = ltr501_ps_write_samp_freq(data, val, val2); 804 if (ret < 0) 805 return ret; 806 807 /* update persistence count when changing frequency */ 808 ret = ltr501_write_intr_prst(data, chan->type, 809 0, data->ps_period); 810 811 if (ret < 0) 812 return ltr501_ps_write_samp_freq(data, 813 freq_val, 814 freq_val2); 815 return ret; 816 default: 817 return -EINVAL; 818 } 819 } 820 return -EINVAL; 821 } 822 823 static int ltr501_read_thresh(struct iio_dev *indio_dev, 824 const struct iio_chan_spec *chan, 825 enum iio_event_type type, 826 enum iio_event_direction dir, 827 enum iio_event_info info, 828 int *val, int *val2) 829 { 830 struct ltr501_data *data = iio_priv(indio_dev); 831 int ret, thresh_data; 832 833 switch (chan->type) { 834 case IIO_INTENSITY: 835 switch (dir) { 836 case IIO_EV_DIR_RISING: 837 ret = regmap_bulk_read(data->regmap, 838 LTR501_ALS_THRESH_UP, 839 &thresh_data, 2); 840 if (ret < 0) 841 return ret; 842 *val = thresh_data & LTR501_ALS_THRESH_MASK; 843 return IIO_VAL_INT; 844 case IIO_EV_DIR_FALLING: 845 ret = regmap_bulk_read(data->regmap, 846 LTR501_ALS_THRESH_LOW, 847 &thresh_data, 2); 848 if (ret < 0) 849 return ret; 850 *val = thresh_data & LTR501_ALS_THRESH_MASK; 851 return IIO_VAL_INT; 852 default: 853 return -EINVAL; 854 } 855 case IIO_PROXIMITY: 856 switch (dir) { 857 case IIO_EV_DIR_RISING: 858 ret = regmap_bulk_read(data->regmap, 859 LTR501_PS_THRESH_UP, 860 &thresh_data, 2); 861 if (ret < 0) 862 return ret; 863 *val = thresh_data & LTR501_PS_THRESH_MASK; 864 return IIO_VAL_INT; 865 case IIO_EV_DIR_FALLING: 866 ret = regmap_bulk_read(data->regmap, 867 LTR501_PS_THRESH_LOW, 868 &thresh_data, 2); 869 if (ret < 0) 870 return ret; 871 *val = thresh_data & LTR501_PS_THRESH_MASK; 872 return IIO_VAL_INT; 873 default: 874 return -EINVAL; 875 } 876 default: 877 return -EINVAL; 878 } 879 880 return -EINVAL; 881 } 882 883 static int ltr501_write_thresh(struct iio_dev *indio_dev, 884 const struct iio_chan_spec *chan, 885 enum iio_event_type type, 886 enum iio_event_direction dir, 887 enum iio_event_info info, 888 int val, int val2) 889 { 890 struct ltr501_data *data = iio_priv(indio_dev); 891 int ret; 892 893 if (val < 0) 894 return -EINVAL; 895 896 switch (chan->type) { 897 case IIO_INTENSITY: 898 if (val > LTR501_ALS_THRESH_MASK) 899 return -EINVAL; 900 switch (dir) { 901 case IIO_EV_DIR_RISING: 902 mutex_lock(&data->lock_als); 903 ret = regmap_bulk_write(data->regmap, 904 LTR501_ALS_THRESH_UP, 905 &val, 2); 906 mutex_unlock(&data->lock_als); 907 return ret; 908 case IIO_EV_DIR_FALLING: 909 mutex_lock(&data->lock_als); 910 ret = regmap_bulk_write(data->regmap, 911 LTR501_ALS_THRESH_LOW, 912 &val, 2); 913 mutex_unlock(&data->lock_als); 914 return ret; 915 default: 916 return -EINVAL; 917 } 918 case IIO_PROXIMITY: 919 if (val > LTR501_PS_THRESH_MASK) 920 return -EINVAL; 921 switch (dir) { 922 case IIO_EV_DIR_RISING: 923 mutex_lock(&data->lock_ps); 924 ret = regmap_bulk_write(data->regmap, 925 LTR501_PS_THRESH_UP, 926 &val, 2); 927 mutex_unlock(&data->lock_ps); 928 return ret; 929 case IIO_EV_DIR_FALLING: 930 mutex_lock(&data->lock_ps); 931 ret = regmap_bulk_write(data->regmap, 932 LTR501_PS_THRESH_LOW, 933 &val, 2); 934 mutex_unlock(&data->lock_ps); 935 return ret; 936 default: 937 return -EINVAL; 938 } 939 default: 940 return -EINVAL; 941 } 942 943 return -EINVAL; 944 } 945 946 static int ltr501_read_event(struct iio_dev *indio_dev, 947 const struct iio_chan_spec *chan, 948 enum iio_event_type type, 949 enum iio_event_direction dir, 950 enum iio_event_info info, 951 int *val, int *val2) 952 { 953 int ret; 954 955 switch (info) { 956 case IIO_EV_INFO_VALUE: 957 return ltr501_read_thresh(indio_dev, chan, type, dir, 958 info, val, val2); 959 case IIO_EV_INFO_PERIOD: 960 ret = ltr501_read_intr_prst(iio_priv(indio_dev), 961 chan->type, val2); 962 *val = *val2 / 1000000; 963 *val2 = *val2 % 1000000; 964 return ret; 965 default: 966 return -EINVAL; 967 } 968 969 return -EINVAL; 970 } 971 972 static int ltr501_write_event(struct iio_dev *indio_dev, 973 const struct iio_chan_spec *chan, 974 enum iio_event_type type, 975 enum iio_event_direction dir, 976 enum iio_event_info info, 977 int val, int val2) 978 { 979 switch (info) { 980 case IIO_EV_INFO_VALUE: 981 if (val2 != 0) 982 return -EINVAL; 983 return ltr501_write_thresh(indio_dev, chan, type, dir, 984 info, val, val2); 985 case IIO_EV_INFO_PERIOD: 986 return ltr501_write_intr_prst(iio_priv(indio_dev), chan->type, 987 val, val2); 988 default: 989 return -EINVAL; 990 } 991 992 return -EINVAL; 993 } 994 995 static int ltr501_read_event_config(struct iio_dev *indio_dev, 996 const struct iio_chan_spec *chan, 997 enum iio_event_type type, 998 enum iio_event_direction dir) 999 { 1000 struct ltr501_data *data = iio_priv(indio_dev); 1001 int ret, status; 1002 1003 switch (chan->type) { 1004 case IIO_INTENSITY: 1005 ret = regmap_field_read(data->reg_als_intr, &status); 1006 if (ret < 0) 1007 return ret; 1008 return status; 1009 case IIO_PROXIMITY: 1010 ret = regmap_field_read(data->reg_ps_intr, &status); 1011 if (ret < 0) 1012 return ret; 1013 return status; 1014 default: 1015 return -EINVAL; 1016 } 1017 1018 return -EINVAL; 1019 } 1020 1021 static int ltr501_write_event_config(struct iio_dev *indio_dev, 1022 const struct iio_chan_spec *chan, 1023 enum iio_event_type type, 1024 enum iio_event_direction dir, int state) 1025 { 1026 struct ltr501_data *data = iio_priv(indio_dev); 1027 int ret; 1028 1029 /* only 1 and 0 are valid inputs */ 1030 if (state != 1 && state != 0) 1031 return -EINVAL; 1032 1033 switch (chan->type) { 1034 case IIO_INTENSITY: 1035 mutex_lock(&data->lock_als); 1036 ret = regmap_field_write(data->reg_als_intr, state); 1037 mutex_unlock(&data->lock_als); 1038 return ret; 1039 case IIO_PROXIMITY: 1040 mutex_lock(&data->lock_ps); 1041 ret = regmap_field_write(data->reg_ps_intr, state); 1042 mutex_unlock(&data->lock_ps); 1043 return ret; 1044 default: 1045 return -EINVAL; 1046 } 1047 1048 return -EINVAL; 1049 } 1050 1051 static ssize_t ltr501_show_proximity_scale_avail(struct device *dev, 1052 struct device_attribute *attr, 1053 char *buf) 1054 { 1055 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev)); 1056 struct ltr501_chip_info *info = data->chip_info; 1057 ssize_t len = 0; 1058 int i; 1059 1060 for (i = 0; i < info->ps_gain_tbl_size; i++) { 1061 if (info->ps_gain[i].scale == LTR501_RESERVED_GAIN) 1062 continue; 1063 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ", 1064 info->ps_gain[i].scale, 1065 info->ps_gain[i].uscale); 1066 } 1067 1068 buf[len - 1] = '\n'; 1069 1070 return len; 1071 } 1072 1073 static ssize_t ltr501_show_intensity_scale_avail(struct device *dev, 1074 struct device_attribute *attr, 1075 char *buf) 1076 { 1077 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev)); 1078 struct ltr501_chip_info *info = data->chip_info; 1079 ssize_t len = 0; 1080 int i; 1081 1082 for (i = 0; i < info->als_gain_tbl_size; i++) { 1083 if (info->als_gain[i].scale == LTR501_RESERVED_GAIN) 1084 continue; 1085 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ", 1086 info->als_gain[i].scale, 1087 info->als_gain[i].uscale); 1088 } 1089 1090 buf[len - 1] = '\n'; 1091 1092 return len; 1093 } 1094 1095 static IIO_CONST_ATTR_INT_TIME_AVAIL("0.05 0.1 0.2 0.4"); 1096 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("20 10 5 2 1 0.5"); 1097 1098 static IIO_DEVICE_ATTR(in_proximity_scale_available, S_IRUGO, 1099 ltr501_show_proximity_scale_avail, NULL, 0); 1100 static IIO_DEVICE_ATTR(in_intensity_scale_available, S_IRUGO, 1101 ltr501_show_intensity_scale_avail, NULL, 0); 1102 1103 static struct attribute *ltr501_attributes[] = { 1104 &iio_dev_attr_in_proximity_scale_available.dev_attr.attr, 1105 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr, 1106 &iio_const_attr_integration_time_available.dev_attr.attr, 1107 &iio_const_attr_sampling_frequency_available.dev_attr.attr, 1108 NULL 1109 }; 1110 1111 static struct attribute *ltr301_attributes[] = { 1112 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr, 1113 &iio_const_attr_integration_time_available.dev_attr.attr, 1114 &iio_const_attr_sampling_frequency_available.dev_attr.attr, 1115 NULL 1116 }; 1117 1118 static const struct attribute_group ltr501_attribute_group = { 1119 .attrs = ltr501_attributes, 1120 }; 1121 1122 static const struct attribute_group ltr301_attribute_group = { 1123 .attrs = ltr301_attributes, 1124 }; 1125 1126 static const struct iio_info ltr501_info_no_irq = { 1127 .read_raw = ltr501_read_raw, 1128 .write_raw = ltr501_write_raw, 1129 .attrs = <r501_attribute_group, 1130 .driver_module = THIS_MODULE, 1131 }; 1132 1133 static const struct iio_info ltr501_info = { 1134 .read_raw = ltr501_read_raw, 1135 .write_raw = ltr501_write_raw, 1136 .attrs = <r501_attribute_group, 1137 .read_event_value = <r501_read_event, 1138 .write_event_value = <r501_write_event, 1139 .read_event_config = <r501_read_event_config, 1140 .write_event_config = <r501_write_event_config, 1141 .driver_module = THIS_MODULE, 1142 }; 1143 1144 static const struct iio_info ltr301_info_no_irq = { 1145 .read_raw = ltr501_read_raw, 1146 .write_raw = ltr501_write_raw, 1147 .attrs = <r301_attribute_group, 1148 .driver_module = THIS_MODULE, 1149 }; 1150 1151 static const struct iio_info ltr301_info = { 1152 .read_raw = ltr501_read_raw, 1153 .write_raw = ltr501_write_raw, 1154 .attrs = <r301_attribute_group, 1155 .read_event_value = <r501_read_event, 1156 .write_event_value = <r501_write_event, 1157 .read_event_config = <r501_read_event_config, 1158 .write_event_config = <r501_write_event_config, 1159 .driver_module = THIS_MODULE, 1160 }; 1161 1162 static struct ltr501_chip_info ltr501_chip_info_tbl[] = { 1163 [ltr501] = { 1164 .partid = 0x08, 1165 .als_gain = ltr501_als_gain_tbl, 1166 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl), 1167 .ps_gain = ltr501_ps_gain_tbl, 1168 .ps_gain_tbl_size = ARRAY_SIZE(ltr501_ps_gain_tbl), 1169 .als_mode_active = BIT(0) | BIT(1), 1170 .als_gain_mask = BIT(3), 1171 .als_gain_shift = 3, 1172 .info = <r501_info, 1173 .info_no_irq = <r501_info_no_irq, 1174 .channels = ltr501_channels, 1175 .no_channels = ARRAY_SIZE(ltr501_channels), 1176 }, 1177 [ltr559] = { 1178 .partid = 0x09, 1179 .als_gain = ltr559_als_gain_tbl, 1180 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl), 1181 .ps_gain = ltr559_ps_gain_tbl, 1182 .ps_gain_tbl_size = ARRAY_SIZE(ltr559_ps_gain_tbl), 1183 .als_mode_active = BIT(1), 1184 .als_gain_mask = BIT(2) | BIT(3) | BIT(4), 1185 .als_gain_shift = 2, 1186 .info = <r501_info, 1187 .info_no_irq = <r501_info_no_irq, 1188 .channels = ltr501_channels, 1189 .no_channels = ARRAY_SIZE(ltr501_channels), 1190 }, 1191 [ltr301] = { 1192 .partid = 0x08, 1193 .als_gain = ltr501_als_gain_tbl, 1194 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl), 1195 .als_mode_active = BIT(0) | BIT(1), 1196 .als_gain_mask = BIT(3), 1197 .als_gain_shift = 3, 1198 .info = <r301_info, 1199 .info_no_irq = <r301_info_no_irq, 1200 .channels = ltr301_channels, 1201 .no_channels = ARRAY_SIZE(ltr301_channels), 1202 }, 1203 }; 1204 1205 static int ltr501_write_contr(struct ltr501_data *data, u8 als_val, u8 ps_val) 1206 { 1207 int ret; 1208 1209 ret = regmap_write(data->regmap, LTR501_ALS_CONTR, als_val); 1210 if (ret < 0) 1211 return ret; 1212 1213 return regmap_write(data->regmap, LTR501_PS_CONTR, ps_val); 1214 } 1215 1216 static irqreturn_t ltr501_trigger_handler(int irq, void *p) 1217 { 1218 struct iio_poll_func *pf = p; 1219 struct iio_dev *indio_dev = pf->indio_dev; 1220 struct ltr501_data *data = iio_priv(indio_dev); 1221 u16 buf[8]; 1222 __le16 als_buf[2]; 1223 u8 mask = 0; 1224 int j = 0; 1225 int ret, psdata; 1226 1227 memset(buf, 0, sizeof(buf)); 1228 1229 /* figure out which data needs to be ready */ 1230 if (test_bit(0, indio_dev->active_scan_mask) || 1231 test_bit(1, indio_dev->active_scan_mask)) 1232 mask |= LTR501_STATUS_ALS_RDY; 1233 if (test_bit(2, indio_dev->active_scan_mask)) 1234 mask |= LTR501_STATUS_PS_RDY; 1235 1236 ret = ltr501_drdy(data, mask); 1237 if (ret < 0) 1238 goto done; 1239 1240 if (mask & LTR501_STATUS_ALS_RDY) { 1241 ret = regmap_bulk_read(data->regmap, LTR501_ALS_DATA1, 1242 (u8 *)als_buf, sizeof(als_buf)); 1243 if (ret < 0) 1244 return ret; 1245 if (test_bit(0, indio_dev->active_scan_mask)) 1246 buf[j++] = le16_to_cpu(als_buf[1]); 1247 if (test_bit(1, indio_dev->active_scan_mask)) 1248 buf[j++] = le16_to_cpu(als_buf[0]); 1249 } 1250 1251 if (mask & LTR501_STATUS_PS_RDY) { 1252 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA, 1253 &psdata, 2); 1254 if (ret < 0) 1255 goto done; 1256 buf[j++] = psdata & LTR501_PS_DATA_MASK; 1257 } 1258 1259 iio_push_to_buffers_with_timestamp(indio_dev, buf, iio_get_time_ns()); 1260 1261 done: 1262 iio_trigger_notify_done(indio_dev->trig); 1263 1264 return IRQ_HANDLED; 1265 } 1266 1267 static irqreturn_t ltr501_interrupt_handler(int irq, void *private) 1268 { 1269 struct iio_dev *indio_dev = private; 1270 struct ltr501_data *data = iio_priv(indio_dev); 1271 int ret, status; 1272 1273 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status); 1274 if (ret < 0) { 1275 dev_err(&data->client->dev, 1276 "irq read int reg failed\n"); 1277 return IRQ_HANDLED; 1278 } 1279 1280 if (status & LTR501_STATUS_ALS_INTR) 1281 iio_push_event(indio_dev, 1282 IIO_UNMOD_EVENT_CODE(IIO_INTENSITY, 0, 1283 IIO_EV_TYPE_THRESH, 1284 IIO_EV_DIR_EITHER), 1285 iio_get_time_ns()); 1286 1287 if (status & LTR501_STATUS_PS_INTR) 1288 iio_push_event(indio_dev, 1289 IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0, 1290 IIO_EV_TYPE_THRESH, 1291 IIO_EV_DIR_EITHER), 1292 iio_get_time_ns()); 1293 1294 return IRQ_HANDLED; 1295 } 1296 1297 static int ltr501_init(struct ltr501_data *data) 1298 { 1299 int ret, status; 1300 1301 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status); 1302 if (ret < 0) 1303 return ret; 1304 1305 data->als_contr = status | data->chip_info->als_mode_active; 1306 1307 ret = regmap_read(data->regmap, LTR501_PS_CONTR, &status); 1308 if (ret < 0) 1309 return ret; 1310 1311 data->ps_contr = status | LTR501_CONTR_ACTIVE; 1312 1313 ret = ltr501_read_intr_prst(data, IIO_INTENSITY, &data->als_period); 1314 if (ret < 0) 1315 return ret; 1316 1317 ret = ltr501_read_intr_prst(data, IIO_PROXIMITY, &data->ps_period); 1318 if (ret < 0) 1319 return ret; 1320 1321 return ltr501_write_contr(data, data->als_contr, data->ps_contr); 1322 } 1323 1324 static bool ltr501_is_volatile_reg(struct device *dev, unsigned int reg) 1325 { 1326 switch (reg) { 1327 case LTR501_ALS_DATA1: 1328 case LTR501_ALS_DATA0: 1329 case LTR501_ALS_PS_STATUS: 1330 case LTR501_PS_DATA: 1331 return true; 1332 default: 1333 return false; 1334 } 1335 } 1336 1337 static struct regmap_config ltr501_regmap_config = { 1338 .name = LTR501_REGMAP_NAME, 1339 .reg_bits = 8, 1340 .val_bits = 8, 1341 .max_register = LTR501_MAX_REG, 1342 .cache_type = REGCACHE_RBTREE, 1343 .volatile_reg = ltr501_is_volatile_reg, 1344 }; 1345 1346 static int ltr501_powerdown(struct ltr501_data *data) 1347 { 1348 return ltr501_write_contr(data, data->als_contr & 1349 ~data->chip_info->als_mode_active, 1350 data->ps_contr & ~LTR501_CONTR_ACTIVE); 1351 } 1352 1353 static const char *ltr501_match_acpi_device(struct device *dev, int *chip_idx) 1354 { 1355 const struct acpi_device_id *id; 1356 1357 id = acpi_match_device(dev->driver->acpi_match_table, dev); 1358 if (!id) 1359 return NULL; 1360 *chip_idx = id->driver_data; 1361 return dev_name(dev); 1362 } 1363 1364 static int ltr501_probe(struct i2c_client *client, 1365 const struct i2c_device_id *id) 1366 { 1367 struct ltr501_data *data; 1368 struct iio_dev *indio_dev; 1369 struct regmap *regmap; 1370 int ret, partid, chip_idx = 0; 1371 const char *name = NULL; 1372 1373 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); 1374 if (!indio_dev) 1375 return -ENOMEM; 1376 1377 regmap = devm_regmap_init_i2c(client, <r501_regmap_config); 1378 if (IS_ERR(regmap)) { 1379 dev_err(&client->dev, "Regmap initialization failed.\n"); 1380 return PTR_ERR(regmap); 1381 } 1382 1383 data = iio_priv(indio_dev); 1384 i2c_set_clientdata(client, indio_dev); 1385 data->client = client; 1386 data->regmap = regmap; 1387 mutex_init(&data->lock_als); 1388 mutex_init(&data->lock_ps); 1389 1390 data->reg_it = devm_regmap_field_alloc(&client->dev, regmap, 1391 reg_field_it); 1392 if (IS_ERR(data->reg_it)) { 1393 dev_err(&client->dev, "Integ time reg field init failed.\n"); 1394 return PTR_ERR(data->reg_it); 1395 } 1396 1397 data->reg_als_intr = devm_regmap_field_alloc(&client->dev, regmap, 1398 reg_field_als_intr); 1399 if (IS_ERR(data->reg_als_intr)) { 1400 dev_err(&client->dev, "ALS intr mode reg field init failed\n"); 1401 return PTR_ERR(data->reg_als_intr); 1402 } 1403 1404 data->reg_ps_intr = devm_regmap_field_alloc(&client->dev, regmap, 1405 reg_field_ps_intr); 1406 if (IS_ERR(data->reg_ps_intr)) { 1407 dev_err(&client->dev, "PS intr mode reg field init failed.\n"); 1408 return PTR_ERR(data->reg_ps_intr); 1409 } 1410 1411 data->reg_als_rate = devm_regmap_field_alloc(&client->dev, regmap, 1412 reg_field_als_rate); 1413 if (IS_ERR(data->reg_als_rate)) { 1414 dev_err(&client->dev, "ALS samp rate field init failed.\n"); 1415 return PTR_ERR(data->reg_als_rate); 1416 } 1417 1418 data->reg_ps_rate = devm_regmap_field_alloc(&client->dev, regmap, 1419 reg_field_ps_rate); 1420 if (IS_ERR(data->reg_ps_rate)) { 1421 dev_err(&client->dev, "PS samp rate field init failed.\n"); 1422 return PTR_ERR(data->reg_ps_rate); 1423 } 1424 1425 data->reg_als_prst = devm_regmap_field_alloc(&client->dev, regmap, 1426 reg_field_als_prst); 1427 if (IS_ERR(data->reg_als_prst)) { 1428 dev_err(&client->dev, "ALS prst reg field init failed\n"); 1429 return PTR_ERR(data->reg_als_prst); 1430 } 1431 1432 data->reg_ps_prst = devm_regmap_field_alloc(&client->dev, regmap, 1433 reg_field_ps_prst); 1434 if (IS_ERR(data->reg_ps_prst)) { 1435 dev_err(&client->dev, "PS prst reg field init failed.\n"); 1436 return PTR_ERR(data->reg_ps_prst); 1437 } 1438 1439 ret = regmap_read(data->regmap, LTR501_PART_ID, &partid); 1440 if (ret < 0) 1441 return ret; 1442 1443 if (id) { 1444 name = id->name; 1445 chip_idx = id->driver_data; 1446 } else if (ACPI_HANDLE(&client->dev)) { 1447 name = ltr501_match_acpi_device(&client->dev, &chip_idx); 1448 } else { 1449 return -ENODEV; 1450 } 1451 1452 data->chip_info = <r501_chip_info_tbl[chip_idx]; 1453 1454 if ((partid >> 4) != data->chip_info->partid) 1455 return -ENODEV; 1456 1457 indio_dev->dev.parent = &client->dev; 1458 indio_dev->info = data->chip_info->info; 1459 indio_dev->channels = data->chip_info->channels; 1460 indio_dev->num_channels = data->chip_info->no_channels; 1461 indio_dev->name = name; 1462 indio_dev->modes = INDIO_DIRECT_MODE; 1463 1464 ret = ltr501_init(data); 1465 if (ret < 0) 1466 return ret; 1467 1468 if (client->irq > 0) { 1469 ret = devm_request_threaded_irq(&client->dev, client->irq, 1470 NULL, ltr501_interrupt_handler, 1471 IRQF_TRIGGER_FALLING | 1472 IRQF_ONESHOT, 1473 "ltr501_thresh_event", 1474 indio_dev); 1475 if (ret) { 1476 dev_err(&client->dev, "request irq (%d) failed\n", 1477 client->irq); 1478 return ret; 1479 } 1480 } else { 1481 indio_dev->info = data->chip_info->info_no_irq; 1482 } 1483 1484 ret = iio_triggered_buffer_setup(indio_dev, NULL, 1485 ltr501_trigger_handler, NULL); 1486 if (ret) 1487 goto powerdown_on_error; 1488 1489 ret = iio_device_register(indio_dev); 1490 if (ret) 1491 goto error_unreg_buffer; 1492 1493 return 0; 1494 1495 error_unreg_buffer: 1496 iio_triggered_buffer_cleanup(indio_dev); 1497 powerdown_on_error: 1498 ltr501_powerdown(data); 1499 return ret; 1500 } 1501 1502 static int ltr501_remove(struct i2c_client *client) 1503 { 1504 struct iio_dev *indio_dev = i2c_get_clientdata(client); 1505 1506 iio_device_unregister(indio_dev); 1507 iio_triggered_buffer_cleanup(indio_dev); 1508 ltr501_powerdown(iio_priv(indio_dev)); 1509 1510 return 0; 1511 } 1512 1513 #ifdef CONFIG_PM_SLEEP 1514 static int ltr501_suspend(struct device *dev) 1515 { 1516 struct ltr501_data *data = iio_priv(i2c_get_clientdata( 1517 to_i2c_client(dev))); 1518 return ltr501_powerdown(data); 1519 } 1520 1521 static int ltr501_resume(struct device *dev) 1522 { 1523 struct ltr501_data *data = iio_priv(i2c_get_clientdata( 1524 to_i2c_client(dev))); 1525 1526 return ltr501_write_contr(data, data->als_contr, 1527 data->ps_contr); 1528 } 1529 #endif 1530 1531 static SIMPLE_DEV_PM_OPS(ltr501_pm_ops, ltr501_suspend, ltr501_resume); 1532 1533 static const struct acpi_device_id ltr_acpi_match[] = { 1534 {"LTER0501", ltr501}, 1535 {"LTER0559", ltr559}, 1536 {"LTER0301", ltr301}, 1537 { }, 1538 }; 1539 MODULE_DEVICE_TABLE(acpi, ltr_acpi_match); 1540 1541 static const struct i2c_device_id ltr501_id[] = { 1542 { "ltr501", ltr501}, 1543 { "ltr559", ltr559}, 1544 { "ltr301", ltr301}, 1545 { } 1546 }; 1547 MODULE_DEVICE_TABLE(i2c, ltr501_id); 1548 1549 static struct i2c_driver ltr501_driver = { 1550 .driver = { 1551 .name = LTR501_DRV_NAME, 1552 .pm = <r501_pm_ops, 1553 .acpi_match_table = ACPI_PTR(ltr_acpi_match), 1554 }, 1555 .probe = ltr501_probe, 1556 .remove = ltr501_remove, 1557 .id_table = ltr501_id, 1558 }; 1559 1560 module_i2c_driver(ltr501_driver); 1561 1562 MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>"); 1563 MODULE_DESCRIPTION("Lite-On LTR501 ambient light and proximity sensor driver"); 1564 MODULE_LICENSE("GPL"); 1565