xref: /openbmc/linux/drivers/iio/light/ltr501.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ltr501.c - Support for Lite-On LTR501 ambient light and proximity sensor
4  *
5  * Copyright 2014 Peter Meerwald <pmeerw@pmeerw.net>
6  *
7  * 7-bit I2C slave address 0x23
8  *
9  * TODO: IR LED characteristics
10  */
11 
12 #include <linux/module.h>
13 #include <linux/i2c.h>
14 #include <linux/err.h>
15 #include <linux/delay.h>
16 #include <linux/regmap.h>
17 #include <linux/acpi.h>
18 
19 #include <linux/iio/iio.h>
20 #include <linux/iio/events.h>
21 #include <linux/iio/sysfs.h>
22 #include <linux/iio/trigger_consumer.h>
23 #include <linux/iio/buffer.h>
24 #include <linux/iio/triggered_buffer.h>
25 
26 #define LTR501_DRV_NAME "ltr501"
27 
28 #define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */
29 #define LTR501_PS_CONTR 0x81 /* PS operation mode */
30 #define LTR501_PS_MEAS_RATE 0x84 /* measurement rate*/
31 #define LTR501_ALS_MEAS_RATE 0x85 /* ALS integ time, measurement rate*/
32 #define LTR501_PART_ID 0x86
33 #define LTR501_MANUFAC_ID 0x87
34 #define LTR501_ALS_DATA1 0x88 /* 16-bit, little endian */
35 #define LTR501_ALS_DATA1_UPPER 0x89 /* upper 8 bits of LTR501_ALS_DATA1 */
36 #define LTR501_ALS_DATA0 0x8a /* 16-bit, little endian */
37 #define LTR501_ALS_DATA0_UPPER 0x8b /* upper 8 bits of LTR501_ALS_DATA0 */
38 #define LTR501_ALS_PS_STATUS 0x8c
39 #define LTR501_PS_DATA 0x8d /* 16-bit, little endian */
40 #define LTR501_PS_DATA_UPPER 0x8e /* upper 8 bits of LTR501_PS_DATA */
41 #define LTR501_INTR 0x8f /* output mode, polarity, mode */
42 #define LTR501_PS_THRESH_UP 0x90 /* 11 bit, ps upper threshold */
43 #define LTR501_PS_THRESH_LOW 0x92 /* 11 bit, ps lower threshold */
44 #define LTR501_ALS_THRESH_UP 0x97 /* 16 bit, ALS upper threshold */
45 #define LTR501_ALS_THRESH_LOW 0x99 /* 16 bit, ALS lower threshold */
46 #define LTR501_INTR_PRST 0x9e /* ps thresh, als thresh */
47 #define LTR501_MAX_REG 0x9f
48 
49 #define LTR501_ALS_CONTR_SW_RESET BIT(2)
50 #define LTR501_CONTR_PS_GAIN_MASK (BIT(3) | BIT(2))
51 #define LTR501_CONTR_PS_GAIN_SHIFT 2
52 #define LTR501_CONTR_ALS_GAIN_MASK BIT(3)
53 #define LTR501_CONTR_ACTIVE BIT(1)
54 
55 #define LTR501_STATUS_ALS_INTR BIT(3)
56 #define LTR501_STATUS_ALS_RDY BIT(2)
57 #define LTR501_STATUS_PS_INTR BIT(1)
58 #define LTR501_STATUS_PS_RDY BIT(0)
59 
60 #define LTR501_PS_DATA_MASK 0x7ff
61 #define LTR501_PS_THRESH_MASK 0x7ff
62 #define LTR501_ALS_THRESH_MASK 0xffff
63 
64 #define LTR501_ALS_DEF_PERIOD 500000
65 #define LTR501_PS_DEF_PERIOD 100000
66 
67 #define LTR501_REGMAP_NAME "ltr501_regmap"
68 
69 #define LTR501_LUX_CONV(vis_coeff, vis_data, ir_coeff, ir_data) \
70 			((vis_coeff * vis_data) - (ir_coeff * ir_data))
71 
72 static const int int_time_mapping[] = {100000, 50000, 200000, 400000};
73 
74 static const struct reg_field reg_field_it =
75 				REG_FIELD(LTR501_ALS_MEAS_RATE, 3, 4);
76 static const struct reg_field reg_field_als_intr =
77 				REG_FIELD(LTR501_INTR, 1, 1);
78 static const struct reg_field reg_field_ps_intr =
79 				REG_FIELD(LTR501_INTR, 0, 0);
80 static const struct reg_field reg_field_als_rate =
81 				REG_FIELD(LTR501_ALS_MEAS_RATE, 0, 2);
82 static const struct reg_field reg_field_ps_rate =
83 				REG_FIELD(LTR501_PS_MEAS_RATE, 0, 3);
84 static const struct reg_field reg_field_als_prst =
85 				REG_FIELD(LTR501_INTR_PRST, 0, 3);
86 static const struct reg_field reg_field_ps_prst =
87 				REG_FIELD(LTR501_INTR_PRST, 4, 7);
88 
89 struct ltr501_samp_table {
90 	int freq_val;  /* repetition frequency in micro HZ*/
91 	int time_val; /* repetition rate in micro seconds */
92 };
93 
94 #define LTR501_RESERVED_GAIN -1
95 
96 enum {
97 	ltr501 = 0,
98 	ltr559,
99 	ltr301,
100 };
101 
102 struct ltr501_gain {
103 	int scale;
104 	int uscale;
105 };
106 
107 static const struct ltr501_gain ltr501_als_gain_tbl[] = {
108 	{1, 0},
109 	{0, 5000},
110 };
111 
112 static const struct ltr501_gain ltr559_als_gain_tbl[] = {
113 	{1, 0},
114 	{0, 500000},
115 	{0, 250000},
116 	{0, 125000},
117 	{LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
118 	{LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
119 	{0, 20000},
120 	{0, 10000},
121 };
122 
123 static const struct ltr501_gain ltr501_ps_gain_tbl[] = {
124 	{1, 0},
125 	{0, 250000},
126 	{0, 125000},
127 	{0, 62500},
128 };
129 
130 static const struct ltr501_gain ltr559_ps_gain_tbl[] = {
131 	{0, 62500}, /* x16 gain */
132 	{0, 31250}, /* x32 gain */
133 	{0, 15625}, /* bits X1 are for x64 gain */
134 	{0, 15624},
135 };
136 
137 struct ltr501_chip_info {
138 	u8 partid;
139 	const struct ltr501_gain *als_gain;
140 	int als_gain_tbl_size;
141 	const struct ltr501_gain *ps_gain;
142 	int ps_gain_tbl_size;
143 	u8 als_mode_active;
144 	u8 als_gain_mask;
145 	u8 als_gain_shift;
146 	struct iio_chan_spec const *channels;
147 	const int no_channels;
148 	const struct iio_info *info;
149 	const struct iio_info *info_no_irq;
150 };
151 
152 struct ltr501_data {
153 	struct i2c_client *client;
154 	struct mutex lock_als, lock_ps;
155 	const struct ltr501_chip_info *chip_info;
156 	u8 als_contr, ps_contr;
157 	int als_period, ps_period; /* period in micro seconds */
158 	struct regmap *regmap;
159 	struct regmap_field *reg_it;
160 	struct regmap_field *reg_als_intr;
161 	struct regmap_field *reg_ps_intr;
162 	struct regmap_field *reg_als_rate;
163 	struct regmap_field *reg_ps_rate;
164 	struct regmap_field *reg_als_prst;
165 	struct regmap_field *reg_ps_prst;
166 };
167 
168 static const struct ltr501_samp_table ltr501_als_samp_table[] = {
169 			{20000000, 50000}, {10000000, 100000},
170 			{5000000, 200000}, {2000000, 500000},
171 			{1000000, 1000000}, {500000, 2000000},
172 			{500000, 2000000}, {500000, 2000000}
173 };
174 
175 static const struct ltr501_samp_table ltr501_ps_samp_table[] = {
176 			{20000000, 50000}, {14285714, 70000},
177 			{10000000, 100000}, {5000000, 200000},
178 			{2000000, 500000}, {1000000, 1000000},
179 			{500000, 2000000}, {500000, 2000000},
180 			{500000, 2000000}
181 };
182 
183 static int ltr501_match_samp_freq(const struct ltr501_samp_table *tab,
184 					   int len, int val, int val2)
185 {
186 	int i, freq;
187 
188 	freq = val * 1000000 + val2;
189 
190 	for (i = 0; i < len; i++) {
191 		if (tab[i].freq_val == freq)
192 			return i;
193 	}
194 
195 	return -EINVAL;
196 }
197 
198 static int ltr501_als_read_samp_freq(const struct ltr501_data *data,
199 				     int *val, int *val2)
200 {
201 	int ret, i;
202 
203 	ret = regmap_field_read(data->reg_als_rate, &i);
204 	if (ret < 0)
205 		return ret;
206 
207 	if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
208 		return -EINVAL;
209 
210 	*val = ltr501_als_samp_table[i].freq_val / 1000000;
211 	*val2 = ltr501_als_samp_table[i].freq_val % 1000000;
212 
213 	return IIO_VAL_INT_PLUS_MICRO;
214 }
215 
216 static int ltr501_ps_read_samp_freq(const struct ltr501_data *data,
217 				    int *val, int *val2)
218 {
219 	int ret, i;
220 
221 	ret = regmap_field_read(data->reg_ps_rate, &i);
222 	if (ret < 0)
223 		return ret;
224 
225 	if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
226 		return -EINVAL;
227 
228 	*val = ltr501_ps_samp_table[i].freq_val / 1000000;
229 	*val2 = ltr501_ps_samp_table[i].freq_val % 1000000;
230 
231 	return IIO_VAL_INT_PLUS_MICRO;
232 }
233 
234 static int ltr501_als_write_samp_freq(struct ltr501_data *data,
235 				      int val, int val2)
236 {
237 	int i, ret;
238 
239 	i = ltr501_match_samp_freq(ltr501_als_samp_table,
240 				   ARRAY_SIZE(ltr501_als_samp_table),
241 				   val, val2);
242 
243 	if (i < 0)
244 		return i;
245 
246 	mutex_lock(&data->lock_als);
247 	ret = regmap_field_write(data->reg_als_rate, i);
248 	mutex_unlock(&data->lock_als);
249 
250 	return ret;
251 }
252 
253 static int ltr501_ps_write_samp_freq(struct ltr501_data *data,
254 				     int val, int val2)
255 {
256 	int i, ret;
257 
258 	i = ltr501_match_samp_freq(ltr501_ps_samp_table,
259 				   ARRAY_SIZE(ltr501_ps_samp_table),
260 				   val, val2);
261 
262 	if (i < 0)
263 		return i;
264 
265 	mutex_lock(&data->lock_ps);
266 	ret = regmap_field_write(data->reg_ps_rate, i);
267 	mutex_unlock(&data->lock_ps);
268 
269 	return ret;
270 }
271 
272 static int ltr501_als_read_samp_period(const struct ltr501_data *data, int *val)
273 {
274 	int ret, i;
275 
276 	ret = regmap_field_read(data->reg_als_rate, &i);
277 	if (ret < 0)
278 		return ret;
279 
280 	if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
281 		return -EINVAL;
282 
283 	*val = ltr501_als_samp_table[i].time_val;
284 
285 	return IIO_VAL_INT;
286 }
287 
288 static int ltr501_ps_read_samp_period(const struct ltr501_data *data, int *val)
289 {
290 	int ret, i;
291 
292 	ret = regmap_field_read(data->reg_ps_rate, &i);
293 	if (ret < 0)
294 		return ret;
295 
296 	if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
297 		return -EINVAL;
298 
299 	*val = ltr501_ps_samp_table[i].time_val;
300 
301 	return IIO_VAL_INT;
302 }
303 
304 /* IR and visible spectrum coeff's are given in data sheet */
305 static unsigned long ltr501_calculate_lux(u16 vis_data, u16 ir_data)
306 {
307 	unsigned long ratio, lux;
308 
309 	if (vis_data == 0)
310 		return 0;
311 
312 	/* multiply numerator by 100 to avoid handling ratio < 1 */
313 	ratio = DIV_ROUND_UP(ir_data * 100, ir_data + vis_data);
314 
315 	if (ratio < 45)
316 		lux = LTR501_LUX_CONV(1774, vis_data, -1105, ir_data);
317 	else if (ratio >= 45 && ratio < 64)
318 		lux = LTR501_LUX_CONV(3772, vis_data, 1336, ir_data);
319 	else if (ratio >= 64 && ratio < 85)
320 		lux = LTR501_LUX_CONV(1690, vis_data, 169, ir_data);
321 	else
322 		lux = 0;
323 
324 	return lux / 1000;
325 }
326 
327 static int ltr501_drdy(const struct ltr501_data *data, u8 drdy_mask)
328 {
329 	int tries = 100;
330 	int ret, status;
331 
332 	while (tries--) {
333 		ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
334 		if (ret < 0)
335 			return ret;
336 		if ((status & drdy_mask) == drdy_mask)
337 			return 0;
338 		msleep(25);
339 	}
340 
341 	dev_err(&data->client->dev, "ltr501_drdy() failed, data not ready\n");
342 	return -EIO;
343 }
344 
345 static int ltr501_set_it_time(struct ltr501_data *data, int it)
346 {
347 	int ret, i, index = -1, status;
348 
349 	for (i = 0; i < ARRAY_SIZE(int_time_mapping); i++) {
350 		if (int_time_mapping[i] == it) {
351 			index = i;
352 			break;
353 		}
354 	}
355 	/* Make sure integ time index is valid */
356 	if (index < 0)
357 		return -EINVAL;
358 
359 	ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
360 	if (ret < 0)
361 		return ret;
362 
363 	if (status & LTR501_CONTR_ALS_GAIN_MASK) {
364 		/*
365 		 * 200 ms and 400 ms integ time can only be
366 		 * used in dynamic range 1
367 		 */
368 		if (index > 1)
369 			return -EINVAL;
370 	} else
371 		/* 50 ms integ time can only be used in dynamic range 2 */
372 		if (index == 1)
373 			return -EINVAL;
374 
375 	return regmap_field_write(data->reg_it, index);
376 }
377 
378 /* read int time in micro seconds */
379 static int ltr501_read_it_time(const struct ltr501_data *data,
380 			       int *val, int *val2)
381 {
382 	int ret, index;
383 
384 	ret = regmap_field_read(data->reg_it, &index);
385 	if (ret < 0)
386 		return ret;
387 
388 	/* Make sure integ time index is valid */
389 	if (index < 0 || index >= ARRAY_SIZE(int_time_mapping))
390 		return -EINVAL;
391 
392 	*val2 = int_time_mapping[index];
393 	*val = 0;
394 
395 	return IIO_VAL_INT_PLUS_MICRO;
396 }
397 
398 static int ltr501_read_als(const struct ltr501_data *data, __le16 buf[2])
399 {
400 	int ret;
401 
402 	ret = ltr501_drdy(data, LTR501_STATUS_ALS_RDY);
403 	if (ret < 0)
404 		return ret;
405 	/* always read both ALS channels in given order */
406 	return regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
407 				buf, 2 * sizeof(__le16));
408 }
409 
410 static int ltr501_read_ps(const struct ltr501_data *data)
411 {
412 	__le16 status;
413 	int ret;
414 
415 	ret = ltr501_drdy(data, LTR501_STATUS_PS_RDY);
416 	if (ret < 0)
417 		return ret;
418 
419 	ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
420 			       &status, sizeof(status));
421 	if (ret < 0)
422 		return ret;
423 
424 	return le16_to_cpu(status);
425 }
426 
427 static int ltr501_read_intr_prst(const struct ltr501_data *data,
428 				 enum iio_chan_type type,
429 				 int *val2)
430 {
431 	int ret, samp_period, prst;
432 
433 	switch (type) {
434 	case IIO_INTENSITY:
435 		ret = regmap_field_read(data->reg_als_prst, &prst);
436 		if (ret < 0)
437 			return ret;
438 
439 		ret = ltr501_als_read_samp_period(data, &samp_period);
440 
441 		if (ret < 0)
442 			return ret;
443 		*val2 = samp_period * prst;
444 		return IIO_VAL_INT_PLUS_MICRO;
445 	case IIO_PROXIMITY:
446 		ret = regmap_field_read(data->reg_ps_prst, &prst);
447 		if (ret < 0)
448 			return ret;
449 
450 		ret = ltr501_ps_read_samp_period(data, &samp_period);
451 
452 		if (ret < 0)
453 			return ret;
454 
455 		*val2 = samp_period * prst;
456 		return IIO_VAL_INT_PLUS_MICRO;
457 	default:
458 		return -EINVAL;
459 	}
460 
461 	return -EINVAL;
462 }
463 
464 static int ltr501_write_intr_prst(struct ltr501_data *data,
465 				  enum iio_chan_type type,
466 				  int val, int val2)
467 {
468 	int ret, samp_period, new_val;
469 	unsigned long period;
470 
471 	if (val < 0 || val2 < 0)
472 		return -EINVAL;
473 
474 	/* period in microseconds */
475 	period = ((val * 1000000) + val2);
476 
477 	switch (type) {
478 	case IIO_INTENSITY:
479 		ret = ltr501_als_read_samp_period(data, &samp_period);
480 		if (ret < 0)
481 			return ret;
482 
483 		/* period should be atleast equal to sampling period */
484 		if (period < samp_period)
485 			return -EINVAL;
486 
487 		new_val = DIV_ROUND_UP(period, samp_period);
488 		if (new_val < 0 || new_val > 0x0f)
489 			return -EINVAL;
490 
491 		mutex_lock(&data->lock_als);
492 		ret = regmap_field_write(data->reg_als_prst, new_val);
493 		mutex_unlock(&data->lock_als);
494 		if (ret >= 0)
495 			data->als_period = period;
496 
497 		return ret;
498 	case IIO_PROXIMITY:
499 		ret = ltr501_ps_read_samp_period(data, &samp_period);
500 		if (ret < 0)
501 			return ret;
502 
503 		/* period should be atleast equal to rate */
504 		if (period < samp_period)
505 			return -EINVAL;
506 
507 		new_val = DIV_ROUND_UP(period, samp_period);
508 		if (new_val < 0 || new_val > 0x0f)
509 			return -EINVAL;
510 
511 		mutex_lock(&data->lock_ps);
512 		ret = regmap_field_write(data->reg_ps_prst, new_val);
513 		mutex_unlock(&data->lock_ps);
514 		if (ret >= 0)
515 			data->ps_period = period;
516 
517 		return ret;
518 	default:
519 		return -EINVAL;
520 	}
521 
522 	return -EINVAL;
523 }
524 
525 static const struct iio_event_spec ltr501_als_event_spec[] = {
526 	{
527 		.type = IIO_EV_TYPE_THRESH,
528 		.dir = IIO_EV_DIR_RISING,
529 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
530 	}, {
531 		.type = IIO_EV_TYPE_THRESH,
532 		.dir = IIO_EV_DIR_FALLING,
533 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
534 	}, {
535 		.type = IIO_EV_TYPE_THRESH,
536 		.dir = IIO_EV_DIR_EITHER,
537 		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
538 				 BIT(IIO_EV_INFO_PERIOD),
539 	},
540 
541 };
542 
543 static const struct iio_event_spec ltr501_pxs_event_spec[] = {
544 	{
545 		.type = IIO_EV_TYPE_THRESH,
546 		.dir = IIO_EV_DIR_RISING,
547 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
548 	}, {
549 		.type = IIO_EV_TYPE_THRESH,
550 		.dir = IIO_EV_DIR_FALLING,
551 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
552 	}, {
553 		.type = IIO_EV_TYPE_THRESH,
554 		.dir = IIO_EV_DIR_EITHER,
555 		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
556 				 BIT(IIO_EV_INFO_PERIOD),
557 	},
558 };
559 
560 #define LTR501_INTENSITY_CHANNEL(_idx, _addr, _mod, _shared, \
561 				 _evspec, _evsize) { \
562 	.type = IIO_INTENSITY, \
563 	.modified = 1, \
564 	.address = (_addr), \
565 	.channel2 = (_mod), \
566 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
567 	.info_mask_shared_by_type = (_shared), \
568 	.scan_index = (_idx), \
569 	.scan_type = { \
570 		.sign = 'u', \
571 		.realbits = 16, \
572 		.storagebits = 16, \
573 		.endianness = IIO_CPU, \
574 	}, \
575 	.event_spec = _evspec,\
576 	.num_event_specs = _evsize,\
577 }
578 
579 #define LTR501_LIGHT_CHANNEL() { \
580 	.type = IIO_LIGHT, \
581 	.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
582 	.scan_index = -1, \
583 }
584 
585 static const struct iio_chan_spec ltr501_channels[] = {
586 	LTR501_LIGHT_CHANNEL(),
587 	LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
588 				 ltr501_als_event_spec,
589 				 ARRAY_SIZE(ltr501_als_event_spec)),
590 	LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
591 				 BIT(IIO_CHAN_INFO_SCALE) |
592 				 BIT(IIO_CHAN_INFO_INT_TIME) |
593 				 BIT(IIO_CHAN_INFO_SAMP_FREQ),
594 				 NULL, 0),
595 	{
596 		.type = IIO_PROXIMITY,
597 		.address = LTR501_PS_DATA,
598 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
599 			BIT(IIO_CHAN_INFO_SCALE),
600 		.scan_index = 2,
601 		.scan_type = {
602 			.sign = 'u',
603 			.realbits = 11,
604 			.storagebits = 16,
605 			.endianness = IIO_CPU,
606 		},
607 		.event_spec = ltr501_pxs_event_spec,
608 		.num_event_specs = ARRAY_SIZE(ltr501_pxs_event_spec),
609 	},
610 	IIO_CHAN_SOFT_TIMESTAMP(3),
611 };
612 
613 static const struct iio_chan_spec ltr301_channels[] = {
614 	LTR501_LIGHT_CHANNEL(),
615 	LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
616 				 ltr501_als_event_spec,
617 				 ARRAY_SIZE(ltr501_als_event_spec)),
618 	LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
619 				 BIT(IIO_CHAN_INFO_SCALE) |
620 				 BIT(IIO_CHAN_INFO_INT_TIME) |
621 				 BIT(IIO_CHAN_INFO_SAMP_FREQ),
622 				 NULL, 0),
623 	IIO_CHAN_SOFT_TIMESTAMP(2),
624 };
625 
626 static int ltr501_read_raw(struct iio_dev *indio_dev,
627 			   struct iio_chan_spec const *chan,
628 			   int *val, int *val2, long mask)
629 {
630 	struct ltr501_data *data = iio_priv(indio_dev);
631 	__le16 buf[2];
632 	int ret, i;
633 
634 	switch (mask) {
635 	case IIO_CHAN_INFO_PROCESSED:
636 		switch (chan->type) {
637 		case IIO_LIGHT:
638 			ret = iio_device_claim_direct_mode(indio_dev);
639 			if (ret)
640 				return ret;
641 
642 			mutex_lock(&data->lock_als);
643 			ret = ltr501_read_als(data, buf);
644 			mutex_unlock(&data->lock_als);
645 			iio_device_release_direct_mode(indio_dev);
646 			if (ret < 0)
647 				return ret;
648 			*val = ltr501_calculate_lux(le16_to_cpu(buf[1]),
649 						    le16_to_cpu(buf[0]));
650 			return IIO_VAL_INT;
651 		default:
652 			return -EINVAL;
653 		}
654 	case IIO_CHAN_INFO_RAW:
655 		ret = iio_device_claim_direct_mode(indio_dev);
656 		if (ret)
657 			return ret;
658 
659 		switch (chan->type) {
660 		case IIO_INTENSITY:
661 			mutex_lock(&data->lock_als);
662 			ret = ltr501_read_als(data, buf);
663 			mutex_unlock(&data->lock_als);
664 			if (ret < 0)
665 				break;
666 			*val = le16_to_cpu(chan->address == LTR501_ALS_DATA1 ?
667 					   buf[0] : buf[1]);
668 			ret = IIO_VAL_INT;
669 			break;
670 		case IIO_PROXIMITY:
671 			mutex_lock(&data->lock_ps);
672 			ret = ltr501_read_ps(data);
673 			mutex_unlock(&data->lock_ps);
674 			if (ret < 0)
675 				break;
676 			*val = ret & LTR501_PS_DATA_MASK;
677 			ret = IIO_VAL_INT;
678 			break;
679 		default:
680 			ret = -EINVAL;
681 			break;
682 		}
683 
684 		iio_device_release_direct_mode(indio_dev);
685 		return ret;
686 
687 	case IIO_CHAN_INFO_SCALE:
688 		switch (chan->type) {
689 		case IIO_INTENSITY:
690 			i = (data->als_contr & data->chip_info->als_gain_mask)
691 			     >> data->chip_info->als_gain_shift;
692 			*val = data->chip_info->als_gain[i].scale;
693 			*val2 = data->chip_info->als_gain[i].uscale;
694 			return IIO_VAL_INT_PLUS_MICRO;
695 		case IIO_PROXIMITY:
696 			i = (data->ps_contr & LTR501_CONTR_PS_GAIN_MASK) >>
697 				LTR501_CONTR_PS_GAIN_SHIFT;
698 			*val = data->chip_info->ps_gain[i].scale;
699 			*val2 = data->chip_info->ps_gain[i].uscale;
700 			return IIO_VAL_INT_PLUS_MICRO;
701 		default:
702 			return -EINVAL;
703 		}
704 	case IIO_CHAN_INFO_INT_TIME:
705 		switch (chan->type) {
706 		case IIO_INTENSITY:
707 			return ltr501_read_it_time(data, val, val2);
708 		default:
709 			return -EINVAL;
710 		}
711 	case IIO_CHAN_INFO_SAMP_FREQ:
712 		switch (chan->type) {
713 		case IIO_INTENSITY:
714 			return ltr501_als_read_samp_freq(data, val, val2);
715 		case IIO_PROXIMITY:
716 			return ltr501_ps_read_samp_freq(data, val, val2);
717 		default:
718 			return -EINVAL;
719 		}
720 	}
721 	return -EINVAL;
722 }
723 
724 static int ltr501_get_gain_index(const struct ltr501_gain *gain, int size,
725 				 int val, int val2)
726 {
727 	int i;
728 
729 	for (i = 0; i < size; i++)
730 		if (val == gain[i].scale && val2 == gain[i].uscale)
731 			return i;
732 
733 	return -1;
734 }
735 
736 static int ltr501_write_raw(struct iio_dev *indio_dev,
737 			    struct iio_chan_spec const *chan,
738 			    int val, int val2, long mask)
739 {
740 	struct ltr501_data *data = iio_priv(indio_dev);
741 	int i, ret, freq_val, freq_val2;
742 	const struct ltr501_chip_info *info = data->chip_info;
743 
744 	ret = iio_device_claim_direct_mode(indio_dev);
745 	if (ret)
746 		return ret;
747 
748 	switch (mask) {
749 	case IIO_CHAN_INFO_SCALE:
750 		switch (chan->type) {
751 		case IIO_INTENSITY:
752 			i = ltr501_get_gain_index(info->als_gain,
753 						  info->als_gain_tbl_size,
754 						  val, val2);
755 			if (i < 0) {
756 				ret = -EINVAL;
757 				break;
758 			}
759 
760 			data->als_contr &= ~info->als_gain_mask;
761 			data->als_contr |= i << info->als_gain_shift;
762 
763 			ret = regmap_write(data->regmap, LTR501_ALS_CONTR,
764 					   data->als_contr);
765 			break;
766 		case IIO_PROXIMITY:
767 			i = ltr501_get_gain_index(info->ps_gain,
768 						  info->ps_gain_tbl_size,
769 						  val, val2);
770 			if (i < 0) {
771 				ret = -EINVAL;
772 				break;
773 			}
774 			data->ps_contr &= ~LTR501_CONTR_PS_GAIN_MASK;
775 			data->ps_contr |= i << LTR501_CONTR_PS_GAIN_SHIFT;
776 
777 			ret = regmap_write(data->regmap, LTR501_PS_CONTR,
778 					   data->ps_contr);
779 			break;
780 		default:
781 			ret = -EINVAL;
782 			break;
783 		}
784 		break;
785 
786 	case IIO_CHAN_INFO_INT_TIME:
787 		switch (chan->type) {
788 		case IIO_INTENSITY:
789 			if (val != 0) {
790 				ret = -EINVAL;
791 				break;
792 			}
793 			mutex_lock(&data->lock_als);
794 			ret = ltr501_set_it_time(data, val2);
795 			mutex_unlock(&data->lock_als);
796 			break;
797 		default:
798 			ret = -EINVAL;
799 			break;
800 		}
801 		break;
802 
803 	case IIO_CHAN_INFO_SAMP_FREQ:
804 		switch (chan->type) {
805 		case IIO_INTENSITY:
806 			ret = ltr501_als_read_samp_freq(data, &freq_val,
807 							&freq_val2);
808 			if (ret < 0)
809 				break;
810 
811 			ret = ltr501_als_write_samp_freq(data, val, val2);
812 			if (ret < 0)
813 				break;
814 
815 			/* update persistence count when changing frequency */
816 			ret = ltr501_write_intr_prst(data, chan->type,
817 						     0, data->als_period);
818 
819 			if (ret < 0)
820 				ret = ltr501_als_write_samp_freq(data, freq_val,
821 								 freq_val2);
822 			break;
823 		case IIO_PROXIMITY:
824 			ret = ltr501_ps_read_samp_freq(data, &freq_val,
825 						       &freq_val2);
826 			if (ret < 0)
827 				break;
828 
829 			ret = ltr501_ps_write_samp_freq(data, val, val2);
830 			if (ret < 0)
831 				break;
832 
833 			/* update persistence count when changing frequency */
834 			ret = ltr501_write_intr_prst(data, chan->type,
835 						     0, data->ps_period);
836 
837 			if (ret < 0)
838 				ret = ltr501_ps_write_samp_freq(data, freq_val,
839 								freq_val2);
840 			break;
841 		default:
842 			ret = -EINVAL;
843 			break;
844 		}
845 		break;
846 
847 	default:
848 		ret = -EINVAL;
849 		break;
850 	}
851 
852 	iio_device_release_direct_mode(indio_dev);
853 	return ret;
854 }
855 
856 static int ltr501_read_thresh(const struct iio_dev *indio_dev,
857 			      const struct iio_chan_spec *chan,
858 			      enum iio_event_type type,
859 			      enum iio_event_direction dir,
860 			      enum iio_event_info info,
861 			      int *val, int *val2)
862 {
863 	const struct ltr501_data *data = iio_priv(indio_dev);
864 	int ret, thresh_data;
865 
866 	switch (chan->type) {
867 	case IIO_INTENSITY:
868 		switch (dir) {
869 		case IIO_EV_DIR_RISING:
870 			ret = regmap_bulk_read(data->regmap,
871 					       LTR501_ALS_THRESH_UP,
872 					       &thresh_data, 2);
873 			if (ret < 0)
874 				return ret;
875 			*val = thresh_data & LTR501_ALS_THRESH_MASK;
876 			return IIO_VAL_INT;
877 		case IIO_EV_DIR_FALLING:
878 			ret = regmap_bulk_read(data->regmap,
879 					       LTR501_ALS_THRESH_LOW,
880 					       &thresh_data, 2);
881 			if (ret < 0)
882 				return ret;
883 			*val = thresh_data & LTR501_ALS_THRESH_MASK;
884 			return IIO_VAL_INT;
885 		default:
886 			return -EINVAL;
887 		}
888 	case IIO_PROXIMITY:
889 		switch (dir) {
890 		case IIO_EV_DIR_RISING:
891 			ret = regmap_bulk_read(data->regmap,
892 					       LTR501_PS_THRESH_UP,
893 					       &thresh_data, 2);
894 			if (ret < 0)
895 				return ret;
896 			*val = thresh_data & LTR501_PS_THRESH_MASK;
897 			return IIO_VAL_INT;
898 		case IIO_EV_DIR_FALLING:
899 			ret = regmap_bulk_read(data->regmap,
900 					       LTR501_PS_THRESH_LOW,
901 					       &thresh_data, 2);
902 			if (ret < 0)
903 				return ret;
904 			*val = thresh_data & LTR501_PS_THRESH_MASK;
905 			return IIO_VAL_INT;
906 		default:
907 			return -EINVAL;
908 		}
909 	default:
910 		return -EINVAL;
911 	}
912 
913 	return -EINVAL;
914 }
915 
916 static int ltr501_write_thresh(struct iio_dev *indio_dev,
917 			       const struct iio_chan_spec *chan,
918 			       enum iio_event_type type,
919 			       enum iio_event_direction dir,
920 			       enum iio_event_info info,
921 			       int val, int val2)
922 {
923 	struct ltr501_data *data = iio_priv(indio_dev);
924 	int ret;
925 
926 	if (val < 0)
927 		return -EINVAL;
928 
929 	switch (chan->type) {
930 	case IIO_INTENSITY:
931 		if (val > LTR501_ALS_THRESH_MASK)
932 			return -EINVAL;
933 		switch (dir) {
934 		case IIO_EV_DIR_RISING:
935 			mutex_lock(&data->lock_als);
936 			ret = regmap_bulk_write(data->regmap,
937 						LTR501_ALS_THRESH_UP,
938 						&val, 2);
939 			mutex_unlock(&data->lock_als);
940 			return ret;
941 		case IIO_EV_DIR_FALLING:
942 			mutex_lock(&data->lock_als);
943 			ret = regmap_bulk_write(data->regmap,
944 						LTR501_ALS_THRESH_LOW,
945 						&val, 2);
946 			mutex_unlock(&data->lock_als);
947 			return ret;
948 		default:
949 			return -EINVAL;
950 		}
951 	case IIO_PROXIMITY:
952 		if (val > LTR501_PS_THRESH_MASK)
953 			return -EINVAL;
954 		switch (dir) {
955 		case IIO_EV_DIR_RISING:
956 			mutex_lock(&data->lock_ps);
957 			ret = regmap_bulk_write(data->regmap,
958 						LTR501_PS_THRESH_UP,
959 						&val, 2);
960 			mutex_unlock(&data->lock_ps);
961 			return ret;
962 		case IIO_EV_DIR_FALLING:
963 			mutex_lock(&data->lock_ps);
964 			ret = regmap_bulk_write(data->regmap,
965 						LTR501_PS_THRESH_LOW,
966 						&val, 2);
967 			mutex_unlock(&data->lock_ps);
968 			return ret;
969 		default:
970 			return -EINVAL;
971 		}
972 	default:
973 		return -EINVAL;
974 	}
975 
976 	return -EINVAL;
977 }
978 
979 static int ltr501_read_event(struct iio_dev *indio_dev,
980 			     const struct iio_chan_spec *chan,
981 			     enum iio_event_type type,
982 			     enum iio_event_direction dir,
983 			     enum iio_event_info info,
984 			     int *val, int *val2)
985 {
986 	int ret;
987 
988 	switch (info) {
989 	case IIO_EV_INFO_VALUE:
990 		return ltr501_read_thresh(indio_dev, chan, type, dir,
991 					  info, val, val2);
992 	case IIO_EV_INFO_PERIOD:
993 		ret = ltr501_read_intr_prst(iio_priv(indio_dev),
994 					    chan->type, val2);
995 		*val = *val2 / 1000000;
996 		*val2 = *val2 % 1000000;
997 		return ret;
998 	default:
999 		return -EINVAL;
1000 	}
1001 
1002 	return -EINVAL;
1003 }
1004 
1005 static int ltr501_write_event(struct iio_dev *indio_dev,
1006 			      const struct iio_chan_spec *chan,
1007 			      enum iio_event_type type,
1008 			      enum iio_event_direction dir,
1009 			      enum iio_event_info info,
1010 			      int val, int val2)
1011 {
1012 	switch (info) {
1013 	case IIO_EV_INFO_VALUE:
1014 		if (val2 != 0)
1015 			return -EINVAL;
1016 		return ltr501_write_thresh(indio_dev, chan, type, dir,
1017 					   info, val, val2);
1018 	case IIO_EV_INFO_PERIOD:
1019 		return ltr501_write_intr_prst(iio_priv(indio_dev), chan->type,
1020 					      val, val2);
1021 	default:
1022 		return -EINVAL;
1023 	}
1024 
1025 	return -EINVAL;
1026 }
1027 
1028 static int ltr501_read_event_config(struct iio_dev *indio_dev,
1029 				    const struct iio_chan_spec *chan,
1030 				    enum iio_event_type type,
1031 				    enum iio_event_direction dir)
1032 {
1033 	struct ltr501_data *data = iio_priv(indio_dev);
1034 	int ret, status;
1035 
1036 	switch (chan->type) {
1037 	case IIO_INTENSITY:
1038 		ret = regmap_field_read(data->reg_als_intr, &status);
1039 		if (ret < 0)
1040 			return ret;
1041 		return status;
1042 	case IIO_PROXIMITY:
1043 		ret = regmap_field_read(data->reg_ps_intr, &status);
1044 		if (ret < 0)
1045 			return ret;
1046 		return status;
1047 	default:
1048 		return -EINVAL;
1049 	}
1050 
1051 	return -EINVAL;
1052 }
1053 
1054 static int ltr501_write_event_config(struct iio_dev *indio_dev,
1055 				     const struct iio_chan_spec *chan,
1056 				     enum iio_event_type type,
1057 				     enum iio_event_direction dir, int state)
1058 {
1059 	struct ltr501_data *data = iio_priv(indio_dev);
1060 	int ret;
1061 
1062 	/* only 1 and 0 are valid inputs */
1063 	if (state != 1  && state != 0)
1064 		return -EINVAL;
1065 
1066 	switch (chan->type) {
1067 	case IIO_INTENSITY:
1068 		mutex_lock(&data->lock_als);
1069 		ret = regmap_field_write(data->reg_als_intr, state);
1070 		mutex_unlock(&data->lock_als);
1071 		return ret;
1072 	case IIO_PROXIMITY:
1073 		mutex_lock(&data->lock_ps);
1074 		ret = regmap_field_write(data->reg_ps_intr, state);
1075 		mutex_unlock(&data->lock_ps);
1076 		return ret;
1077 	default:
1078 		return -EINVAL;
1079 	}
1080 
1081 	return -EINVAL;
1082 }
1083 
1084 static ssize_t ltr501_show_proximity_scale_avail(struct device *dev,
1085 						 struct device_attribute *attr,
1086 						 char *buf)
1087 {
1088 	struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1089 	const struct ltr501_chip_info *info = data->chip_info;
1090 	ssize_t len = 0;
1091 	int i;
1092 
1093 	for (i = 0; i < info->ps_gain_tbl_size; i++) {
1094 		if (info->ps_gain[i].scale == LTR501_RESERVED_GAIN)
1095 			continue;
1096 		len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1097 				 info->ps_gain[i].scale,
1098 				 info->ps_gain[i].uscale);
1099 	}
1100 
1101 	buf[len - 1] = '\n';
1102 
1103 	return len;
1104 }
1105 
1106 static ssize_t ltr501_show_intensity_scale_avail(struct device *dev,
1107 						 struct device_attribute *attr,
1108 						 char *buf)
1109 {
1110 	struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1111 	const struct ltr501_chip_info *info = data->chip_info;
1112 	ssize_t len = 0;
1113 	int i;
1114 
1115 	for (i = 0; i < info->als_gain_tbl_size; i++) {
1116 		if (info->als_gain[i].scale == LTR501_RESERVED_GAIN)
1117 			continue;
1118 		len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1119 				 info->als_gain[i].scale,
1120 				 info->als_gain[i].uscale);
1121 	}
1122 
1123 	buf[len - 1] = '\n';
1124 
1125 	return len;
1126 }
1127 
1128 static IIO_CONST_ATTR_INT_TIME_AVAIL("0.05 0.1 0.2 0.4");
1129 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("20 10 5 2 1 0.5");
1130 
1131 static IIO_DEVICE_ATTR(in_proximity_scale_available, S_IRUGO,
1132 		       ltr501_show_proximity_scale_avail, NULL, 0);
1133 static IIO_DEVICE_ATTR(in_intensity_scale_available, S_IRUGO,
1134 		       ltr501_show_intensity_scale_avail, NULL, 0);
1135 
1136 static struct attribute *ltr501_attributes[] = {
1137 	&iio_dev_attr_in_proximity_scale_available.dev_attr.attr,
1138 	&iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1139 	&iio_const_attr_integration_time_available.dev_attr.attr,
1140 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
1141 	NULL
1142 };
1143 
1144 static struct attribute *ltr301_attributes[] = {
1145 	&iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1146 	&iio_const_attr_integration_time_available.dev_attr.attr,
1147 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
1148 	NULL
1149 };
1150 
1151 static const struct attribute_group ltr501_attribute_group = {
1152 	.attrs = ltr501_attributes,
1153 };
1154 
1155 static const struct attribute_group ltr301_attribute_group = {
1156 	.attrs = ltr301_attributes,
1157 };
1158 
1159 static const struct iio_info ltr501_info_no_irq = {
1160 	.read_raw = ltr501_read_raw,
1161 	.write_raw = ltr501_write_raw,
1162 	.attrs = &ltr501_attribute_group,
1163 };
1164 
1165 static const struct iio_info ltr501_info = {
1166 	.read_raw = ltr501_read_raw,
1167 	.write_raw = ltr501_write_raw,
1168 	.attrs = &ltr501_attribute_group,
1169 	.read_event_value	= &ltr501_read_event,
1170 	.write_event_value	= &ltr501_write_event,
1171 	.read_event_config	= &ltr501_read_event_config,
1172 	.write_event_config	= &ltr501_write_event_config,
1173 };
1174 
1175 static const struct iio_info ltr301_info_no_irq = {
1176 	.read_raw = ltr501_read_raw,
1177 	.write_raw = ltr501_write_raw,
1178 	.attrs = &ltr301_attribute_group,
1179 };
1180 
1181 static const struct iio_info ltr301_info = {
1182 	.read_raw = ltr501_read_raw,
1183 	.write_raw = ltr501_write_raw,
1184 	.attrs = &ltr301_attribute_group,
1185 	.read_event_value	= &ltr501_read_event,
1186 	.write_event_value	= &ltr501_write_event,
1187 	.read_event_config	= &ltr501_read_event_config,
1188 	.write_event_config	= &ltr501_write_event_config,
1189 };
1190 
1191 static const struct ltr501_chip_info ltr501_chip_info_tbl[] = {
1192 	[ltr501] = {
1193 		.partid = 0x08,
1194 		.als_gain = ltr501_als_gain_tbl,
1195 		.als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1196 		.ps_gain = ltr501_ps_gain_tbl,
1197 		.ps_gain_tbl_size = ARRAY_SIZE(ltr501_ps_gain_tbl),
1198 		.als_mode_active = BIT(0) | BIT(1),
1199 		.als_gain_mask = BIT(3),
1200 		.als_gain_shift = 3,
1201 		.info = &ltr501_info,
1202 		.info_no_irq = &ltr501_info_no_irq,
1203 		.channels = ltr501_channels,
1204 		.no_channels = ARRAY_SIZE(ltr501_channels),
1205 	},
1206 	[ltr559] = {
1207 		.partid = 0x09,
1208 		.als_gain = ltr559_als_gain_tbl,
1209 		.als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl),
1210 		.ps_gain = ltr559_ps_gain_tbl,
1211 		.ps_gain_tbl_size = ARRAY_SIZE(ltr559_ps_gain_tbl),
1212 		.als_mode_active = BIT(0),
1213 		.als_gain_mask = BIT(2) | BIT(3) | BIT(4),
1214 		.als_gain_shift = 2,
1215 		.info = &ltr501_info,
1216 		.info_no_irq = &ltr501_info_no_irq,
1217 		.channels = ltr501_channels,
1218 		.no_channels = ARRAY_SIZE(ltr501_channels),
1219 	},
1220 	[ltr301] = {
1221 		.partid = 0x08,
1222 		.als_gain = ltr501_als_gain_tbl,
1223 		.als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1224 		.als_mode_active = BIT(0) | BIT(1),
1225 		.als_gain_mask = BIT(3),
1226 		.als_gain_shift = 3,
1227 		.info = &ltr301_info,
1228 		.info_no_irq = &ltr301_info_no_irq,
1229 		.channels = ltr301_channels,
1230 		.no_channels = ARRAY_SIZE(ltr301_channels),
1231 	},
1232 };
1233 
1234 static int ltr501_write_contr(struct ltr501_data *data, u8 als_val, u8 ps_val)
1235 {
1236 	int ret;
1237 
1238 	ret = regmap_write(data->regmap, LTR501_ALS_CONTR, als_val);
1239 	if (ret < 0)
1240 		return ret;
1241 
1242 	return regmap_write(data->regmap, LTR501_PS_CONTR, ps_val);
1243 }
1244 
1245 static irqreturn_t ltr501_trigger_handler(int irq, void *p)
1246 {
1247 	struct iio_poll_func *pf = p;
1248 	struct iio_dev *indio_dev = pf->indio_dev;
1249 	struct ltr501_data *data = iio_priv(indio_dev);
1250 	struct {
1251 		u16 channels[3];
1252 		s64 ts __aligned(8);
1253 	} scan;
1254 	__le16 als_buf[2];
1255 	u8 mask = 0;
1256 	int j = 0;
1257 	int ret, psdata;
1258 
1259 	memset(&scan, 0, sizeof(scan));
1260 
1261 	/* figure out which data needs to be ready */
1262 	if (test_bit(0, indio_dev->active_scan_mask) ||
1263 	    test_bit(1, indio_dev->active_scan_mask))
1264 		mask |= LTR501_STATUS_ALS_RDY;
1265 	if (test_bit(2, indio_dev->active_scan_mask))
1266 		mask |= LTR501_STATUS_PS_RDY;
1267 
1268 	ret = ltr501_drdy(data, mask);
1269 	if (ret < 0)
1270 		goto done;
1271 
1272 	if (mask & LTR501_STATUS_ALS_RDY) {
1273 		ret = regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
1274 				       als_buf, sizeof(als_buf));
1275 		if (ret < 0)
1276 			return ret;
1277 		if (test_bit(0, indio_dev->active_scan_mask))
1278 			scan.channels[j++] = le16_to_cpu(als_buf[1]);
1279 		if (test_bit(1, indio_dev->active_scan_mask))
1280 			scan.channels[j++] = le16_to_cpu(als_buf[0]);
1281 	}
1282 
1283 	if (mask & LTR501_STATUS_PS_RDY) {
1284 		ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
1285 				       &psdata, 2);
1286 		if (ret < 0)
1287 			goto done;
1288 		scan.channels[j++] = psdata & LTR501_PS_DATA_MASK;
1289 	}
1290 
1291 	iio_push_to_buffers_with_timestamp(indio_dev, &scan,
1292 					   iio_get_time_ns(indio_dev));
1293 
1294 done:
1295 	iio_trigger_notify_done(indio_dev->trig);
1296 
1297 	return IRQ_HANDLED;
1298 }
1299 
1300 static irqreturn_t ltr501_interrupt_handler(int irq, void *private)
1301 {
1302 	struct iio_dev *indio_dev = private;
1303 	struct ltr501_data *data = iio_priv(indio_dev);
1304 	int ret, status;
1305 
1306 	ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
1307 	if (ret < 0) {
1308 		dev_err(&data->client->dev,
1309 			"irq read int reg failed\n");
1310 		return IRQ_HANDLED;
1311 	}
1312 
1313 	if (status & LTR501_STATUS_ALS_INTR)
1314 		iio_push_event(indio_dev,
1315 			       IIO_UNMOD_EVENT_CODE(IIO_INTENSITY, 0,
1316 						    IIO_EV_TYPE_THRESH,
1317 						    IIO_EV_DIR_EITHER),
1318 			       iio_get_time_ns(indio_dev));
1319 
1320 	if (status & LTR501_STATUS_PS_INTR)
1321 		iio_push_event(indio_dev,
1322 			       IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
1323 						    IIO_EV_TYPE_THRESH,
1324 						    IIO_EV_DIR_EITHER),
1325 			       iio_get_time_ns(indio_dev));
1326 
1327 	return IRQ_HANDLED;
1328 }
1329 
1330 static int ltr501_init(struct ltr501_data *data)
1331 {
1332 	int ret, status;
1333 
1334 	ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
1335 	if (ret < 0)
1336 		return ret;
1337 
1338 	data->als_contr = status | data->chip_info->als_mode_active;
1339 
1340 	ret = regmap_read(data->regmap, LTR501_PS_CONTR, &status);
1341 	if (ret < 0)
1342 		return ret;
1343 
1344 	data->ps_contr = status | LTR501_CONTR_ACTIVE;
1345 
1346 	ret = ltr501_read_intr_prst(data, IIO_INTENSITY, &data->als_period);
1347 	if (ret < 0)
1348 		return ret;
1349 
1350 	ret = ltr501_read_intr_prst(data, IIO_PROXIMITY, &data->ps_period);
1351 	if (ret < 0)
1352 		return ret;
1353 
1354 	return ltr501_write_contr(data, data->als_contr, data->ps_contr);
1355 }
1356 
1357 static bool ltr501_is_volatile_reg(struct device *dev, unsigned int reg)
1358 {
1359 	switch (reg) {
1360 	case LTR501_ALS_DATA1:
1361 	case LTR501_ALS_DATA1_UPPER:
1362 	case LTR501_ALS_DATA0:
1363 	case LTR501_ALS_DATA0_UPPER:
1364 	case LTR501_ALS_PS_STATUS:
1365 	case LTR501_PS_DATA:
1366 	case LTR501_PS_DATA_UPPER:
1367 		return true;
1368 	default:
1369 		return false;
1370 	}
1371 }
1372 
1373 static const struct regmap_config ltr501_regmap_config = {
1374 	.name =  LTR501_REGMAP_NAME,
1375 	.reg_bits = 8,
1376 	.val_bits = 8,
1377 	.max_register = LTR501_MAX_REG,
1378 	.cache_type = REGCACHE_RBTREE,
1379 	.volatile_reg = ltr501_is_volatile_reg,
1380 };
1381 
1382 static int ltr501_powerdown(struct ltr501_data *data)
1383 {
1384 	return ltr501_write_contr(data, data->als_contr &
1385 				  ~data->chip_info->als_mode_active,
1386 				  data->ps_contr & ~LTR501_CONTR_ACTIVE);
1387 }
1388 
1389 static const char *ltr501_match_acpi_device(struct device *dev, int *chip_idx)
1390 {
1391 	const struct acpi_device_id *id;
1392 
1393 	id = acpi_match_device(dev->driver->acpi_match_table, dev);
1394 	if (!id)
1395 		return NULL;
1396 	*chip_idx = id->driver_data;
1397 	return dev_name(dev);
1398 }
1399 
1400 static int ltr501_probe(struct i2c_client *client,
1401 			const struct i2c_device_id *id)
1402 {
1403 	struct ltr501_data *data;
1404 	struct iio_dev *indio_dev;
1405 	struct regmap *regmap;
1406 	int ret, partid, chip_idx = 0;
1407 	const char *name = NULL;
1408 
1409 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
1410 	if (!indio_dev)
1411 		return -ENOMEM;
1412 
1413 	regmap = devm_regmap_init_i2c(client, &ltr501_regmap_config);
1414 	if (IS_ERR(regmap)) {
1415 		dev_err(&client->dev, "Regmap initialization failed.\n");
1416 		return PTR_ERR(regmap);
1417 	}
1418 
1419 	data = iio_priv(indio_dev);
1420 	i2c_set_clientdata(client, indio_dev);
1421 	data->client = client;
1422 	data->regmap = regmap;
1423 	mutex_init(&data->lock_als);
1424 	mutex_init(&data->lock_ps);
1425 
1426 	data->reg_it = devm_regmap_field_alloc(&client->dev, regmap,
1427 					       reg_field_it);
1428 	if (IS_ERR(data->reg_it)) {
1429 		dev_err(&client->dev, "Integ time reg field init failed.\n");
1430 		return PTR_ERR(data->reg_it);
1431 	}
1432 
1433 	data->reg_als_intr = devm_regmap_field_alloc(&client->dev, regmap,
1434 						     reg_field_als_intr);
1435 	if (IS_ERR(data->reg_als_intr)) {
1436 		dev_err(&client->dev, "ALS intr mode reg field init failed\n");
1437 		return PTR_ERR(data->reg_als_intr);
1438 	}
1439 
1440 	data->reg_ps_intr = devm_regmap_field_alloc(&client->dev, regmap,
1441 						    reg_field_ps_intr);
1442 	if (IS_ERR(data->reg_ps_intr)) {
1443 		dev_err(&client->dev, "PS intr mode reg field init failed.\n");
1444 		return PTR_ERR(data->reg_ps_intr);
1445 	}
1446 
1447 	data->reg_als_rate = devm_regmap_field_alloc(&client->dev, regmap,
1448 						     reg_field_als_rate);
1449 	if (IS_ERR(data->reg_als_rate)) {
1450 		dev_err(&client->dev, "ALS samp rate field init failed.\n");
1451 		return PTR_ERR(data->reg_als_rate);
1452 	}
1453 
1454 	data->reg_ps_rate = devm_regmap_field_alloc(&client->dev, regmap,
1455 						    reg_field_ps_rate);
1456 	if (IS_ERR(data->reg_ps_rate)) {
1457 		dev_err(&client->dev, "PS samp rate field init failed.\n");
1458 		return PTR_ERR(data->reg_ps_rate);
1459 	}
1460 
1461 	data->reg_als_prst = devm_regmap_field_alloc(&client->dev, regmap,
1462 						     reg_field_als_prst);
1463 	if (IS_ERR(data->reg_als_prst)) {
1464 		dev_err(&client->dev, "ALS prst reg field init failed\n");
1465 		return PTR_ERR(data->reg_als_prst);
1466 	}
1467 
1468 	data->reg_ps_prst = devm_regmap_field_alloc(&client->dev, regmap,
1469 						    reg_field_ps_prst);
1470 	if (IS_ERR(data->reg_ps_prst)) {
1471 		dev_err(&client->dev, "PS prst reg field init failed.\n");
1472 		return PTR_ERR(data->reg_ps_prst);
1473 	}
1474 
1475 	ret = regmap_read(data->regmap, LTR501_PART_ID, &partid);
1476 	if (ret < 0)
1477 		return ret;
1478 
1479 	if (id) {
1480 		name = id->name;
1481 		chip_idx = id->driver_data;
1482 	} else  if (ACPI_HANDLE(&client->dev)) {
1483 		name = ltr501_match_acpi_device(&client->dev, &chip_idx);
1484 	} else {
1485 		return -ENODEV;
1486 	}
1487 
1488 	data->chip_info = &ltr501_chip_info_tbl[chip_idx];
1489 
1490 	if ((partid >> 4) != data->chip_info->partid)
1491 		return -ENODEV;
1492 
1493 	indio_dev->info = data->chip_info->info;
1494 	indio_dev->channels = data->chip_info->channels;
1495 	indio_dev->num_channels = data->chip_info->no_channels;
1496 	indio_dev->name = name;
1497 	indio_dev->modes = INDIO_DIRECT_MODE;
1498 
1499 	ret = ltr501_init(data);
1500 	if (ret < 0)
1501 		return ret;
1502 
1503 	if (client->irq > 0) {
1504 		ret = devm_request_threaded_irq(&client->dev, client->irq,
1505 						NULL, ltr501_interrupt_handler,
1506 						IRQF_TRIGGER_FALLING |
1507 						IRQF_ONESHOT,
1508 						"ltr501_thresh_event",
1509 						indio_dev);
1510 		if (ret) {
1511 			dev_err(&client->dev, "request irq (%d) failed\n",
1512 				client->irq);
1513 			return ret;
1514 		}
1515 	} else {
1516 		indio_dev->info = data->chip_info->info_no_irq;
1517 	}
1518 
1519 	ret = iio_triggered_buffer_setup(indio_dev, NULL,
1520 					 ltr501_trigger_handler, NULL);
1521 	if (ret)
1522 		goto powerdown_on_error;
1523 
1524 	ret = iio_device_register(indio_dev);
1525 	if (ret)
1526 		goto error_unreg_buffer;
1527 
1528 	return 0;
1529 
1530 error_unreg_buffer:
1531 	iio_triggered_buffer_cleanup(indio_dev);
1532 powerdown_on_error:
1533 	ltr501_powerdown(data);
1534 	return ret;
1535 }
1536 
1537 static int ltr501_remove(struct i2c_client *client)
1538 {
1539 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
1540 
1541 	iio_device_unregister(indio_dev);
1542 	iio_triggered_buffer_cleanup(indio_dev);
1543 	ltr501_powerdown(iio_priv(indio_dev));
1544 
1545 	return 0;
1546 }
1547 
1548 #ifdef CONFIG_PM_SLEEP
1549 static int ltr501_suspend(struct device *dev)
1550 {
1551 	struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1552 					    to_i2c_client(dev)));
1553 	return ltr501_powerdown(data);
1554 }
1555 
1556 static int ltr501_resume(struct device *dev)
1557 {
1558 	struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1559 					    to_i2c_client(dev)));
1560 
1561 	return ltr501_write_contr(data, data->als_contr,
1562 		data->ps_contr);
1563 }
1564 #endif
1565 
1566 static SIMPLE_DEV_PM_OPS(ltr501_pm_ops, ltr501_suspend, ltr501_resume);
1567 
1568 static const struct acpi_device_id ltr_acpi_match[] = {
1569 	{"LTER0501", ltr501},
1570 	{"LTER0559", ltr559},
1571 	{"LTER0301", ltr301},
1572 	{ },
1573 };
1574 MODULE_DEVICE_TABLE(acpi, ltr_acpi_match);
1575 
1576 static const struct i2c_device_id ltr501_id[] = {
1577 	{ "ltr501", ltr501},
1578 	{ "ltr559", ltr559},
1579 	{ "ltr301", ltr301},
1580 	{ }
1581 };
1582 MODULE_DEVICE_TABLE(i2c, ltr501_id);
1583 
1584 static struct i2c_driver ltr501_driver = {
1585 	.driver = {
1586 		.name   = LTR501_DRV_NAME,
1587 		.pm	= &ltr501_pm_ops,
1588 		.acpi_match_table = ACPI_PTR(ltr_acpi_match),
1589 	},
1590 	.probe  = ltr501_probe,
1591 	.remove	= ltr501_remove,
1592 	.id_table = ltr501_id,
1593 };
1594 
1595 module_i2c_driver(ltr501_driver);
1596 
1597 MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>");
1598 MODULE_DESCRIPTION("Lite-On LTR501 ambient light and proximity sensor driver");
1599 MODULE_LICENSE("GPL");
1600