1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Support for Lite-On LTR501 and similar ambient light and proximity sensors. 4 * 5 * Copyright 2014 Peter Meerwald <pmeerw@pmeerw.net> 6 * 7 * 7-bit I2C slave address 0x23 8 * 9 * TODO: IR LED characteristics 10 */ 11 12 #include <linux/module.h> 13 #include <linux/i2c.h> 14 #include <linux/err.h> 15 #include <linux/delay.h> 16 #include <linux/regmap.h> 17 #include <linux/acpi.h> 18 #include <linux/regulator/consumer.h> 19 20 #include <linux/iio/iio.h> 21 #include <linux/iio/events.h> 22 #include <linux/iio/sysfs.h> 23 #include <linux/iio/trigger_consumer.h> 24 #include <linux/iio/buffer.h> 25 #include <linux/iio/triggered_buffer.h> 26 27 #define LTR501_DRV_NAME "ltr501" 28 29 #define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */ 30 #define LTR501_PS_CONTR 0x81 /* PS operation mode */ 31 #define LTR501_PS_MEAS_RATE 0x84 /* measurement rate*/ 32 #define LTR501_ALS_MEAS_RATE 0x85 /* ALS integ time, measurement rate*/ 33 #define LTR501_PART_ID 0x86 34 #define LTR501_MANUFAC_ID 0x87 35 #define LTR501_ALS_DATA1 0x88 /* 16-bit, little endian */ 36 #define LTR501_ALS_DATA1_UPPER 0x89 /* upper 8 bits of LTR501_ALS_DATA1 */ 37 #define LTR501_ALS_DATA0 0x8a /* 16-bit, little endian */ 38 #define LTR501_ALS_DATA0_UPPER 0x8b /* upper 8 bits of LTR501_ALS_DATA0 */ 39 #define LTR501_ALS_PS_STATUS 0x8c 40 #define LTR501_PS_DATA 0x8d /* 16-bit, little endian */ 41 #define LTR501_PS_DATA_UPPER 0x8e /* upper 8 bits of LTR501_PS_DATA */ 42 #define LTR501_INTR 0x8f /* output mode, polarity, mode */ 43 #define LTR501_PS_THRESH_UP 0x90 /* 11 bit, ps upper threshold */ 44 #define LTR501_PS_THRESH_LOW 0x92 /* 11 bit, ps lower threshold */ 45 #define LTR501_ALS_THRESH_UP 0x97 /* 16 bit, ALS upper threshold */ 46 #define LTR501_ALS_THRESH_LOW 0x99 /* 16 bit, ALS lower threshold */ 47 #define LTR501_INTR_PRST 0x9e /* ps thresh, als thresh */ 48 #define LTR501_MAX_REG 0x9f 49 50 #define LTR501_ALS_CONTR_SW_RESET BIT(2) 51 #define LTR501_CONTR_PS_GAIN_MASK (BIT(3) | BIT(2)) 52 #define LTR501_CONTR_PS_GAIN_SHIFT 2 53 #define LTR501_CONTR_ALS_GAIN_MASK BIT(3) 54 #define LTR501_CONTR_ACTIVE BIT(1) 55 56 #define LTR501_STATUS_ALS_INTR BIT(3) 57 #define LTR501_STATUS_ALS_RDY BIT(2) 58 #define LTR501_STATUS_PS_INTR BIT(1) 59 #define LTR501_STATUS_PS_RDY BIT(0) 60 61 #define LTR501_PS_DATA_MASK 0x7ff 62 #define LTR501_PS_THRESH_MASK 0x7ff 63 #define LTR501_ALS_THRESH_MASK 0xffff 64 65 #define LTR501_ALS_DEF_PERIOD 500000 66 #define LTR501_PS_DEF_PERIOD 100000 67 68 #define LTR501_REGMAP_NAME "ltr501_regmap" 69 70 #define LTR501_LUX_CONV(vis_coeff, vis_data, ir_coeff, ir_data) \ 71 ((vis_coeff * vis_data) - (ir_coeff * ir_data)) 72 73 static const int int_time_mapping[] = {100000, 50000, 200000, 400000}; 74 75 static const struct reg_field reg_field_it = 76 REG_FIELD(LTR501_ALS_MEAS_RATE, 3, 4); 77 static const struct reg_field reg_field_als_intr = 78 REG_FIELD(LTR501_INTR, 1, 1); 79 static const struct reg_field reg_field_ps_intr = 80 REG_FIELD(LTR501_INTR, 0, 0); 81 static const struct reg_field reg_field_als_rate = 82 REG_FIELD(LTR501_ALS_MEAS_RATE, 0, 2); 83 static const struct reg_field reg_field_ps_rate = 84 REG_FIELD(LTR501_PS_MEAS_RATE, 0, 3); 85 static const struct reg_field reg_field_als_prst = 86 REG_FIELD(LTR501_INTR_PRST, 0, 3); 87 static const struct reg_field reg_field_ps_prst = 88 REG_FIELD(LTR501_INTR_PRST, 4, 7); 89 90 struct ltr501_samp_table { 91 int freq_val; /* repetition frequency in micro HZ*/ 92 int time_val; /* repetition rate in micro seconds */ 93 }; 94 95 #define LTR501_RESERVED_GAIN -1 96 97 enum { 98 ltr501 = 0, 99 ltr559, 100 ltr301, 101 ltr303, 102 }; 103 104 struct ltr501_gain { 105 int scale; 106 int uscale; 107 }; 108 109 static const struct ltr501_gain ltr501_als_gain_tbl[] = { 110 {1, 0}, 111 {0, 5000}, 112 }; 113 114 static const struct ltr501_gain ltr559_als_gain_tbl[] = { 115 {1, 0}, 116 {0, 500000}, 117 {0, 250000}, 118 {0, 125000}, 119 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN}, 120 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN}, 121 {0, 20000}, 122 {0, 10000}, 123 }; 124 125 static const struct ltr501_gain ltr501_ps_gain_tbl[] = { 126 {1, 0}, 127 {0, 250000}, 128 {0, 125000}, 129 {0, 62500}, 130 }; 131 132 static const struct ltr501_gain ltr559_ps_gain_tbl[] = { 133 {0, 62500}, /* x16 gain */ 134 {0, 31250}, /* x32 gain */ 135 {0, 15625}, /* bits X1 are for x64 gain */ 136 {0, 15624}, 137 }; 138 139 struct ltr501_chip_info { 140 u8 partid; 141 const struct ltr501_gain *als_gain; 142 int als_gain_tbl_size; 143 const struct ltr501_gain *ps_gain; 144 int ps_gain_tbl_size; 145 u8 als_mode_active; 146 u8 als_gain_mask; 147 u8 als_gain_shift; 148 struct iio_chan_spec const *channels; 149 const int no_channels; 150 const struct iio_info *info; 151 const struct iio_info *info_no_irq; 152 }; 153 154 struct ltr501_data { 155 struct i2c_client *client; 156 struct mutex lock_als, lock_ps; 157 const struct ltr501_chip_info *chip_info; 158 u8 als_contr, ps_contr; 159 int als_period, ps_period; /* period in micro seconds */ 160 struct regmap *regmap; 161 struct regmap_field *reg_it; 162 struct regmap_field *reg_als_intr; 163 struct regmap_field *reg_ps_intr; 164 struct regmap_field *reg_als_rate; 165 struct regmap_field *reg_ps_rate; 166 struct regmap_field *reg_als_prst; 167 struct regmap_field *reg_ps_prst; 168 uint32_t near_level; 169 }; 170 171 static const struct ltr501_samp_table ltr501_als_samp_table[] = { 172 {20000000, 50000}, {10000000, 100000}, 173 {5000000, 200000}, {2000000, 500000}, 174 {1000000, 1000000}, {500000, 2000000}, 175 {500000, 2000000}, {500000, 2000000} 176 }; 177 178 static const struct ltr501_samp_table ltr501_ps_samp_table[] = { 179 {20000000, 50000}, {14285714, 70000}, 180 {10000000, 100000}, {5000000, 200000}, 181 {2000000, 500000}, {1000000, 1000000}, 182 {500000, 2000000}, {500000, 2000000}, 183 {500000, 2000000} 184 }; 185 186 static int ltr501_match_samp_freq(const struct ltr501_samp_table *tab, 187 int len, int val, int val2) 188 { 189 int i, freq; 190 191 freq = val * 1000000 + val2; 192 193 for (i = 0; i < len; i++) { 194 if (tab[i].freq_val == freq) 195 return i; 196 } 197 198 return -EINVAL; 199 } 200 201 static int ltr501_als_read_samp_freq(const struct ltr501_data *data, 202 int *val, int *val2) 203 { 204 int ret, i; 205 206 ret = regmap_field_read(data->reg_als_rate, &i); 207 if (ret < 0) 208 return ret; 209 210 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table)) 211 return -EINVAL; 212 213 *val = ltr501_als_samp_table[i].freq_val / 1000000; 214 *val2 = ltr501_als_samp_table[i].freq_val % 1000000; 215 216 return IIO_VAL_INT_PLUS_MICRO; 217 } 218 219 static int ltr501_ps_read_samp_freq(const struct ltr501_data *data, 220 int *val, int *val2) 221 { 222 int ret, i; 223 224 ret = regmap_field_read(data->reg_ps_rate, &i); 225 if (ret < 0) 226 return ret; 227 228 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table)) 229 return -EINVAL; 230 231 *val = ltr501_ps_samp_table[i].freq_val / 1000000; 232 *val2 = ltr501_ps_samp_table[i].freq_val % 1000000; 233 234 return IIO_VAL_INT_PLUS_MICRO; 235 } 236 237 static int ltr501_als_write_samp_freq(struct ltr501_data *data, 238 int val, int val2) 239 { 240 int i, ret; 241 242 i = ltr501_match_samp_freq(ltr501_als_samp_table, 243 ARRAY_SIZE(ltr501_als_samp_table), 244 val, val2); 245 246 if (i < 0) 247 return i; 248 249 mutex_lock(&data->lock_als); 250 ret = regmap_field_write(data->reg_als_rate, i); 251 mutex_unlock(&data->lock_als); 252 253 return ret; 254 } 255 256 static int ltr501_ps_write_samp_freq(struct ltr501_data *data, 257 int val, int val2) 258 { 259 int i, ret; 260 261 i = ltr501_match_samp_freq(ltr501_ps_samp_table, 262 ARRAY_SIZE(ltr501_ps_samp_table), 263 val, val2); 264 265 if (i < 0) 266 return i; 267 268 mutex_lock(&data->lock_ps); 269 ret = regmap_field_write(data->reg_ps_rate, i); 270 mutex_unlock(&data->lock_ps); 271 272 return ret; 273 } 274 275 static int ltr501_als_read_samp_period(const struct ltr501_data *data, int *val) 276 { 277 int ret, i; 278 279 ret = regmap_field_read(data->reg_als_rate, &i); 280 if (ret < 0) 281 return ret; 282 283 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table)) 284 return -EINVAL; 285 286 *val = ltr501_als_samp_table[i].time_val; 287 288 return IIO_VAL_INT; 289 } 290 291 static int ltr501_ps_read_samp_period(const struct ltr501_data *data, int *val) 292 { 293 int ret, i; 294 295 ret = regmap_field_read(data->reg_ps_rate, &i); 296 if (ret < 0) 297 return ret; 298 299 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table)) 300 return -EINVAL; 301 302 *val = ltr501_ps_samp_table[i].time_val; 303 304 return IIO_VAL_INT; 305 } 306 307 /* IR and visible spectrum coeff's are given in data sheet */ 308 static unsigned long ltr501_calculate_lux(u16 vis_data, u16 ir_data) 309 { 310 unsigned long ratio, lux; 311 312 if (vis_data == 0) 313 return 0; 314 315 /* multiply numerator by 100 to avoid handling ratio < 1 */ 316 ratio = DIV_ROUND_UP(ir_data * 100, ir_data + vis_data); 317 318 if (ratio < 45) 319 lux = LTR501_LUX_CONV(1774, vis_data, -1105, ir_data); 320 else if (ratio >= 45 && ratio < 64) 321 lux = LTR501_LUX_CONV(3772, vis_data, 1336, ir_data); 322 else if (ratio >= 64 && ratio < 85) 323 lux = LTR501_LUX_CONV(1690, vis_data, 169, ir_data); 324 else 325 lux = 0; 326 327 return lux / 1000; 328 } 329 330 static int ltr501_drdy(const struct ltr501_data *data, u8 drdy_mask) 331 { 332 int tries = 100; 333 int ret, status; 334 335 while (tries--) { 336 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status); 337 if (ret < 0) 338 return ret; 339 if ((status & drdy_mask) == drdy_mask) 340 return 0; 341 msleep(25); 342 } 343 344 dev_err(&data->client->dev, "ltr501_drdy() failed, data not ready\n"); 345 return -EIO; 346 } 347 348 static int ltr501_set_it_time(struct ltr501_data *data, int it) 349 { 350 int ret, i, index = -1, status; 351 352 for (i = 0; i < ARRAY_SIZE(int_time_mapping); i++) { 353 if (int_time_mapping[i] == it) { 354 index = i; 355 break; 356 } 357 } 358 /* Make sure integ time index is valid */ 359 if (index < 0) 360 return -EINVAL; 361 362 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status); 363 if (ret < 0) 364 return ret; 365 366 if (status & LTR501_CONTR_ALS_GAIN_MASK) { 367 /* 368 * 200 ms and 400 ms integ time can only be 369 * used in dynamic range 1 370 */ 371 if (index > 1) 372 return -EINVAL; 373 } else 374 /* 50 ms integ time can only be used in dynamic range 2 */ 375 if (index == 1) 376 return -EINVAL; 377 378 return regmap_field_write(data->reg_it, index); 379 } 380 381 /* read int time in micro seconds */ 382 static int ltr501_read_it_time(const struct ltr501_data *data, 383 int *val, int *val2) 384 { 385 int ret, index; 386 387 ret = regmap_field_read(data->reg_it, &index); 388 if (ret < 0) 389 return ret; 390 391 /* Make sure integ time index is valid */ 392 if (index < 0 || index >= ARRAY_SIZE(int_time_mapping)) 393 return -EINVAL; 394 395 *val2 = int_time_mapping[index]; 396 *val = 0; 397 398 return IIO_VAL_INT_PLUS_MICRO; 399 } 400 401 static int ltr501_read_als(const struct ltr501_data *data, __le16 buf[2]) 402 { 403 int ret; 404 405 ret = ltr501_drdy(data, LTR501_STATUS_ALS_RDY); 406 if (ret < 0) 407 return ret; 408 /* always read both ALS channels in given order */ 409 return regmap_bulk_read(data->regmap, LTR501_ALS_DATA1, 410 buf, 2 * sizeof(__le16)); 411 } 412 413 static int ltr501_read_ps(const struct ltr501_data *data) 414 { 415 __le16 status; 416 int ret; 417 418 ret = ltr501_drdy(data, LTR501_STATUS_PS_RDY); 419 if (ret < 0) 420 return ret; 421 422 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA, 423 &status, sizeof(status)); 424 if (ret < 0) 425 return ret; 426 427 return le16_to_cpu(status); 428 } 429 430 static int ltr501_read_intr_prst(const struct ltr501_data *data, 431 enum iio_chan_type type, 432 int *val2) 433 { 434 int ret, samp_period, prst; 435 436 switch (type) { 437 case IIO_INTENSITY: 438 ret = regmap_field_read(data->reg_als_prst, &prst); 439 if (ret < 0) 440 return ret; 441 442 ret = ltr501_als_read_samp_period(data, &samp_period); 443 444 if (ret < 0) 445 return ret; 446 *val2 = samp_period * prst; 447 return IIO_VAL_INT_PLUS_MICRO; 448 case IIO_PROXIMITY: 449 ret = regmap_field_read(data->reg_ps_prst, &prst); 450 if (ret < 0) 451 return ret; 452 453 ret = ltr501_ps_read_samp_period(data, &samp_period); 454 455 if (ret < 0) 456 return ret; 457 458 *val2 = samp_period * prst; 459 return IIO_VAL_INT_PLUS_MICRO; 460 default: 461 return -EINVAL; 462 } 463 464 return -EINVAL; 465 } 466 467 static int ltr501_write_intr_prst(struct ltr501_data *data, 468 enum iio_chan_type type, 469 int val, int val2) 470 { 471 int ret, samp_period, new_val; 472 unsigned long period; 473 474 if (val < 0 || val2 < 0) 475 return -EINVAL; 476 477 /* period in microseconds */ 478 period = ((val * 1000000) + val2); 479 480 switch (type) { 481 case IIO_INTENSITY: 482 ret = ltr501_als_read_samp_period(data, &samp_period); 483 if (ret < 0) 484 return ret; 485 486 /* period should be atleast equal to sampling period */ 487 if (period < samp_period) 488 return -EINVAL; 489 490 new_val = DIV_ROUND_UP(period, samp_period); 491 if (new_val < 0 || new_val > 0x0f) 492 return -EINVAL; 493 494 mutex_lock(&data->lock_als); 495 ret = regmap_field_write(data->reg_als_prst, new_val); 496 mutex_unlock(&data->lock_als); 497 if (ret >= 0) 498 data->als_period = period; 499 500 return ret; 501 case IIO_PROXIMITY: 502 ret = ltr501_ps_read_samp_period(data, &samp_period); 503 if (ret < 0) 504 return ret; 505 506 /* period should be atleast equal to rate */ 507 if (period < samp_period) 508 return -EINVAL; 509 510 new_val = DIV_ROUND_UP(period, samp_period); 511 if (new_val < 0 || new_val > 0x0f) 512 return -EINVAL; 513 514 mutex_lock(&data->lock_ps); 515 ret = regmap_field_write(data->reg_ps_prst, new_val); 516 mutex_unlock(&data->lock_ps); 517 if (ret >= 0) 518 data->ps_period = period; 519 520 return ret; 521 default: 522 return -EINVAL; 523 } 524 525 return -EINVAL; 526 } 527 528 static ssize_t ltr501_read_near_level(struct iio_dev *indio_dev, 529 uintptr_t priv, 530 const struct iio_chan_spec *chan, 531 char *buf) 532 { 533 struct ltr501_data *data = iio_priv(indio_dev); 534 535 return sprintf(buf, "%u\n", data->near_level); 536 } 537 538 static const struct iio_chan_spec_ext_info ltr501_ext_info[] = { 539 { 540 .name = "nearlevel", 541 .shared = IIO_SEPARATE, 542 .read = ltr501_read_near_level, 543 }, 544 { /* sentinel */ } 545 }; 546 547 static const struct iio_event_spec ltr501_als_event_spec[] = { 548 { 549 .type = IIO_EV_TYPE_THRESH, 550 .dir = IIO_EV_DIR_RISING, 551 .mask_separate = BIT(IIO_EV_INFO_VALUE), 552 }, { 553 .type = IIO_EV_TYPE_THRESH, 554 .dir = IIO_EV_DIR_FALLING, 555 .mask_separate = BIT(IIO_EV_INFO_VALUE), 556 }, { 557 .type = IIO_EV_TYPE_THRESH, 558 .dir = IIO_EV_DIR_EITHER, 559 .mask_separate = BIT(IIO_EV_INFO_ENABLE) | 560 BIT(IIO_EV_INFO_PERIOD), 561 }, 562 563 }; 564 565 static const struct iio_event_spec ltr501_pxs_event_spec[] = { 566 { 567 .type = IIO_EV_TYPE_THRESH, 568 .dir = IIO_EV_DIR_RISING, 569 .mask_separate = BIT(IIO_EV_INFO_VALUE), 570 }, { 571 .type = IIO_EV_TYPE_THRESH, 572 .dir = IIO_EV_DIR_FALLING, 573 .mask_separate = BIT(IIO_EV_INFO_VALUE), 574 }, { 575 .type = IIO_EV_TYPE_THRESH, 576 .dir = IIO_EV_DIR_EITHER, 577 .mask_separate = BIT(IIO_EV_INFO_ENABLE) | 578 BIT(IIO_EV_INFO_PERIOD), 579 }, 580 }; 581 582 #define LTR501_INTENSITY_CHANNEL(_idx, _addr, _mod, _shared, \ 583 _evspec, _evsize) { \ 584 .type = IIO_INTENSITY, \ 585 .modified = 1, \ 586 .address = (_addr), \ 587 .channel2 = (_mod), \ 588 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 589 .info_mask_shared_by_type = (_shared), \ 590 .scan_index = (_idx), \ 591 .scan_type = { \ 592 .sign = 'u', \ 593 .realbits = 16, \ 594 .storagebits = 16, \ 595 .endianness = IIO_CPU, \ 596 }, \ 597 .event_spec = _evspec,\ 598 .num_event_specs = _evsize,\ 599 } 600 601 #define LTR501_LIGHT_CHANNEL() { \ 602 .type = IIO_LIGHT, \ 603 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \ 604 .scan_index = -1, \ 605 } 606 607 static const struct iio_chan_spec ltr501_channels[] = { 608 LTR501_LIGHT_CHANNEL(), 609 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0, 610 ltr501_als_event_spec, 611 ARRAY_SIZE(ltr501_als_event_spec)), 612 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR, 613 BIT(IIO_CHAN_INFO_SCALE) | 614 BIT(IIO_CHAN_INFO_INT_TIME) | 615 BIT(IIO_CHAN_INFO_SAMP_FREQ), 616 NULL, 0), 617 { 618 .type = IIO_PROXIMITY, 619 .address = LTR501_PS_DATA, 620 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | 621 BIT(IIO_CHAN_INFO_SCALE), 622 .scan_index = 2, 623 .scan_type = { 624 .sign = 'u', 625 .realbits = 11, 626 .storagebits = 16, 627 .endianness = IIO_CPU, 628 }, 629 .event_spec = ltr501_pxs_event_spec, 630 .num_event_specs = ARRAY_SIZE(ltr501_pxs_event_spec), 631 .ext_info = ltr501_ext_info, 632 }, 633 IIO_CHAN_SOFT_TIMESTAMP(3), 634 }; 635 636 static const struct iio_chan_spec ltr301_channels[] = { 637 LTR501_LIGHT_CHANNEL(), 638 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0, 639 ltr501_als_event_spec, 640 ARRAY_SIZE(ltr501_als_event_spec)), 641 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR, 642 BIT(IIO_CHAN_INFO_SCALE) | 643 BIT(IIO_CHAN_INFO_INT_TIME) | 644 BIT(IIO_CHAN_INFO_SAMP_FREQ), 645 NULL, 0), 646 IIO_CHAN_SOFT_TIMESTAMP(2), 647 }; 648 649 static int ltr501_read_raw(struct iio_dev *indio_dev, 650 struct iio_chan_spec const *chan, 651 int *val, int *val2, long mask) 652 { 653 struct ltr501_data *data = iio_priv(indio_dev); 654 __le16 buf[2]; 655 int ret, i; 656 657 switch (mask) { 658 case IIO_CHAN_INFO_PROCESSED: 659 switch (chan->type) { 660 case IIO_LIGHT: 661 ret = iio_device_claim_direct_mode(indio_dev); 662 if (ret) 663 return ret; 664 665 mutex_lock(&data->lock_als); 666 ret = ltr501_read_als(data, buf); 667 mutex_unlock(&data->lock_als); 668 iio_device_release_direct_mode(indio_dev); 669 if (ret < 0) 670 return ret; 671 *val = ltr501_calculate_lux(le16_to_cpu(buf[1]), 672 le16_to_cpu(buf[0])); 673 return IIO_VAL_INT; 674 default: 675 return -EINVAL; 676 } 677 case IIO_CHAN_INFO_RAW: 678 ret = iio_device_claim_direct_mode(indio_dev); 679 if (ret) 680 return ret; 681 682 switch (chan->type) { 683 case IIO_INTENSITY: 684 mutex_lock(&data->lock_als); 685 ret = ltr501_read_als(data, buf); 686 mutex_unlock(&data->lock_als); 687 if (ret < 0) 688 break; 689 *val = le16_to_cpu(chan->address == LTR501_ALS_DATA1 ? 690 buf[0] : buf[1]); 691 ret = IIO_VAL_INT; 692 break; 693 case IIO_PROXIMITY: 694 mutex_lock(&data->lock_ps); 695 ret = ltr501_read_ps(data); 696 mutex_unlock(&data->lock_ps); 697 if (ret < 0) 698 break; 699 *val = ret & LTR501_PS_DATA_MASK; 700 ret = IIO_VAL_INT; 701 break; 702 default: 703 ret = -EINVAL; 704 break; 705 } 706 707 iio_device_release_direct_mode(indio_dev); 708 return ret; 709 710 case IIO_CHAN_INFO_SCALE: 711 switch (chan->type) { 712 case IIO_INTENSITY: 713 i = (data->als_contr & data->chip_info->als_gain_mask) 714 >> data->chip_info->als_gain_shift; 715 *val = data->chip_info->als_gain[i].scale; 716 *val2 = data->chip_info->als_gain[i].uscale; 717 return IIO_VAL_INT_PLUS_MICRO; 718 case IIO_PROXIMITY: 719 i = (data->ps_contr & LTR501_CONTR_PS_GAIN_MASK) >> 720 LTR501_CONTR_PS_GAIN_SHIFT; 721 *val = data->chip_info->ps_gain[i].scale; 722 *val2 = data->chip_info->ps_gain[i].uscale; 723 return IIO_VAL_INT_PLUS_MICRO; 724 default: 725 return -EINVAL; 726 } 727 case IIO_CHAN_INFO_INT_TIME: 728 switch (chan->type) { 729 case IIO_INTENSITY: 730 return ltr501_read_it_time(data, val, val2); 731 default: 732 return -EINVAL; 733 } 734 case IIO_CHAN_INFO_SAMP_FREQ: 735 switch (chan->type) { 736 case IIO_INTENSITY: 737 return ltr501_als_read_samp_freq(data, val, val2); 738 case IIO_PROXIMITY: 739 return ltr501_ps_read_samp_freq(data, val, val2); 740 default: 741 return -EINVAL; 742 } 743 } 744 return -EINVAL; 745 } 746 747 static int ltr501_get_gain_index(const struct ltr501_gain *gain, int size, 748 int val, int val2) 749 { 750 int i; 751 752 for (i = 0; i < size; i++) 753 if (val == gain[i].scale && val2 == gain[i].uscale) 754 return i; 755 756 return -1; 757 } 758 759 static int ltr501_write_raw(struct iio_dev *indio_dev, 760 struct iio_chan_spec const *chan, 761 int val, int val2, long mask) 762 { 763 struct ltr501_data *data = iio_priv(indio_dev); 764 int i, ret, freq_val, freq_val2; 765 const struct ltr501_chip_info *info = data->chip_info; 766 767 ret = iio_device_claim_direct_mode(indio_dev); 768 if (ret) 769 return ret; 770 771 switch (mask) { 772 case IIO_CHAN_INFO_SCALE: 773 switch (chan->type) { 774 case IIO_INTENSITY: 775 i = ltr501_get_gain_index(info->als_gain, 776 info->als_gain_tbl_size, 777 val, val2); 778 if (i < 0) { 779 ret = -EINVAL; 780 break; 781 } 782 783 data->als_contr &= ~info->als_gain_mask; 784 data->als_contr |= i << info->als_gain_shift; 785 786 ret = regmap_write(data->regmap, LTR501_ALS_CONTR, 787 data->als_contr); 788 break; 789 case IIO_PROXIMITY: 790 i = ltr501_get_gain_index(info->ps_gain, 791 info->ps_gain_tbl_size, 792 val, val2); 793 if (i < 0) { 794 ret = -EINVAL; 795 break; 796 } 797 data->ps_contr &= ~LTR501_CONTR_PS_GAIN_MASK; 798 data->ps_contr |= i << LTR501_CONTR_PS_GAIN_SHIFT; 799 800 ret = regmap_write(data->regmap, LTR501_PS_CONTR, 801 data->ps_contr); 802 break; 803 default: 804 ret = -EINVAL; 805 break; 806 } 807 break; 808 809 case IIO_CHAN_INFO_INT_TIME: 810 switch (chan->type) { 811 case IIO_INTENSITY: 812 if (val != 0) { 813 ret = -EINVAL; 814 break; 815 } 816 mutex_lock(&data->lock_als); 817 ret = ltr501_set_it_time(data, val2); 818 mutex_unlock(&data->lock_als); 819 break; 820 default: 821 ret = -EINVAL; 822 break; 823 } 824 break; 825 826 case IIO_CHAN_INFO_SAMP_FREQ: 827 switch (chan->type) { 828 case IIO_INTENSITY: 829 ret = ltr501_als_read_samp_freq(data, &freq_val, 830 &freq_val2); 831 if (ret < 0) 832 break; 833 834 ret = ltr501_als_write_samp_freq(data, val, val2); 835 if (ret < 0) 836 break; 837 838 /* update persistence count when changing frequency */ 839 ret = ltr501_write_intr_prst(data, chan->type, 840 0, data->als_period); 841 842 if (ret < 0) 843 ret = ltr501_als_write_samp_freq(data, freq_val, 844 freq_val2); 845 break; 846 case IIO_PROXIMITY: 847 ret = ltr501_ps_read_samp_freq(data, &freq_val, 848 &freq_val2); 849 if (ret < 0) 850 break; 851 852 ret = ltr501_ps_write_samp_freq(data, val, val2); 853 if (ret < 0) 854 break; 855 856 /* update persistence count when changing frequency */ 857 ret = ltr501_write_intr_prst(data, chan->type, 858 0, data->ps_period); 859 860 if (ret < 0) 861 ret = ltr501_ps_write_samp_freq(data, freq_val, 862 freq_val2); 863 break; 864 default: 865 ret = -EINVAL; 866 break; 867 } 868 break; 869 870 default: 871 ret = -EINVAL; 872 break; 873 } 874 875 iio_device_release_direct_mode(indio_dev); 876 return ret; 877 } 878 879 static int ltr501_read_thresh(const struct iio_dev *indio_dev, 880 const struct iio_chan_spec *chan, 881 enum iio_event_type type, 882 enum iio_event_direction dir, 883 enum iio_event_info info, 884 int *val, int *val2) 885 { 886 const struct ltr501_data *data = iio_priv(indio_dev); 887 int ret, thresh_data; 888 889 switch (chan->type) { 890 case IIO_INTENSITY: 891 switch (dir) { 892 case IIO_EV_DIR_RISING: 893 ret = regmap_bulk_read(data->regmap, 894 LTR501_ALS_THRESH_UP, 895 &thresh_data, 2); 896 if (ret < 0) 897 return ret; 898 *val = thresh_data & LTR501_ALS_THRESH_MASK; 899 return IIO_VAL_INT; 900 case IIO_EV_DIR_FALLING: 901 ret = regmap_bulk_read(data->regmap, 902 LTR501_ALS_THRESH_LOW, 903 &thresh_data, 2); 904 if (ret < 0) 905 return ret; 906 *val = thresh_data & LTR501_ALS_THRESH_MASK; 907 return IIO_VAL_INT; 908 default: 909 return -EINVAL; 910 } 911 case IIO_PROXIMITY: 912 switch (dir) { 913 case IIO_EV_DIR_RISING: 914 ret = regmap_bulk_read(data->regmap, 915 LTR501_PS_THRESH_UP, 916 &thresh_data, 2); 917 if (ret < 0) 918 return ret; 919 *val = thresh_data & LTR501_PS_THRESH_MASK; 920 return IIO_VAL_INT; 921 case IIO_EV_DIR_FALLING: 922 ret = regmap_bulk_read(data->regmap, 923 LTR501_PS_THRESH_LOW, 924 &thresh_data, 2); 925 if (ret < 0) 926 return ret; 927 *val = thresh_data & LTR501_PS_THRESH_MASK; 928 return IIO_VAL_INT; 929 default: 930 return -EINVAL; 931 } 932 default: 933 return -EINVAL; 934 } 935 936 return -EINVAL; 937 } 938 939 static int ltr501_write_thresh(struct iio_dev *indio_dev, 940 const struct iio_chan_spec *chan, 941 enum iio_event_type type, 942 enum iio_event_direction dir, 943 enum iio_event_info info, 944 int val, int val2) 945 { 946 struct ltr501_data *data = iio_priv(indio_dev); 947 int ret; 948 949 if (val < 0) 950 return -EINVAL; 951 952 switch (chan->type) { 953 case IIO_INTENSITY: 954 if (val > LTR501_ALS_THRESH_MASK) 955 return -EINVAL; 956 switch (dir) { 957 case IIO_EV_DIR_RISING: 958 mutex_lock(&data->lock_als); 959 ret = regmap_bulk_write(data->regmap, 960 LTR501_ALS_THRESH_UP, 961 &val, 2); 962 mutex_unlock(&data->lock_als); 963 return ret; 964 case IIO_EV_DIR_FALLING: 965 mutex_lock(&data->lock_als); 966 ret = regmap_bulk_write(data->regmap, 967 LTR501_ALS_THRESH_LOW, 968 &val, 2); 969 mutex_unlock(&data->lock_als); 970 return ret; 971 default: 972 return -EINVAL; 973 } 974 case IIO_PROXIMITY: 975 if (val > LTR501_PS_THRESH_MASK) 976 return -EINVAL; 977 switch (dir) { 978 case IIO_EV_DIR_RISING: 979 mutex_lock(&data->lock_ps); 980 ret = regmap_bulk_write(data->regmap, 981 LTR501_PS_THRESH_UP, 982 &val, 2); 983 mutex_unlock(&data->lock_ps); 984 return ret; 985 case IIO_EV_DIR_FALLING: 986 mutex_lock(&data->lock_ps); 987 ret = regmap_bulk_write(data->regmap, 988 LTR501_PS_THRESH_LOW, 989 &val, 2); 990 mutex_unlock(&data->lock_ps); 991 return ret; 992 default: 993 return -EINVAL; 994 } 995 default: 996 return -EINVAL; 997 } 998 999 return -EINVAL; 1000 } 1001 1002 static int ltr501_read_event(struct iio_dev *indio_dev, 1003 const struct iio_chan_spec *chan, 1004 enum iio_event_type type, 1005 enum iio_event_direction dir, 1006 enum iio_event_info info, 1007 int *val, int *val2) 1008 { 1009 int ret; 1010 1011 switch (info) { 1012 case IIO_EV_INFO_VALUE: 1013 return ltr501_read_thresh(indio_dev, chan, type, dir, 1014 info, val, val2); 1015 case IIO_EV_INFO_PERIOD: 1016 ret = ltr501_read_intr_prst(iio_priv(indio_dev), 1017 chan->type, val2); 1018 *val = *val2 / 1000000; 1019 *val2 = *val2 % 1000000; 1020 return ret; 1021 default: 1022 return -EINVAL; 1023 } 1024 1025 return -EINVAL; 1026 } 1027 1028 static int ltr501_write_event(struct iio_dev *indio_dev, 1029 const struct iio_chan_spec *chan, 1030 enum iio_event_type type, 1031 enum iio_event_direction dir, 1032 enum iio_event_info info, 1033 int val, int val2) 1034 { 1035 switch (info) { 1036 case IIO_EV_INFO_VALUE: 1037 if (val2 != 0) 1038 return -EINVAL; 1039 return ltr501_write_thresh(indio_dev, chan, type, dir, 1040 info, val, val2); 1041 case IIO_EV_INFO_PERIOD: 1042 return ltr501_write_intr_prst(iio_priv(indio_dev), chan->type, 1043 val, val2); 1044 default: 1045 return -EINVAL; 1046 } 1047 1048 return -EINVAL; 1049 } 1050 1051 static int ltr501_read_event_config(struct iio_dev *indio_dev, 1052 const struct iio_chan_spec *chan, 1053 enum iio_event_type type, 1054 enum iio_event_direction dir) 1055 { 1056 struct ltr501_data *data = iio_priv(indio_dev); 1057 int ret, status; 1058 1059 switch (chan->type) { 1060 case IIO_INTENSITY: 1061 ret = regmap_field_read(data->reg_als_intr, &status); 1062 if (ret < 0) 1063 return ret; 1064 return status; 1065 case IIO_PROXIMITY: 1066 ret = regmap_field_read(data->reg_ps_intr, &status); 1067 if (ret < 0) 1068 return ret; 1069 return status; 1070 default: 1071 return -EINVAL; 1072 } 1073 1074 return -EINVAL; 1075 } 1076 1077 static int ltr501_write_event_config(struct iio_dev *indio_dev, 1078 const struct iio_chan_spec *chan, 1079 enum iio_event_type type, 1080 enum iio_event_direction dir, int state) 1081 { 1082 struct ltr501_data *data = iio_priv(indio_dev); 1083 int ret; 1084 1085 /* only 1 and 0 are valid inputs */ 1086 if (state != 1 && state != 0) 1087 return -EINVAL; 1088 1089 switch (chan->type) { 1090 case IIO_INTENSITY: 1091 mutex_lock(&data->lock_als); 1092 ret = regmap_field_write(data->reg_als_intr, state); 1093 mutex_unlock(&data->lock_als); 1094 return ret; 1095 case IIO_PROXIMITY: 1096 mutex_lock(&data->lock_ps); 1097 ret = regmap_field_write(data->reg_ps_intr, state); 1098 mutex_unlock(&data->lock_ps); 1099 return ret; 1100 default: 1101 return -EINVAL; 1102 } 1103 1104 return -EINVAL; 1105 } 1106 1107 static ssize_t ltr501_show_proximity_scale_avail(struct device *dev, 1108 struct device_attribute *attr, 1109 char *buf) 1110 { 1111 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev)); 1112 const struct ltr501_chip_info *info = data->chip_info; 1113 ssize_t len = 0; 1114 int i; 1115 1116 for (i = 0; i < info->ps_gain_tbl_size; i++) { 1117 if (info->ps_gain[i].scale == LTR501_RESERVED_GAIN) 1118 continue; 1119 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ", 1120 info->ps_gain[i].scale, 1121 info->ps_gain[i].uscale); 1122 } 1123 1124 buf[len - 1] = '\n'; 1125 1126 return len; 1127 } 1128 1129 static ssize_t ltr501_show_intensity_scale_avail(struct device *dev, 1130 struct device_attribute *attr, 1131 char *buf) 1132 { 1133 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev)); 1134 const struct ltr501_chip_info *info = data->chip_info; 1135 ssize_t len = 0; 1136 int i; 1137 1138 for (i = 0; i < info->als_gain_tbl_size; i++) { 1139 if (info->als_gain[i].scale == LTR501_RESERVED_GAIN) 1140 continue; 1141 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ", 1142 info->als_gain[i].scale, 1143 info->als_gain[i].uscale); 1144 } 1145 1146 buf[len - 1] = '\n'; 1147 1148 return len; 1149 } 1150 1151 static IIO_CONST_ATTR_INT_TIME_AVAIL("0.05 0.1 0.2 0.4"); 1152 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("20 10 5 2 1 0.5"); 1153 1154 static IIO_DEVICE_ATTR(in_proximity_scale_available, S_IRUGO, 1155 ltr501_show_proximity_scale_avail, NULL, 0); 1156 static IIO_DEVICE_ATTR(in_intensity_scale_available, S_IRUGO, 1157 ltr501_show_intensity_scale_avail, NULL, 0); 1158 1159 static struct attribute *ltr501_attributes[] = { 1160 &iio_dev_attr_in_proximity_scale_available.dev_attr.attr, 1161 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr, 1162 &iio_const_attr_integration_time_available.dev_attr.attr, 1163 &iio_const_attr_sampling_frequency_available.dev_attr.attr, 1164 NULL 1165 }; 1166 1167 static struct attribute *ltr301_attributes[] = { 1168 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr, 1169 &iio_const_attr_integration_time_available.dev_attr.attr, 1170 &iio_const_attr_sampling_frequency_available.dev_attr.attr, 1171 NULL 1172 }; 1173 1174 static const struct attribute_group ltr501_attribute_group = { 1175 .attrs = ltr501_attributes, 1176 }; 1177 1178 static const struct attribute_group ltr301_attribute_group = { 1179 .attrs = ltr301_attributes, 1180 }; 1181 1182 static const struct iio_info ltr501_info_no_irq = { 1183 .read_raw = ltr501_read_raw, 1184 .write_raw = ltr501_write_raw, 1185 .attrs = <r501_attribute_group, 1186 }; 1187 1188 static const struct iio_info ltr501_info = { 1189 .read_raw = ltr501_read_raw, 1190 .write_raw = ltr501_write_raw, 1191 .attrs = <r501_attribute_group, 1192 .read_event_value = <r501_read_event, 1193 .write_event_value = <r501_write_event, 1194 .read_event_config = <r501_read_event_config, 1195 .write_event_config = <r501_write_event_config, 1196 }; 1197 1198 static const struct iio_info ltr301_info_no_irq = { 1199 .read_raw = ltr501_read_raw, 1200 .write_raw = ltr501_write_raw, 1201 .attrs = <r301_attribute_group, 1202 }; 1203 1204 static const struct iio_info ltr301_info = { 1205 .read_raw = ltr501_read_raw, 1206 .write_raw = ltr501_write_raw, 1207 .attrs = <r301_attribute_group, 1208 .read_event_value = <r501_read_event, 1209 .write_event_value = <r501_write_event, 1210 .read_event_config = <r501_read_event_config, 1211 .write_event_config = <r501_write_event_config, 1212 }; 1213 1214 static const struct ltr501_chip_info ltr501_chip_info_tbl[] = { 1215 [ltr501] = { 1216 .partid = 0x08, 1217 .als_gain = ltr501_als_gain_tbl, 1218 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl), 1219 .ps_gain = ltr501_ps_gain_tbl, 1220 .ps_gain_tbl_size = ARRAY_SIZE(ltr501_ps_gain_tbl), 1221 .als_mode_active = BIT(0) | BIT(1), 1222 .als_gain_mask = BIT(3), 1223 .als_gain_shift = 3, 1224 .info = <r501_info, 1225 .info_no_irq = <r501_info_no_irq, 1226 .channels = ltr501_channels, 1227 .no_channels = ARRAY_SIZE(ltr501_channels), 1228 }, 1229 [ltr559] = { 1230 .partid = 0x09, 1231 .als_gain = ltr559_als_gain_tbl, 1232 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl), 1233 .ps_gain = ltr559_ps_gain_tbl, 1234 .ps_gain_tbl_size = ARRAY_SIZE(ltr559_ps_gain_tbl), 1235 .als_mode_active = BIT(0), 1236 .als_gain_mask = BIT(2) | BIT(3) | BIT(4), 1237 .als_gain_shift = 2, 1238 .info = <r501_info, 1239 .info_no_irq = <r501_info_no_irq, 1240 .channels = ltr501_channels, 1241 .no_channels = ARRAY_SIZE(ltr501_channels), 1242 }, 1243 [ltr301] = { 1244 .partid = 0x08, 1245 .als_gain = ltr501_als_gain_tbl, 1246 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl), 1247 .als_mode_active = BIT(0) | BIT(1), 1248 .als_gain_mask = BIT(3), 1249 .als_gain_shift = 3, 1250 .info = <r301_info, 1251 .info_no_irq = <r301_info_no_irq, 1252 .channels = ltr301_channels, 1253 .no_channels = ARRAY_SIZE(ltr301_channels), 1254 }, 1255 [ltr303] = { 1256 .partid = 0x0A, 1257 .als_gain = ltr559_als_gain_tbl, 1258 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl), 1259 .als_mode_active = BIT(0), 1260 .als_gain_mask = BIT(2) | BIT(3) | BIT(4), 1261 .als_gain_shift = 2, 1262 .info = <r301_info, 1263 .info_no_irq = <r301_info_no_irq, 1264 .channels = ltr301_channels, 1265 .no_channels = ARRAY_SIZE(ltr301_channels), 1266 }, 1267 }; 1268 1269 static int ltr501_write_contr(struct ltr501_data *data, u8 als_val, u8 ps_val) 1270 { 1271 int ret; 1272 1273 ret = regmap_write(data->regmap, LTR501_ALS_CONTR, als_val); 1274 if (ret < 0) 1275 return ret; 1276 1277 return regmap_write(data->regmap, LTR501_PS_CONTR, ps_val); 1278 } 1279 1280 static irqreturn_t ltr501_trigger_handler(int irq, void *p) 1281 { 1282 struct iio_poll_func *pf = p; 1283 struct iio_dev *indio_dev = pf->indio_dev; 1284 struct ltr501_data *data = iio_priv(indio_dev); 1285 struct { 1286 u16 channels[3]; 1287 s64 ts __aligned(8); 1288 } scan; 1289 __le16 als_buf[2]; 1290 u8 mask = 0; 1291 int j = 0; 1292 int ret, psdata; 1293 1294 memset(&scan, 0, sizeof(scan)); 1295 1296 /* figure out which data needs to be ready */ 1297 if (test_bit(0, indio_dev->active_scan_mask) || 1298 test_bit(1, indio_dev->active_scan_mask)) 1299 mask |= LTR501_STATUS_ALS_RDY; 1300 if (test_bit(2, indio_dev->active_scan_mask)) 1301 mask |= LTR501_STATUS_PS_RDY; 1302 1303 ret = ltr501_drdy(data, mask); 1304 if (ret < 0) 1305 goto done; 1306 1307 if (mask & LTR501_STATUS_ALS_RDY) { 1308 ret = regmap_bulk_read(data->regmap, LTR501_ALS_DATA1, 1309 als_buf, sizeof(als_buf)); 1310 if (ret < 0) 1311 goto done; 1312 if (test_bit(0, indio_dev->active_scan_mask)) 1313 scan.channels[j++] = le16_to_cpu(als_buf[1]); 1314 if (test_bit(1, indio_dev->active_scan_mask)) 1315 scan.channels[j++] = le16_to_cpu(als_buf[0]); 1316 } 1317 1318 if (mask & LTR501_STATUS_PS_RDY) { 1319 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA, 1320 &psdata, 2); 1321 if (ret < 0) 1322 goto done; 1323 scan.channels[j++] = psdata & LTR501_PS_DATA_MASK; 1324 } 1325 1326 iio_push_to_buffers_with_timestamp(indio_dev, &scan, 1327 iio_get_time_ns(indio_dev)); 1328 1329 done: 1330 iio_trigger_notify_done(indio_dev->trig); 1331 1332 return IRQ_HANDLED; 1333 } 1334 1335 static irqreturn_t ltr501_interrupt_handler(int irq, void *private) 1336 { 1337 struct iio_dev *indio_dev = private; 1338 struct ltr501_data *data = iio_priv(indio_dev); 1339 int ret, status; 1340 1341 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status); 1342 if (ret < 0) { 1343 dev_err(&data->client->dev, 1344 "irq read int reg failed\n"); 1345 return IRQ_HANDLED; 1346 } 1347 1348 if (status & LTR501_STATUS_ALS_INTR) 1349 iio_push_event(indio_dev, 1350 IIO_UNMOD_EVENT_CODE(IIO_INTENSITY, 0, 1351 IIO_EV_TYPE_THRESH, 1352 IIO_EV_DIR_EITHER), 1353 iio_get_time_ns(indio_dev)); 1354 1355 if (status & LTR501_STATUS_PS_INTR) 1356 iio_push_event(indio_dev, 1357 IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0, 1358 IIO_EV_TYPE_THRESH, 1359 IIO_EV_DIR_EITHER), 1360 iio_get_time_ns(indio_dev)); 1361 1362 return IRQ_HANDLED; 1363 } 1364 1365 static int ltr501_init(struct ltr501_data *data) 1366 { 1367 int ret, status; 1368 1369 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status); 1370 if (ret < 0) 1371 return ret; 1372 1373 data->als_contr = status | data->chip_info->als_mode_active; 1374 1375 ret = regmap_read(data->regmap, LTR501_PS_CONTR, &status); 1376 if (ret < 0) 1377 return ret; 1378 1379 data->ps_contr = status | LTR501_CONTR_ACTIVE; 1380 1381 ret = ltr501_read_intr_prst(data, IIO_INTENSITY, &data->als_period); 1382 if (ret < 0) 1383 return ret; 1384 1385 ret = ltr501_read_intr_prst(data, IIO_PROXIMITY, &data->ps_period); 1386 if (ret < 0) 1387 return ret; 1388 1389 return ltr501_write_contr(data, data->als_contr, data->ps_contr); 1390 } 1391 1392 static bool ltr501_is_volatile_reg(struct device *dev, unsigned int reg) 1393 { 1394 switch (reg) { 1395 case LTR501_ALS_DATA1: 1396 case LTR501_ALS_DATA1_UPPER: 1397 case LTR501_ALS_DATA0: 1398 case LTR501_ALS_DATA0_UPPER: 1399 case LTR501_ALS_PS_STATUS: 1400 case LTR501_PS_DATA: 1401 case LTR501_PS_DATA_UPPER: 1402 return true; 1403 default: 1404 return false; 1405 } 1406 } 1407 1408 static const struct regmap_config ltr501_regmap_config = { 1409 .name = LTR501_REGMAP_NAME, 1410 .reg_bits = 8, 1411 .val_bits = 8, 1412 .max_register = LTR501_MAX_REG, 1413 .cache_type = REGCACHE_RBTREE, 1414 .volatile_reg = ltr501_is_volatile_reg, 1415 }; 1416 1417 static int ltr501_powerdown(struct ltr501_data *data) 1418 { 1419 return ltr501_write_contr(data, data->als_contr & 1420 ~data->chip_info->als_mode_active, 1421 data->ps_contr & ~LTR501_CONTR_ACTIVE); 1422 } 1423 1424 static const char *ltr501_match_acpi_device(struct device *dev, int *chip_idx) 1425 { 1426 const struct acpi_device_id *id; 1427 1428 id = acpi_match_device(dev->driver->acpi_match_table, dev); 1429 if (!id) 1430 return NULL; 1431 *chip_idx = id->driver_data; 1432 return dev_name(dev); 1433 } 1434 1435 static int ltr501_probe(struct i2c_client *client) 1436 { 1437 const struct i2c_device_id *id = i2c_client_get_device_id(client); 1438 static const char * const regulator_names[] = { "vdd", "vddio" }; 1439 struct ltr501_data *data; 1440 struct iio_dev *indio_dev; 1441 struct regmap *regmap; 1442 int ret, partid, chip_idx = 0; 1443 const char *name = NULL; 1444 1445 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); 1446 if (!indio_dev) 1447 return -ENOMEM; 1448 1449 regmap = devm_regmap_init_i2c(client, <r501_regmap_config); 1450 if (IS_ERR(regmap)) { 1451 dev_err(&client->dev, "Regmap initialization failed.\n"); 1452 return PTR_ERR(regmap); 1453 } 1454 1455 data = iio_priv(indio_dev); 1456 i2c_set_clientdata(client, indio_dev); 1457 data->client = client; 1458 data->regmap = regmap; 1459 mutex_init(&data->lock_als); 1460 mutex_init(&data->lock_ps); 1461 1462 ret = devm_regulator_bulk_get_enable(&client->dev, 1463 ARRAY_SIZE(regulator_names), 1464 regulator_names); 1465 if (ret) 1466 return dev_err_probe(&client->dev, ret, 1467 "Failed to get regulators\n"); 1468 1469 data->reg_it = devm_regmap_field_alloc(&client->dev, regmap, 1470 reg_field_it); 1471 if (IS_ERR(data->reg_it)) { 1472 dev_err(&client->dev, "Integ time reg field init failed.\n"); 1473 return PTR_ERR(data->reg_it); 1474 } 1475 1476 data->reg_als_intr = devm_regmap_field_alloc(&client->dev, regmap, 1477 reg_field_als_intr); 1478 if (IS_ERR(data->reg_als_intr)) { 1479 dev_err(&client->dev, "ALS intr mode reg field init failed\n"); 1480 return PTR_ERR(data->reg_als_intr); 1481 } 1482 1483 data->reg_ps_intr = devm_regmap_field_alloc(&client->dev, regmap, 1484 reg_field_ps_intr); 1485 if (IS_ERR(data->reg_ps_intr)) { 1486 dev_err(&client->dev, "PS intr mode reg field init failed.\n"); 1487 return PTR_ERR(data->reg_ps_intr); 1488 } 1489 1490 data->reg_als_rate = devm_regmap_field_alloc(&client->dev, regmap, 1491 reg_field_als_rate); 1492 if (IS_ERR(data->reg_als_rate)) { 1493 dev_err(&client->dev, "ALS samp rate field init failed.\n"); 1494 return PTR_ERR(data->reg_als_rate); 1495 } 1496 1497 data->reg_ps_rate = devm_regmap_field_alloc(&client->dev, regmap, 1498 reg_field_ps_rate); 1499 if (IS_ERR(data->reg_ps_rate)) { 1500 dev_err(&client->dev, "PS samp rate field init failed.\n"); 1501 return PTR_ERR(data->reg_ps_rate); 1502 } 1503 1504 data->reg_als_prst = devm_regmap_field_alloc(&client->dev, regmap, 1505 reg_field_als_prst); 1506 if (IS_ERR(data->reg_als_prst)) { 1507 dev_err(&client->dev, "ALS prst reg field init failed\n"); 1508 return PTR_ERR(data->reg_als_prst); 1509 } 1510 1511 data->reg_ps_prst = devm_regmap_field_alloc(&client->dev, regmap, 1512 reg_field_ps_prst); 1513 if (IS_ERR(data->reg_ps_prst)) { 1514 dev_err(&client->dev, "PS prst reg field init failed.\n"); 1515 return PTR_ERR(data->reg_ps_prst); 1516 } 1517 1518 ret = regmap_read(data->regmap, LTR501_PART_ID, &partid); 1519 if (ret < 0) 1520 return ret; 1521 1522 if (id) { 1523 name = id->name; 1524 chip_idx = id->driver_data; 1525 } else if (ACPI_HANDLE(&client->dev)) { 1526 name = ltr501_match_acpi_device(&client->dev, &chip_idx); 1527 } else { 1528 return -ENODEV; 1529 } 1530 1531 data->chip_info = <r501_chip_info_tbl[chip_idx]; 1532 1533 if ((partid >> 4) != data->chip_info->partid) 1534 return -ENODEV; 1535 1536 if (device_property_read_u32(&client->dev, "proximity-near-level", 1537 &data->near_level)) 1538 data->near_level = 0; 1539 1540 indio_dev->info = data->chip_info->info; 1541 indio_dev->channels = data->chip_info->channels; 1542 indio_dev->num_channels = data->chip_info->no_channels; 1543 indio_dev->name = name; 1544 indio_dev->modes = INDIO_DIRECT_MODE; 1545 1546 ret = ltr501_init(data); 1547 if (ret < 0) 1548 return ret; 1549 1550 if (client->irq > 0) { 1551 ret = devm_request_threaded_irq(&client->dev, client->irq, 1552 NULL, ltr501_interrupt_handler, 1553 IRQF_TRIGGER_FALLING | 1554 IRQF_ONESHOT, 1555 "ltr501_thresh_event", 1556 indio_dev); 1557 if (ret) { 1558 dev_err(&client->dev, "request irq (%d) failed\n", 1559 client->irq); 1560 return ret; 1561 } 1562 } else { 1563 indio_dev->info = data->chip_info->info_no_irq; 1564 } 1565 1566 ret = iio_triggered_buffer_setup(indio_dev, NULL, 1567 ltr501_trigger_handler, NULL); 1568 if (ret) 1569 goto powerdown_on_error; 1570 1571 ret = iio_device_register(indio_dev); 1572 if (ret) 1573 goto error_unreg_buffer; 1574 1575 return 0; 1576 1577 error_unreg_buffer: 1578 iio_triggered_buffer_cleanup(indio_dev); 1579 powerdown_on_error: 1580 ltr501_powerdown(data); 1581 return ret; 1582 } 1583 1584 static void ltr501_remove(struct i2c_client *client) 1585 { 1586 struct iio_dev *indio_dev = i2c_get_clientdata(client); 1587 1588 iio_device_unregister(indio_dev); 1589 iio_triggered_buffer_cleanup(indio_dev); 1590 ltr501_powerdown(iio_priv(indio_dev)); 1591 } 1592 1593 static int ltr501_suspend(struct device *dev) 1594 { 1595 struct ltr501_data *data = iio_priv(i2c_get_clientdata( 1596 to_i2c_client(dev))); 1597 return ltr501_powerdown(data); 1598 } 1599 1600 static int ltr501_resume(struct device *dev) 1601 { 1602 struct ltr501_data *data = iio_priv(i2c_get_clientdata( 1603 to_i2c_client(dev))); 1604 1605 return ltr501_write_contr(data, data->als_contr, 1606 data->ps_contr); 1607 } 1608 1609 static DEFINE_SIMPLE_DEV_PM_OPS(ltr501_pm_ops, ltr501_suspend, ltr501_resume); 1610 1611 static const struct acpi_device_id ltr_acpi_match[] = { 1612 { "LTER0501", ltr501 }, 1613 { "LTER0559", ltr559 }, 1614 { "LTER0301", ltr301 }, 1615 { }, 1616 }; 1617 MODULE_DEVICE_TABLE(acpi, ltr_acpi_match); 1618 1619 static const struct i2c_device_id ltr501_id[] = { 1620 { "ltr501", ltr501 }, 1621 { "ltr559", ltr559 }, 1622 { "ltr301", ltr301 }, 1623 { "ltr303", ltr303 }, 1624 { } 1625 }; 1626 MODULE_DEVICE_TABLE(i2c, ltr501_id); 1627 1628 static const struct of_device_id ltr501_of_match[] = { 1629 { .compatible = "liteon,ltr501", }, 1630 { .compatible = "liteon,ltr559", }, 1631 { .compatible = "liteon,ltr301", }, 1632 { .compatible = "liteon,ltr303", }, 1633 {} 1634 }; 1635 MODULE_DEVICE_TABLE(of, ltr501_of_match); 1636 1637 static struct i2c_driver ltr501_driver = { 1638 .driver = { 1639 .name = LTR501_DRV_NAME, 1640 .of_match_table = ltr501_of_match, 1641 .pm = pm_sleep_ptr(<r501_pm_ops), 1642 .acpi_match_table = ACPI_PTR(ltr_acpi_match), 1643 }, 1644 .probe = ltr501_probe, 1645 .remove = ltr501_remove, 1646 .id_table = ltr501_id, 1647 }; 1648 1649 module_i2c_driver(ltr501_driver); 1650 1651 MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>"); 1652 MODULE_DESCRIPTION("Lite-On LTR501 ambient light and proximity sensor driver"); 1653 MODULE_LICENSE("GPL"); 1654