1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * ltr501.c - Support for Lite-On LTR501 ambient light and proximity sensor 4 * 5 * Copyright 2014 Peter Meerwald <pmeerw@pmeerw.net> 6 * 7 * 7-bit I2C slave address 0x23 8 * 9 * TODO: IR LED characteristics 10 */ 11 12 #include <linux/module.h> 13 #include <linux/i2c.h> 14 #include <linux/err.h> 15 #include <linux/delay.h> 16 #include <linux/regmap.h> 17 #include <linux/acpi.h> 18 19 #include <linux/iio/iio.h> 20 #include <linux/iio/events.h> 21 #include <linux/iio/sysfs.h> 22 #include <linux/iio/trigger_consumer.h> 23 #include <linux/iio/buffer.h> 24 #include <linux/iio/triggered_buffer.h> 25 26 #define LTR501_DRV_NAME "ltr501" 27 28 #define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */ 29 #define LTR501_PS_CONTR 0x81 /* PS operation mode */ 30 #define LTR501_PS_MEAS_RATE 0x84 /* measurement rate*/ 31 #define LTR501_ALS_MEAS_RATE 0x85 /* ALS integ time, measurement rate*/ 32 #define LTR501_PART_ID 0x86 33 #define LTR501_MANUFAC_ID 0x87 34 #define LTR501_ALS_DATA1 0x88 /* 16-bit, little endian */ 35 #define LTR501_ALS_DATA1_UPPER 0x89 /* upper 8 bits of LTR501_ALS_DATA1 */ 36 #define LTR501_ALS_DATA0 0x8a /* 16-bit, little endian */ 37 #define LTR501_ALS_DATA0_UPPER 0x8b /* upper 8 bits of LTR501_ALS_DATA0 */ 38 #define LTR501_ALS_PS_STATUS 0x8c 39 #define LTR501_PS_DATA 0x8d /* 16-bit, little endian */ 40 #define LTR501_PS_DATA_UPPER 0x8e /* upper 8 bits of LTR501_PS_DATA */ 41 #define LTR501_INTR 0x8f /* output mode, polarity, mode */ 42 #define LTR501_PS_THRESH_UP 0x90 /* 11 bit, ps upper threshold */ 43 #define LTR501_PS_THRESH_LOW 0x92 /* 11 bit, ps lower threshold */ 44 #define LTR501_ALS_THRESH_UP 0x97 /* 16 bit, ALS upper threshold */ 45 #define LTR501_ALS_THRESH_LOW 0x99 /* 16 bit, ALS lower threshold */ 46 #define LTR501_INTR_PRST 0x9e /* ps thresh, als thresh */ 47 #define LTR501_MAX_REG 0x9f 48 49 #define LTR501_ALS_CONTR_SW_RESET BIT(2) 50 #define LTR501_CONTR_PS_GAIN_MASK (BIT(3) | BIT(2)) 51 #define LTR501_CONTR_PS_GAIN_SHIFT 2 52 #define LTR501_CONTR_ALS_GAIN_MASK BIT(3) 53 #define LTR501_CONTR_ACTIVE BIT(1) 54 55 #define LTR501_STATUS_ALS_INTR BIT(3) 56 #define LTR501_STATUS_ALS_RDY BIT(2) 57 #define LTR501_STATUS_PS_INTR BIT(1) 58 #define LTR501_STATUS_PS_RDY BIT(0) 59 60 #define LTR501_PS_DATA_MASK 0x7ff 61 #define LTR501_PS_THRESH_MASK 0x7ff 62 #define LTR501_ALS_THRESH_MASK 0xffff 63 64 #define LTR501_ALS_DEF_PERIOD 500000 65 #define LTR501_PS_DEF_PERIOD 100000 66 67 #define LTR501_REGMAP_NAME "ltr501_regmap" 68 69 #define LTR501_LUX_CONV(vis_coeff, vis_data, ir_coeff, ir_data) \ 70 ((vis_coeff * vis_data) - (ir_coeff * ir_data)) 71 72 static const int int_time_mapping[] = {100000, 50000, 200000, 400000}; 73 74 static const struct reg_field reg_field_it = 75 REG_FIELD(LTR501_ALS_MEAS_RATE, 3, 4); 76 static const struct reg_field reg_field_als_intr = 77 REG_FIELD(LTR501_INTR, 1, 1); 78 static const struct reg_field reg_field_ps_intr = 79 REG_FIELD(LTR501_INTR, 0, 0); 80 static const struct reg_field reg_field_als_rate = 81 REG_FIELD(LTR501_ALS_MEAS_RATE, 0, 2); 82 static const struct reg_field reg_field_ps_rate = 83 REG_FIELD(LTR501_PS_MEAS_RATE, 0, 3); 84 static const struct reg_field reg_field_als_prst = 85 REG_FIELD(LTR501_INTR_PRST, 0, 3); 86 static const struct reg_field reg_field_ps_prst = 87 REG_FIELD(LTR501_INTR_PRST, 4, 7); 88 89 struct ltr501_samp_table { 90 int freq_val; /* repetition frequency in micro HZ*/ 91 int time_val; /* repetition rate in micro seconds */ 92 }; 93 94 #define LTR501_RESERVED_GAIN -1 95 96 enum { 97 ltr501 = 0, 98 ltr559, 99 ltr301, 100 }; 101 102 struct ltr501_gain { 103 int scale; 104 int uscale; 105 }; 106 107 static const struct ltr501_gain ltr501_als_gain_tbl[] = { 108 {1, 0}, 109 {0, 5000}, 110 }; 111 112 static const struct ltr501_gain ltr559_als_gain_tbl[] = { 113 {1, 0}, 114 {0, 500000}, 115 {0, 250000}, 116 {0, 125000}, 117 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN}, 118 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN}, 119 {0, 20000}, 120 {0, 10000}, 121 }; 122 123 static const struct ltr501_gain ltr501_ps_gain_tbl[] = { 124 {1, 0}, 125 {0, 250000}, 126 {0, 125000}, 127 {0, 62500}, 128 }; 129 130 static const struct ltr501_gain ltr559_ps_gain_tbl[] = { 131 {0, 62500}, /* x16 gain */ 132 {0, 31250}, /* x32 gain */ 133 {0, 15625}, /* bits X1 are for x64 gain */ 134 {0, 15624}, 135 }; 136 137 struct ltr501_chip_info { 138 u8 partid; 139 const struct ltr501_gain *als_gain; 140 int als_gain_tbl_size; 141 const struct ltr501_gain *ps_gain; 142 int ps_gain_tbl_size; 143 u8 als_mode_active; 144 u8 als_gain_mask; 145 u8 als_gain_shift; 146 struct iio_chan_spec const *channels; 147 const int no_channels; 148 const struct iio_info *info; 149 const struct iio_info *info_no_irq; 150 }; 151 152 struct ltr501_data { 153 struct i2c_client *client; 154 struct mutex lock_als, lock_ps; 155 const struct ltr501_chip_info *chip_info; 156 u8 als_contr, ps_contr; 157 int als_period, ps_period; /* period in micro seconds */ 158 struct regmap *regmap; 159 struct regmap_field *reg_it; 160 struct regmap_field *reg_als_intr; 161 struct regmap_field *reg_ps_intr; 162 struct regmap_field *reg_als_rate; 163 struct regmap_field *reg_ps_rate; 164 struct regmap_field *reg_als_prst; 165 struct regmap_field *reg_ps_prst; 166 }; 167 168 static const struct ltr501_samp_table ltr501_als_samp_table[] = { 169 {20000000, 50000}, {10000000, 100000}, 170 {5000000, 200000}, {2000000, 500000}, 171 {1000000, 1000000}, {500000, 2000000}, 172 {500000, 2000000}, {500000, 2000000} 173 }; 174 175 static const struct ltr501_samp_table ltr501_ps_samp_table[] = { 176 {20000000, 50000}, {14285714, 70000}, 177 {10000000, 100000}, {5000000, 200000}, 178 {2000000, 500000}, {1000000, 1000000}, 179 {500000, 2000000}, {500000, 2000000}, 180 {500000, 2000000} 181 }; 182 183 static int ltr501_match_samp_freq(const struct ltr501_samp_table *tab, 184 int len, int val, int val2) 185 { 186 int i, freq; 187 188 freq = val * 1000000 + val2; 189 190 for (i = 0; i < len; i++) { 191 if (tab[i].freq_val == freq) 192 return i; 193 } 194 195 return -EINVAL; 196 } 197 198 static int ltr501_als_read_samp_freq(const struct ltr501_data *data, 199 int *val, int *val2) 200 { 201 int ret, i; 202 203 ret = regmap_field_read(data->reg_als_rate, &i); 204 if (ret < 0) 205 return ret; 206 207 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table)) 208 return -EINVAL; 209 210 *val = ltr501_als_samp_table[i].freq_val / 1000000; 211 *val2 = ltr501_als_samp_table[i].freq_val % 1000000; 212 213 return IIO_VAL_INT_PLUS_MICRO; 214 } 215 216 static int ltr501_ps_read_samp_freq(const struct ltr501_data *data, 217 int *val, int *val2) 218 { 219 int ret, i; 220 221 ret = regmap_field_read(data->reg_ps_rate, &i); 222 if (ret < 0) 223 return ret; 224 225 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table)) 226 return -EINVAL; 227 228 *val = ltr501_ps_samp_table[i].freq_val / 1000000; 229 *val2 = ltr501_ps_samp_table[i].freq_val % 1000000; 230 231 return IIO_VAL_INT_PLUS_MICRO; 232 } 233 234 static int ltr501_als_write_samp_freq(struct ltr501_data *data, 235 int val, int val2) 236 { 237 int i, ret; 238 239 i = ltr501_match_samp_freq(ltr501_als_samp_table, 240 ARRAY_SIZE(ltr501_als_samp_table), 241 val, val2); 242 243 if (i < 0) 244 return i; 245 246 mutex_lock(&data->lock_als); 247 ret = regmap_field_write(data->reg_als_rate, i); 248 mutex_unlock(&data->lock_als); 249 250 return ret; 251 } 252 253 static int ltr501_ps_write_samp_freq(struct ltr501_data *data, 254 int val, int val2) 255 { 256 int i, ret; 257 258 i = ltr501_match_samp_freq(ltr501_ps_samp_table, 259 ARRAY_SIZE(ltr501_ps_samp_table), 260 val, val2); 261 262 if (i < 0) 263 return i; 264 265 mutex_lock(&data->lock_ps); 266 ret = regmap_field_write(data->reg_ps_rate, i); 267 mutex_unlock(&data->lock_ps); 268 269 return ret; 270 } 271 272 static int ltr501_als_read_samp_period(const struct ltr501_data *data, int *val) 273 { 274 int ret, i; 275 276 ret = regmap_field_read(data->reg_als_rate, &i); 277 if (ret < 0) 278 return ret; 279 280 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table)) 281 return -EINVAL; 282 283 *val = ltr501_als_samp_table[i].time_val; 284 285 return IIO_VAL_INT; 286 } 287 288 static int ltr501_ps_read_samp_period(const struct ltr501_data *data, int *val) 289 { 290 int ret, i; 291 292 ret = regmap_field_read(data->reg_ps_rate, &i); 293 if (ret < 0) 294 return ret; 295 296 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table)) 297 return -EINVAL; 298 299 *val = ltr501_ps_samp_table[i].time_val; 300 301 return IIO_VAL_INT; 302 } 303 304 /* IR and visible spectrum coeff's are given in data sheet */ 305 static unsigned long ltr501_calculate_lux(u16 vis_data, u16 ir_data) 306 { 307 unsigned long ratio, lux; 308 309 if (vis_data == 0) 310 return 0; 311 312 /* multiply numerator by 100 to avoid handling ratio < 1 */ 313 ratio = DIV_ROUND_UP(ir_data * 100, ir_data + vis_data); 314 315 if (ratio < 45) 316 lux = LTR501_LUX_CONV(1774, vis_data, -1105, ir_data); 317 else if (ratio >= 45 && ratio < 64) 318 lux = LTR501_LUX_CONV(3772, vis_data, 1336, ir_data); 319 else if (ratio >= 64 && ratio < 85) 320 lux = LTR501_LUX_CONV(1690, vis_data, 169, ir_data); 321 else 322 lux = 0; 323 324 return lux / 1000; 325 } 326 327 static int ltr501_drdy(const struct ltr501_data *data, u8 drdy_mask) 328 { 329 int tries = 100; 330 int ret, status; 331 332 while (tries--) { 333 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status); 334 if (ret < 0) 335 return ret; 336 if ((status & drdy_mask) == drdy_mask) 337 return 0; 338 msleep(25); 339 } 340 341 dev_err(&data->client->dev, "ltr501_drdy() failed, data not ready\n"); 342 return -EIO; 343 } 344 345 static int ltr501_set_it_time(struct ltr501_data *data, int it) 346 { 347 int ret, i, index = -1, status; 348 349 for (i = 0; i < ARRAY_SIZE(int_time_mapping); i++) { 350 if (int_time_mapping[i] == it) { 351 index = i; 352 break; 353 } 354 } 355 /* Make sure integ time index is valid */ 356 if (index < 0) 357 return -EINVAL; 358 359 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status); 360 if (ret < 0) 361 return ret; 362 363 if (status & LTR501_CONTR_ALS_GAIN_MASK) { 364 /* 365 * 200 ms and 400 ms integ time can only be 366 * used in dynamic range 1 367 */ 368 if (index > 1) 369 return -EINVAL; 370 } else 371 /* 50 ms integ time can only be used in dynamic range 2 */ 372 if (index == 1) 373 return -EINVAL; 374 375 return regmap_field_write(data->reg_it, index); 376 } 377 378 /* read int time in micro seconds */ 379 static int ltr501_read_it_time(const struct ltr501_data *data, 380 int *val, int *val2) 381 { 382 int ret, index; 383 384 ret = regmap_field_read(data->reg_it, &index); 385 if (ret < 0) 386 return ret; 387 388 /* Make sure integ time index is valid */ 389 if (index < 0 || index >= ARRAY_SIZE(int_time_mapping)) 390 return -EINVAL; 391 392 *val2 = int_time_mapping[index]; 393 *val = 0; 394 395 return IIO_VAL_INT_PLUS_MICRO; 396 } 397 398 static int ltr501_read_als(const struct ltr501_data *data, __le16 buf[2]) 399 { 400 int ret; 401 402 ret = ltr501_drdy(data, LTR501_STATUS_ALS_RDY); 403 if (ret < 0) 404 return ret; 405 /* always read both ALS channels in given order */ 406 return regmap_bulk_read(data->regmap, LTR501_ALS_DATA1, 407 buf, 2 * sizeof(__le16)); 408 } 409 410 static int ltr501_read_ps(const struct ltr501_data *data) 411 { 412 __le16 status; 413 int ret; 414 415 ret = ltr501_drdy(data, LTR501_STATUS_PS_RDY); 416 if (ret < 0) 417 return ret; 418 419 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA, 420 &status, sizeof(status)); 421 if (ret < 0) 422 return ret; 423 424 return le16_to_cpu(status); 425 } 426 427 static int ltr501_read_intr_prst(const struct ltr501_data *data, 428 enum iio_chan_type type, 429 int *val2) 430 { 431 int ret, samp_period, prst; 432 433 switch (type) { 434 case IIO_INTENSITY: 435 ret = regmap_field_read(data->reg_als_prst, &prst); 436 if (ret < 0) 437 return ret; 438 439 ret = ltr501_als_read_samp_period(data, &samp_period); 440 441 if (ret < 0) 442 return ret; 443 *val2 = samp_period * prst; 444 return IIO_VAL_INT_PLUS_MICRO; 445 case IIO_PROXIMITY: 446 ret = regmap_field_read(data->reg_ps_prst, &prst); 447 if (ret < 0) 448 return ret; 449 450 ret = ltr501_ps_read_samp_period(data, &samp_period); 451 452 if (ret < 0) 453 return ret; 454 455 *val2 = samp_period * prst; 456 return IIO_VAL_INT_PLUS_MICRO; 457 default: 458 return -EINVAL; 459 } 460 461 return -EINVAL; 462 } 463 464 static int ltr501_write_intr_prst(struct ltr501_data *data, 465 enum iio_chan_type type, 466 int val, int val2) 467 { 468 int ret, samp_period, new_val; 469 unsigned long period; 470 471 if (val < 0 || val2 < 0) 472 return -EINVAL; 473 474 /* period in microseconds */ 475 period = ((val * 1000000) + val2); 476 477 switch (type) { 478 case IIO_INTENSITY: 479 ret = ltr501_als_read_samp_period(data, &samp_period); 480 if (ret < 0) 481 return ret; 482 483 /* period should be atleast equal to sampling period */ 484 if (period < samp_period) 485 return -EINVAL; 486 487 new_val = DIV_ROUND_UP(period, samp_period); 488 if (new_val < 0 || new_val > 0x0f) 489 return -EINVAL; 490 491 mutex_lock(&data->lock_als); 492 ret = regmap_field_write(data->reg_als_prst, new_val); 493 mutex_unlock(&data->lock_als); 494 if (ret >= 0) 495 data->als_period = period; 496 497 return ret; 498 case IIO_PROXIMITY: 499 ret = ltr501_ps_read_samp_period(data, &samp_period); 500 if (ret < 0) 501 return ret; 502 503 /* period should be atleast equal to rate */ 504 if (period < samp_period) 505 return -EINVAL; 506 507 new_val = DIV_ROUND_UP(period, samp_period); 508 if (new_val < 0 || new_val > 0x0f) 509 return -EINVAL; 510 511 mutex_lock(&data->lock_ps); 512 ret = regmap_field_write(data->reg_ps_prst, new_val); 513 mutex_unlock(&data->lock_ps); 514 if (ret >= 0) 515 data->ps_period = period; 516 517 return ret; 518 default: 519 return -EINVAL; 520 } 521 522 return -EINVAL; 523 } 524 525 static const struct iio_event_spec ltr501_als_event_spec[] = { 526 { 527 .type = IIO_EV_TYPE_THRESH, 528 .dir = IIO_EV_DIR_RISING, 529 .mask_separate = BIT(IIO_EV_INFO_VALUE), 530 }, { 531 .type = IIO_EV_TYPE_THRESH, 532 .dir = IIO_EV_DIR_FALLING, 533 .mask_separate = BIT(IIO_EV_INFO_VALUE), 534 }, { 535 .type = IIO_EV_TYPE_THRESH, 536 .dir = IIO_EV_DIR_EITHER, 537 .mask_separate = BIT(IIO_EV_INFO_ENABLE) | 538 BIT(IIO_EV_INFO_PERIOD), 539 }, 540 541 }; 542 543 static const struct iio_event_spec ltr501_pxs_event_spec[] = { 544 { 545 .type = IIO_EV_TYPE_THRESH, 546 .dir = IIO_EV_DIR_RISING, 547 .mask_separate = BIT(IIO_EV_INFO_VALUE), 548 }, { 549 .type = IIO_EV_TYPE_THRESH, 550 .dir = IIO_EV_DIR_FALLING, 551 .mask_separate = BIT(IIO_EV_INFO_VALUE), 552 }, { 553 .type = IIO_EV_TYPE_THRESH, 554 .dir = IIO_EV_DIR_EITHER, 555 .mask_separate = BIT(IIO_EV_INFO_ENABLE) | 556 BIT(IIO_EV_INFO_PERIOD), 557 }, 558 }; 559 560 #define LTR501_INTENSITY_CHANNEL(_idx, _addr, _mod, _shared, \ 561 _evspec, _evsize) { \ 562 .type = IIO_INTENSITY, \ 563 .modified = 1, \ 564 .address = (_addr), \ 565 .channel2 = (_mod), \ 566 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 567 .info_mask_shared_by_type = (_shared), \ 568 .scan_index = (_idx), \ 569 .scan_type = { \ 570 .sign = 'u', \ 571 .realbits = 16, \ 572 .storagebits = 16, \ 573 .endianness = IIO_CPU, \ 574 }, \ 575 .event_spec = _evspec,\ 576 .num_event_specs = _evsize,\ 577 } 578 579 #define LTR501_LIGHT_CHANNEL() { \ 580 .type = IIO_LIGHT, \ 581 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \ 582 .scan_index = -1, \ 583 } 584 585 static const struct iio_chan_spec ltr501_channels[] = { 586 LTR501_LIGHT_CHANNEL(), 587 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0, 588 ltr501_als_event_spec, 589 ARRAY_SIZE(ltr501_als_event_spec)), 590 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR, 591 BIT(IIO_CHAN_INFO_SCALE) | 592 BIT(IIO_CHAN_INFO_INT_TIME) | 593 BIT(IIO_CHAN_INFO_SAMP_FREQ), 594 NULL, 0), 595 { 596 .type = IIO_PROXIMITY, 597 .address = LTR501_PS_DATA, 598 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | 599 BIT(IIO_CHAN_INFO_SCALE), 600 .scan_index = 2, 601 .scan_type = { 602 .sign = 'u', 603 .realbits = 11, 604 .storagebits = 16, 605 .endianness = IIO_CPU, 606 }, 607 .event_spec = ltr501_pxs_event_spec, 608 .num_event_specs = ARRAY_SIZE(ltr501_pxs_event_spec), 609 }, 610 IIO_CHAN_SOFT_TIMESTAMP(3), 611 }; 612 613 static const struct iio_chan_spec ltr301_channels[] = { 614 LTR501_LIGHT_CHANNEL(), 615 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0, 616 ltr501_als_event_spec, 617 ARRAY_SIZE(ltr501_als_event_spec)), 618 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR, 619 BIT(IIO_CHAN_INFO_SCALE) | 620 BIT(IIO_CHAN_INFO_INT_TIME) | 621 BIT(IIO_CHAN_INFO_SAMP_FREQ), 622 NULL, 0), 623 IIO_CHAN_SOFT_TIMESTAMP(2), 624 }; 625 626 static int ltr501_read_raw(struct iio_dev *indio_dev, 627 struct iio_chan_spec const *chan, 628 int *val, int *val2, long mask) 629 { 630 struct ltr501_data *data = iio_priv(indio_dev); 631 __le16 buf[2]; 632 int ret, i; 633 634 switch (mask) { 635 case IIO_CHAN_INFO_PROCESSED: 636 switch (chan->type) { 637 case IIO_LIGHT: 638 ret = iio_device_claim_direct_mode(indio_dev); 639 if (ret) 640 return ret; 641 642 mutex_lock(&data->lock_als); 643 ret = ltr501_read_als(data, buf); 644 mutex_unlock(&data->lock_als); 645 iio_device_release_direct_mode(indio_dev); 646 if (ret < 0) 647 return ret; 648 *val = ltr501_calculate_lux(le16_to_cpu(buf[1]), 649 le16_to_cpu(buf[0])); 650 return IIO_VAL_INT; 651 default: 652 return -EINVAL; 653 } 654 case IIO_CHAN_INFO_RAW: 655 ret = iio_device_claim_direct_mode(indio_dev); 656 if (ret) 657 return ret; 658 659 switch (chan->type) { 660 case IIO_INTENSITY: 661 mutex_lock(&data->lock_als); 662 ret = ltr501_read_als(data, buf); 663 mutex_unlock(&data->lock_als); 664 if (ret < 0) 665 break; 666 *val = le16_to_cpu(chan->address == LTR501_ALS_DATA1 ? 667 buf[0] : buf[1]); 668 ret = IIO_VAL_INT; 669 break; 670 case IIO_PROXIMITY: 671 mutex_lock(&data->lock_ps); 672 ret = ltr501_read_ps(data); 673 mutex_unlock(&data->lock_ps); 674 if (ret < 0) 675 break; 676 *val = ret & LTR501_PS_DATA_MASK; 677 ret = IIO_VAL_INT; 678 break; 679 default: 680 ret = -EINVAL; 681 break; 682 } 683 684 iio_device_release_direct_mode(indio_dev); 685 return ret; 686 687 case IIO_CHAN_INFO_SCALE: 688 switch (chan->type) { 689 case IIO_INTENSITY: 690 i = (data->als_contr & data->chip_info->als_gain_mask) 691 >> data->chip_info->als_gain_shift; 692 *val = data->chip_info->als_gain[i].scale; 693 *val2 = data->chip_info->als_gain[i].uscale; 694 return IIO_VAL_INT_PLUS_MICRO; 695 case IIO_PROXIMITY: 696 i = (data->ps_contr & LTR501_CONTR_PS_GAIN_MASK) >> 697 LTR501_CONTR_PS_GAIN_SHIFT; 698 *val = data->chip_info->ps_gain[i].scale; 699 *val2 = data->chip_info->ps_gain[i].uscale; 700 return IIO_VAL_INT_PLUS_MICRO; 701 default: 702 return -EINVAL; 703 } 704 case IIO_CHAN_INFO_INT_TIME: 705 switch (chan->type) { 706 case IIO_INTENSITY: 707 return ltr501_read_it_time(data, val, val2); 708 default: 709 return -EINVAL; 710 } 711 case IIO_CHAN_INFO_SAMP_FREQ: 712 switch (chan->type) { 713 case IIO_INTENSITY: 714 return ltr501_als_read_samp_freq(data, val, val2); 715 case IIO_PROXIMITY: 716 return ltr501_ps_read_samp_freq(data, val, val2); 717 default: 718 return -EINVAL; 719 } 720 } 721 return -EINVAL; 722 } 723 724 static int ltr501_get_gain_index(const struct ltr501_gain *gain, int size, 725 int val, int val2) 726 { 727 int i; 728 729 for (i = 0; i < size; i++) 730 if (val == gain[i].scale && val2 == gain[i].uscale) 731 return i; 732 733 return -1; 734 } 735 736 static int ltr501_write_raw(struct iio_dev *indio_dev, 737 struct iio_chan_spec const *chan, 738 int val, int val2, long mask) 739 { 740 struct ltr501_data *data = iio_priv(indio_dev); 741 int i, ret, freq_val, freq_val2; 742 const struct ltr501_chip_info *info = data->chip_info; 743 744 ret = iio_device_claim_direct_mode(indio_dev); 745 if (ret) 746 return ret; 747 748 switch (mask) { 749 case IIO_CHAN_INFO_SCALE: 750 switch (chan->type) { 751 case IIO_INTENSITY: 752 i = ltr501_get_gain_index(info->als_gain, 753 info->als_gain_tbl_size, 754 val, val2); 755 if (i < 0) { 756 ret = -EINVAL; 757 break; 758 } 759 760 data->als_contr &= ~info->als_gain_mask; 761 data->als_contr |= i << info->als_gain_shift; 762 763 ret = regmap_write(data->regmap, LTR501_ALS_CONTR, 764 data->als_contr); 765 break; 766 case IIO_PROXIMITY: 767 i = ltr501_get_gain_index(info->ps_gain, 768 info->ps_gain_tbl_size, 769 val, val2); 770 if (i < 0) { 771 ret = -EINVAL; 772 break; 773 } 774 data->ps_contr &= ~LTR501_CONTR_PS_GAIN_MASK; 775 data->ps_contr |= i << LTR501_CONTR_PS_GAIN_SHIFT; 776 777 ret = regmap_write(data->regmap, LTR501_PS_CONTR, 778 data->ps_contr); 779 break; 780 default: 781 ret = -EINVAL; 782 break; 783 } 784 break; 785 786 case IIO_CHAN_INFO_INT_TIME: 787 switch (chan->type) { 788 case IIO_INTENSITY: 789 if (val != 0) { 790 ret = -EINVAL; 791 break; 792 } 793 mutex_lock(&data->lock_als); 794 ret = ltr501_set_it_time(data, val2); 795 mutex_unlock(&data->lock_als); 796 break; 797 default: 798 ret = -EINVAL; 799 break; 800 } 801 break; 802 803 case IIO_CHAN_INFO_SAMP_FREQ: 804 switch (chan->type) { 805 case IIO_INTENSITY: 806 ret = ltr501_als_read_samp_freq(data, &freq_val, 807 &freq_val2); 808 if (ret < 0) 809 break; 810 811 ret = ltr501_als_write_samp_freq(data, val, val2); 812 if (ret < 0) 813 break; 814 815 /* update persistence count when changing frequency */ 816 ret = ltr501_write_intr_prst(data, chan->type, 817 0, data->als_period); 818 819 if (ret < 0) 820 ret = ltr501_als_write_samp_freq(data, freq_val, 821 freq_val2); 822 break; 823 case IIO_PROXIMITY: 824 ret = ltr501_ps_read_samp_freq(data, &freq_val, 825 &freq_val2); 826 if (ret < 0) 827 break; 828 829 ret = ltr501_ps_write_samp_freq(data, val, val2); 830 if (ret < 0) 831 break; 832 833 /* update persistence count when changing frequency */ 834 ret = ltr501_write_intr_prst(data, chan->type, 835 0, data->ps_period); 836 837 if (ret < 0) 838 ret = ltr501_ps_write_samp_freq(data, freq_val, 839 freq_val2); 840 break; 841 default: 842 ret = -EINVAL; 843 break; 844 } 845 break; 846 847 default: 848 ret = -EINVAL; 849 break; 850 } 851 852 iio_device_release_direct_mode(indio_dev); 853 return ret; 854 } 855 856 static int ltr501_read_thresh(const struct iio_dev *indio_dev, 857 const struct iio_chan_spec *chan, 858 enum iio_event_type type, 859 enum iio_event_direction dir, 860 enum iio_event_info info, 861 int *val, int *val2) 862 { 863 const struct ltr501_data *data = iio_priv(indio_dev); 864 int ret, thresh_data; 865 866 switch (chan->type) { 867 case IIO_INTENSITY: 868 switch (dir) { 869 case IIO_EV_DIR_RISING: 870 ret = regmap_bulk_read(data->regmap, 871 LTR501_ALS_THRESH_UP, 872 &thresh_data, 2); 873 if (ret < 0) 874 return ret; 875 *val = thresh_data & LTR501_ALS_THRESH_MASK; 876 return IIO_VAL_INT; 877 case IIO_EV_DIR_FALLING: 878 ret = regmap_bulk_read(data->regmap, 879 LTR501_ALS_THRESH_LOW, 880 &thresh_data, 2); 881 if (ret < 0) 882 return ret; 883 *val = thresh_data & LTR501_ALS_THRESH_MASK; 884 return IIO_VAL_INT; 885 default: 886 return -EINVAL; 887 } 888 case IIO_PROXIMITY: 889 switch (dir) { 890 case IIO_EV_DIR_RISING: 891 ret = regmap_bulk_read(data->regmap, 892 LTR501_PS_THRESH_UP, 893 &thresh_data, 2); 894 if (ret < 0) 895 return ret; 896 *val = thresh_data & LTR501_PS_THRESH_MASK; 897 return IIO_VAL_INT; 898 case IIO_EV_DIR_FALLING: 899 ret = regmap_bulk_read(data->regmap, 900 LTR501_PS_THRESH_LOW, 901 &thresh_data, 2); 902 if (ret < 0) 903 return ret; 904 *val = thresh_data & LTR501_PS_THRESH_MASK; 905 return IIO_VAL_INT; 906 default: 907 return -EINVAL; 908 } 909 default: 910 return -EINVAL; 911 } 912 913 return -EINVAL; 914 } 915 916 static int ltr501_write_thresh(struct iio_dev *indio_dev, 917 const struct iio_chan_spec *chan, 918 enum iio_event_type type, 919 enum iio_event_direction dir, 920 enum iio_event_info info, 921 int val, int val2) 922 { 923 struct ltr501_data *data = iio_priv(indio_dev); 924 int ret; 925 926 if (val < 0) 927 return -EINVAL; 928 929 switch (chan->type) { 930 case IIO_INTENSITY: 931 if (val > LTR501_ALS_THRESH_MASK) 932 return -EINVAL; 933 switch (dir) { 934 case IIO_EV_DIR_RISING: 935 mutex_lock(&data->lock_als); 936 ret = regmap_bulk_write(data->regmap, 937 LTR501_ALS_THRESH_UP, 938 &val, 2); 939 mutex_unlock(&data->lock_als); 940 return ret; 941 case IIO_EV_DIR_FALLING: 942 mutex_lock(&data->lock_als); 943 ret = regmap_bulk_write(data->regmap, 944 LTR501_ALS_THRESH_LOW, 945 &val, 2); 946 mutex_unlock(&data->lock_als); 947 return ret; 948 default: 949 return -EINVAL; 950 } 951 case IIO_PROXIMITY: 952 if (val > LTR501_PS_THRESH_MASK) 953 return -EINVAL; 954 switch (dir) { 955 case IIO_EV_DIR_RISING: 956 mutex_lock(&data->lock_ps); 957 ret = regmap_bulk_write(data->regmap, 958 LTR501_PS_THRESH_UP, 959 &val, 2); 960 mutex_unlock(&data->lock_ps); 961 return ret; 962 case IIO_EV_DIR_FALLING: 963 mutex_lock(&data->lock_ps); 964 ret = regmap_bulk_write(data->regmap, 965 LTR501_PS_THRESH_LOW, 966 &val, 2); 967 mutex_unlock(&data->lock_ps); 968 return ret; 969 default: 970 return -EINVAL; 971 } 972 default: 973 return -EINVAL; 974 } 975 976 return -EINVAL; 977 } 978 979 static int ltr501_read_event(struct iio_dev *indio_dev, 980 const struct iio_chan_spec *chan, 981 enum iio_event_type type, 982 enum iio_event_direction dir, 983 enum iio_event_info info, 984 int *val, int *val2) 985 { 986 int ret; 987 988 switch (info) { 989 case IIO_EV_INFO_VALUE: 990 return ltr501_read_thresh(indio_dev, chan, type, dir, 991 info, val, val2); 992 case IIO_EV_INFO_PERIOD: 993 ret = ltr501_read_intr_prst(iio_priv(indio_dev), 994 chan->type, val2); 995 *val = *val2 / 1000000; 996 *val2 = *val2 % 1000000; 997 return ret; 998 default: 999 return -EINVAL; 1000 } 1001 1002 return -EINVAL; 1003 } 1004 1005 static int ltr501_write_event(struct iio_dev *indio_dev, 1006 const struct iio_chan_spec *chan, 1007 enum iio_event_type type, 1008 enum iio_event_direction dir, 1009 enum iio_event_info info, 1010 int val, int val2) 1011 { 1012 switch (info) { 1013 case IIO_EV_INFO_VALUE: 1014 if (val2 != 0) 1015 return -EINVAL; 1016 return ltr501_write_thresh(indio_dev, chan, type, dir, 1017 info, val, val2); 1018 case IIO_EV_INFO_PERIOD: 1019 return ltr501_write_intr_prst(iio_priv(indio_dev), chan->type, 1020 val, val2); 1021 default: 1022 return -EINVAL; 1023 } 1024 1025 return -EINVAL; 1026 } 1027 1028 static int ltr501_read_event_config(struct iio_dev *indio_dev, 1029 const struct iio_chan_spec *chan, 1030 enum iio_event_type type, 1031 enum iio_event_direction dir) 1032 { 1033 struct ltr501_data *data = iio_priv(indio_dev); 1034 int ret, status; 1035 1036 switch (chan->type) { 1037 case IIO_INTENSITY: 1038 ret = regmap_field_read(data->reg_als_intr, &status); 1039 if (ret < 0) 1040 return ret; 1041 return status; 1042 case IIO_PROXIMITY: 1043 ret = regmap_field_read(data->reg_ps_intr, &status); 1044 if (ret < 0) 1045 return ret; 1046 return status; 1047 default: 1048 return -EINVAL; 1049 } 1050 1051 return -EINVAL; 1052 } 1053 1054 static int ltr501_write_event_config(struct iio_dev *indio_dev, 1055 const struct iio_chan_spec *chan, 1056 enum iio_event_type type, 1057 enum iio_event_direction dir, int state) 1058 { 1059 struct ltr501_data *data = iio_priv(indio_dev); 1060 int ret; 1061 1062 /* only 1 and 0 are valid inputs */ 1063 if (state != 1 && state != 0) 1064 return -EINVAL; 1065 1066 switch (chan->type) { 1067 case IIO_INTENSITY: 1068 mutex_lock(&data->lock_als); 1069 ret = regmap_field_write(data->reg_als_intr, state); 1070 mutex_unlock(&data->lock_als); 1071 return ret; 1072 case IIO_PROXIMITY: 1073 mutex_lock(&data->lock_ps); 1074 ret = regmap_field_write(data->reg_ps_intr, state); 1075 mutex_unlock(&data->lock_ps); 1076 return ret; 1077 default: 1078 return -EINVAL; 1079 } 1080 1081 return -EINVAL; 1082 } 1083 1084 static ssize_t ltr501_show_proximity_scale_avail(struct device *dev, 1085 struct device_attribute *attr, 1086 char *buf) 1087 { 1088 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev)); 1089 const struct ltr501_chip_info *info = data->chip_info; 1090 ssize_t len = 0; 1091 int i; 1092 1093 for (i = 0; i < info->ps_gain_tbl_size; i++) { 1094 if (info->ps_gain[i].scale == LTR501_RESERVED_GAIN) 1095 continue; 1096 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ", 1097 info->ps_gain[i].scale, 1098 info->ps_gain[i].uscale); 1099 } 1100 1101 buf[len - 1] = '\n'; 1102 1103 return len; 1104 } 1105 1106 static ssize_t ltr501_show_intensity_scale_avail(struct device *dev, 1107 struct device_attribute *attr, 1108 char *buf) 1109 { 1110 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev)); 1111 const struct ltr501_chip_info *info = data->chip_info; 1112 ssize_t len = 0; 1113 int i; 1114 1115 for (i = 0; i < info->als_gain_tbl_size; i++) { 1116 if (info->als_gain[i].scale == LTR501_RESERVED_GAIN) 1117 continue; 1118 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ", 1119 info->als_gain[i].scale, 1120 info->als_gain[i].uscale); 1121 } 1122 1123 buf[len - 1] = '\n'; 1124 1125 return len; 1126 } 1127 1128 static IIO_CONST_ATTR_INT_TIME_AVAIL("0.05 0.1 0.2 0.4"); 1129 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("20 10 5 2 1 0.5"); 1130 1131 static IIO_DEVICE_ATTR(in_proximity_scale_available, S_IRUGO, 1132 ltr501_show_proximity_scale_avail, NULL, 0); 1133 static IIO_DEVICE_ATTR(in_intensity_scale_available, S_IRUGO, 1134 ltr501_show_intensity_scale_avail, NULL, 0); 1135 1136 static struct attribute *ltr501_attributes[] = { 1137 &iio_dev_attr_in_proximity_scale_available.dev_attr.attr, 1138 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr, 1139 &iio_const_attr_integration_time_available.dev_attr.attr, 1140 &iio_const_attr_sampling_frequency_available.dev_attr.attr, 1141 NULL 1142 }; 1143 1144 static struct attribute *ltr301_attributes[] = { 1145 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr, 1146 &iio_const_attr_integration_time_available.dev_attr.attr, 1147 &iio_const_attr_sampling_frequency_available.dev_attr.attr, 1148 NULL 1149 }; 1150 1151 static const struct attribute_group ltr501_attribute_group = { 1152 .attrs = ltr501_attributes, 1153 }; 1154 1155 static const struct attribute_group ltr301_attribute_group = { 1156 .attrs = ltr301_attributes, 1157 }; 1158 1159 static const struct iio_info ltr501_info_no_irq = { 1160 .read_raw = ltr501_read_raw, 1161 .write_raw = ltr501_write_raw, 1162 .attrs = <r501_attribute_group, 1163 }; 1164 1165 static const struct iio_info ltr501_info = { 1166 .read_raw = ltr501_read_raw, 1167 .write_raw = ltr501_write_raw, 1168 .attrs = <r501_attribute_group, 1169 .read_event_value = <r501_read_event, 1170 .write_event_value = <r501_write_event, 1171 .read_event_config = <r501_read_event_config, 1172 .write_event_config = <r501_write_event_config, 1173 }; 1174 1175 static const struct iio_info ltr301_info_no_irq = { 1176 .read_raw = ltr501_read_raw, 1177 .write_raw = ltr501_write_raw, 1178 .attrs = <r301_attribute_group, 1179 }; 1180 1181 static const struct iio_info ltr301_info = { 1182 .read_raw = ltr501_read_raw, 1183 .write_raw = ltr501_write_raw, 1184 .attrs = <r301_attribute_group, 1185 .read_event_value = <r501_read_event, 1186 .write_event_value = <r501_write_event, 1187 .read_event_config = <r501_read_event_config, 1188 .write_event_config = <r501_write_event_config, 1189 }; 1190 1191 static const struct ltr501_chip_info ltr501_chip_info_tbl[] = { 1192 [ltr501] = { 1193 .partid = 0x08, 1194 .als_gain = ltr501_als_gain_tbl, 1195 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl), 1196 .ps_gain = ltr501_ps_gain_tbl, 1197 .ps_gain_tbl_size = ARRAY_SIZE(ltr501_ps_gain_tbl), 1198 .als_mode_active = BIT(0) | BIT(1), 1199 .als_gain_mask = BIT(3), 1200 .als_gain_shift = 3, 1201 .info = <r501_info, 1202 .info_no_irq = <r501_info_no_irq, 1203 .channels = ltr501_channels, 1204 .no_channels = ARRAY_SIZE(ltr501_channels), 1205 }, 1206 [ltr559] = { 1207 .partid = 0x09, 1208 .als_gain = ltr559_als_gain_tbl, 1209 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl), 1210 .ps_gain = ltr559_ps_gain_tbl, 1211 .ps_gain_tbl_size = ARRAY_SIZE(ltr559_ps_gain_tbl), 1212 .als_mode_active = BIT(0), 1213 .als_gain_mask = BIT(2) | BIT(3) | BIT(4), 1214 .als_gain_shift = 2, 1215 .info = <r501_info, 1216 .info_no_irq = <r501_info_no_irq, 1217 .channels = ltr501_channels, 1218 .no_channels = ARRAY_SIZE(ltr501_channels), 1219 }, 1220 [ltr301] = { 1221 .partid = 0x08, 1222 .als_gain = ltr501_als_gain_tbl, 1223 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl), 1224 .als_mode_active = BIT(0) | BIT(1), 1225 .als_gain_mask = BIT(3), 1226 .als_gain_shift = 3, 1227 .info = <r301_info, 1228 .info_no_irq = <r301_info_no_irq, 1229 .channels = ltr301_channels, 1230 .no_channels = ARRAY_SIZE(ltr301_channels), 1231 }, 1232 }; 1233 1234 static int ltr501_write_contr(struct ltr501_data *data, u8 als_val, u8 ps_val) 1235 { 1236 int ret; 1237 1238 ret = regmap_write(data->regmap, LTR501_ALS_CONTR, als_val); 1239 if (ret < 0) 1240 return ret; 1241 1242 return regmap_write(data->regmap, LTR501_PS_CONTR, ps_val); 1243 } 1244 1245 static irqreturn_t ltr501_trigger_handler(int irq, void *p) 1246 { 1247 struct iio_poll_func *pf = p; 1248 struct iio_dev *indio_dev = pf->indio_dev; 1249 struct ltr501_data *data = iio_priv(indio_dev); 1250 struct { 1251 u16 channels[3]; 1252 s64 ts __aligned(8); 1253 } scan; 1254 __le16 als_buf[2]; 1255 u8 mask = 0; 1256 int j = 0; 1257 int ret, psdata; 1258 1259 memset(&scan, 0, sizeof(scan)); 1260 1261 /* figure out which data needs to be ready */ 1262 if (test_bit(0, indio_dev->active_scan_mask) || 1263 test_bit(1, indio_dev->active_scan_mask)) 1264 mask |= LTR501_STATUS_ALS_RDY; 1265 if (test_bit(2, indio_dev->active_scan_mask)) 1266 mask |= LTR501_STATUS_PS_RDY; 1267 1268 ret = ltr501_drdy(data, mask); 1269 if (ret < 0) 1270 goto done; 1271 1272 if (mask & LTR501_STATUS_ALS_RDY) { 1273 ret = regmap_bulk_read(data->regmap, LTR501_ALS_DATA1, 1274 als_buf, sizeof(als_buf)); 1275 if (ret < 0) 1276 return ret; 1277 if (test_bit(0, indio_dev->active_scan_mask)) 1278 scan.channels[j++] = le16_to_cpu(als_buf[1]); 1279 if (test_bit(1, indio_dev->active_scan_mask)) 1280 scan.channels[j++] = le16_to_cpu(als_buf[0]); 1281 } 1282 1283 if (mask & LTR501_STATUS_PS_RDY) { 1284 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA, 1285 &psdata, 2); 1286 if (ret < 0) 1287 goto done; 1288 scan.channels[j++] = psdata & LTR501_PS_DATA_MASK; 1289 } 1290 1291 iio_push_to_buffers_with_timestamp(indio_dev, &scan, 1292 iio_get_time_ns(indio_dev)); 1293 1294 done: 1295 iio_trigger_notify_done(indio_dev->trig); 1296 1297 return IRQ_HANDLED; 1298 } 1299 1300 static irqreturn_t ltr501_interrupt_handler(int irq, void *private) 1301 { 1302 struct iio_dev *indio_dev = private; 1303 struct ltr501_data *data = iio_priv(indio_dev); 1304 int ret, status; 1305 1306 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status); 1307 if (ret < 0) { 1308 dev_err(&data->client->dev, 1309 "irq read int reg failed\n"); 1310 return IRQ_HANDLED; 1311 } 1312 1313 if (status & LTR501_STATUS_ALS_INTR) 1314 iio_push_event(indio_dev, 1315 IIO_UNMOD_EVENT_CODE(IIO_INTENSITY, 0, 1316 IIO_EV_TYPE_THRESH, 1317 IIO_EV_DIR_EITHER), 1318 iio_get_time_ns(indio_dev)); 1319 1320 if (status & LTR501_STATUS_PS_INTR) 1321 iio_push_event(indio_dev, 1322 IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0, 1323 IIO_EV_TYPE_THRESH, 1324 IIO_EV_DIR_EITHER), 1325 iio_get_time_ns(indio_dev)); 1326 1327 return IRQ_HANDLED; 1328 } 1329 1330 static int ltr501_init(struct ltr501_data *data) 1331 { 1332 int ret, status; 1333 1334 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status); 1335 if (ret < 0) 1336 return ret; 1337 1338 data->als_contr = status | data->chip_info->als_mode_active; 1339 1340 ret = regmap_read(data->regmap, LTR501_PS_CONTR, &status); 1341 if (ret < 0) 1342 return ret; 1343 1344 data->ps_contr = status | LTR501_CONTR_ACTIVE; 1345 1346 ret = ltr501_read_intr_prst(data, IIO_INTENSITY, &data->als_period); 1347 if (ret < 0) 1348 return ret; 1349 1350 ret = ltr501_read_intr_prst(data, IIO_PROXIMITY, &data->ps_period); 1351 if (ret < 0) 1352 return ret; 1353 1354 return ltr501_write_contr(data, data->als_contr, data->ps_contr); 1355 } 1356 1357 static bool ltr501_is_volatile_reg(struct device *dev, unsigned int reg) 1358 { 1359 switch (reg) { 1360 case LTR501_ALS_DATA1: 1361 case LTR501_ALS_DATA1_UPPER: 1362 case LTR501_ALS_DATA0: 1363 case LTR501_ALS_DATA0_UPPER: 1364 case LTR501_ALS_PS_STATUS: 1365 case LTR501_PS_DATA: 1366 case LTR501_PS_DATA_UPPER: 1367 return true; 1368 default: 1369 return false; 1370 } 1371 } 1372 1373 static const struct regmap_config ltr501_regmap_config = { 1374 .name = LTR501_REGMAP_NAME, 1375 .reg_bits = 8, 1376 .val_bits = 8, 1377 .max_register = LTR501_MAX_REG, 1378 .cache_type = REGCACHE_RBTREE, 1379 .volatile_reg = ltr501_is_volatile_reg, 1380 }; 1381 1382 static int ltr501_powerdown(struct ltr501_data *data) 1383 { 1384 return ltr501_write_contr(data, data->als_contr & 1385 ~data->chip_info->als_mode_active, 1386 data->ps_contr & ~LTR501_CONTR_ACTIVE); 1387 } 1388 1389 static const char *ltr501_match_acpi_device(struct device *dev, int *chip_idx) 1390 { 1391 const struct acpi_device_id *id; 1392 1393 id = acpi_match_device(dev->driver->acpi_match_table, dev); 1394 if (!id) 1395 return NULL; 1396 *chip_idx = id->driver_data; 1397 return dev_name(dev); 1398 } 1399 1400 static int ltr501_probe(struct i2c_client *client, 1401 const struct i2c_device_id *id) 1402 { 1403 struct ltr501_data *data; 1404 struct iio_dev *indio_dev; 1405 struct regmap *regmap; 1406 int ret, partid, chip_idx = 0; 1407 const char *name = NULL; 1408 1409 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); 1410 if (!indio_dev) 1411 return -ENOMEM; 1412 1413 regmap = devm_regmap_init_i2c(client, <r501_regmap_config); 1414 if (IS_ERR(regmap)) { 1415 dev_err(&client->dev, "Regmap initialization failed.\n"); 1416 return PTR_ERR(regmap); 1417 } 1418 1419 data = iio_priv(indio_dev); 1420 i2c_set_clientdata(client, indio_dev); 1421 data->client = client; 1422 data->regmap = regmap; 1423 mutex_init(&data->lock_als); 1424 mutex_init(&data->lock_ps); 1425 1426 data->reg_it = devm_regmap_field_alloc(&client->dev, regmap, 1427 reg_field_it); 1428 if (IS_ERR(data->reg_it)) { 1429 dev_err(&client->dev, "Integ time reg field init failed.\n"); 1430 return PTR_ERR(data->reg_it); 1431 } 1432 1433 data->reg_als_intr = devm_regmap_field_alloc(&client->dev, regmap, 1434 reg_field_als_intr); 1435 if (IS_ERR(data->reg_als_intr)) { 1436 dev_err(&client->dev, "ALS intr mode reg field init failed\n"); 1437 return PTR_ERR(data->reg_als_intr); 1438 } 1439 1440 data->reg_ps_intr = devm_regmap_field_alloc(&client->dev, regmap, 1441 reg_field_ps_intr); 1442 if (IS_ERR(data->reg_ps_intr)) { 1443 dev_err(&client->dev, "PS intr mode reg field init failed.\n"); 1444 return PTR_ERR(data->reg_ps_intr); 1445 } 1446 1447 data->reg_als_rate = devm_regmap_field_alloc(&client->dev, regmap, 1448 reg_field_als_rate); 1449 if (IS_ERR(data->reg_als_rate)) { 1450 dev_err(&client->dev, "ALS samp rate field init failed.\n"); 1451 return PTR_ERR(data->reg_als_rate); 1452 } 1453 1454 data->reg_ps_rate = devm_regmap_field_alloc(&client->dev, regmap, 1455 reg_field_ps_rate); 1456 if (IS_ERR(data->reg_ps_rate)) { 1457 dev_err(&client->dev, "PS samp rate field init failed.\n"); 1458 return PTR_ERR(data->reg_ps_rate); 1459 } 1460 1461 data->reg_als_prst = devm_regmap_field_alloc(&client->dev, regmap, 1462 reg_field_als_prst); 1463 if (IS_ERR(data->reg_als_prst)) { 1464 dev_err(&client->dev, "ALS prst reg field init failed\n"); 1465 return PTR_ERR(data->reg_als_prst); 1466 } 1467 1468 data->reg_ps_prst = devm_regmap_field_alloc(&client->dev, regmap, 1469 reg_field_ps_prst); 1470 if (IS_ERR(data->reg_ps_prst)) { 1471 dev_err(&client->dev, "PS prst reg field init failed.\n"); 1472 return PTR_ERR(data->reg_ps_prst); 1473 } 1474 1475 ret = regmap_read(data->regmap, LTR501_PART_ID, &partid); 1476 if (ret < 0) 1477 return ret; 1478 1479 if (id) { 1480 name = id->name; 1481 chip_idx = id->driver_data; 1482 } else if (ACPI_HANDLE(&client->dev)) { 1483 name = ltr501_match_acpi_device(&client->dev, &chip_idx); 1484 } else { 1485 return -ENODEV; 1486 } 1487 1488 data->chip_info = <r501_chip_info_tbl[chip_idx]; 1489 1490 if ((partid >> 4) != data->chip_info->partid) 1491 return -ENODEV; 1492 1493 indio_dev->info = data->chip_info->info; 1494 indio_dev->channels = data->chip_info->channels; 1495 indio_dev->num_channels = data->chip_info->no_channels; 1496 indio_dev->name = name; 1497 indio_dev->modes = INDIO_DIRECT_MODE; 1498 1499 ret = ltr501_init(data); 1500 if (ret < 0) 1501 return ret; 1502 1503 if (client->irq > 0) { 1504 ret = devm_request_threaded_irq(&client->dev, client->irq, 1505 NULL, ltr501_interrupt_handler, 1506 IRQF_TRIGGER_FALLING | 1507 IRQF_ONESHOT, 1508 "ltr501_thresh_event", 1509 indio_dev); 1510 if (ret) { 1511 dev_err(&client->dev, "request irq (%d) failed\n", 1512 client->irq); 1513 return ret; 1514 } 1515 } else { 1516 indio_dev->info = data->chip_info->info_no_irq; 1517 } 1518 1519 ret = iio_triggered_buffer_setup(indio_dev, NULL, 1520 ltr501_trigger_handler, NULL); 1521 if (ret) 1522 goto powerdown_on_error; 1523 1524 ret = iio_device_register(indio_dev); 1525 if (ret) 1526 goto error_unreg_buffer; 1527 1528 return 0; 1529 1530 error_unreg_buffer: 1531 iio_triggered_buffer_cleanup(indio_dev); 1532 powerdown_on_error: 1533 ltr501_powerdown(data); 1534 return ret; 1535 } 1536 1537 static int ltr501_remove(struct i2c_client *client) 1538 { 1539 struct iio_dev *indio_dev = i2c_get_clientdata(client); 1540 1541 iio_device_unregister(indio_dev); 1542 iio_triggered_buffer_cleanup(indio_dev); 1543 ltr501_powerdown(iio_priv(indio_dev)); 1544 1545 return 0; 1546 } 1547 1548 #ifdef CONFIG_PM_SLEEP 1549 static int ltr501_suspend(struct device *dev) 1550 { 1551 struct ltr501_data *data = iio_priv(i2c_get_clientdata( 1552 to_i2c_client(dev))); 1553 return ltr501_powerdown(data); 1554 } 1555 1556 static int ltr501_resume(struct device *dev) 1557 { 1558 struct ltr501_data *data = iio_priv(i2c_get_clientdata( 1559 to_i2c_client(dev))); 1560 1561 return ltr501_write_contr(data, data->als_contr, 1562 data->ps_contr); 1563 } 1564 #endif 1565 1566 static SIMPLE_DEV_PM_OPS(ltr501_pm_ops, ltr501_suspend, ltr501_resume); 1567 1568 static const struct acpi_device_id ltr_acpi_match[] = { 1569 {"LTER0501", ltr501}, 1570 {"LTER0559", ltr559}, 1571 {"LTER0301", ltr301}, 1572 { }, 1573 }; 1574 MODULE_DEVICE_TABLE(acpi, ltr_acpi_match); 1575 1576 static const struct i2c_device_id ltr501_id[] = { 1577 { "ltr501", ltr501}, 1578 { "ltr559", ltr559}, 1579 { "ltr301", ltr301}, 1580 { } 1581 }; 1582 MODULE_DEVICE_TABLE(i2c, ltr501_id); 1583 1584 static struct i2c_driver ltr501_driver = { 1585 .driver = { 1586 .name = LTR501_DRV_NAME, 1587 .pm = <r501_pm_ops, 1588 .acpi_match_table = ACPI_PTR(ltr_acpi_match), 1589 }, 1590 .probe = ltr501_probe, 1591 .remove = ltr501_remove, 1592 .id_table = ltr501_id, 1593 }; 1594 1595 module_i2c_driver(ltr501_driver); 1596 1597 MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>"); 1598 MODULE_DESCRIPTION("Lite-On LTR501 ambient light and proximity sensor driver"); 1599 MODULE_LICENSE("GPL"); 1600