1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Support for Lite-On LTR501 and similar ambient light and proximity sensors.
4 *
5 * Copyright 2014 Peter Meerwald <pmeerw@pmeerw.net>
6 *
7 * 7-bit I2C slave address 0x23
8 *
9 * TODO: IR LED characteristics
10 */
11
12 #include <linux/module.h>
13 #include <linux/i2c.h>
14 #include <linux/err.h>
15 #include <linux/delay.h>
16 #include <linux/regmap.h>
17 #include <linux/acpi.h>
18 #include <linux/regulator/consumer.h>
19
20 #include <linux/iio/iio.h>
21 #include <linux/iio/events.h>
22 #include <linux/iio/sysfs.h>
23 #include <linux/iio/trigger_consumer.h>
24 #include <linux/iio/buffer.h>
25 #include <linux/iio/triggered_buffer.h>
26
27 #define LTR501_DRV_NAME "ltr501"
28
29 #define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */
30 #define LTR501_PS_CONTR 0x81 /* PS operation mode */
31 #define LTR501_PS_MEAS_RATE 0x84 /* measurement rate*/
32 #define LTR501_ALS_MEAS_RATE 0x85 /* ALS integ time, measurement rate*/
33 #define LTR501_PART_ID 0x86
34 #define LTR501_MANUFAC_ID 0x87
35 #define LTR501_ALS_DATA1 0x88 /* 16-bit, little endian */
36 #define LTR501_ALS_DATA1_UPPER 0x89 /* upper 8 bits of LTR501_ALS_DATA1 */
37 #define LTR501_ALS_DATA0 0x8a /* 16-bit, little endian */
38 #define LTR501_ALS_DATA0_UPPER 0x8b /* upper 8 bits of LTR501_ALS_DATA0 */
39 #define LTR501_ALS_PS_STATUS 0x8c
40 #define LTR501_PS_DATA 0x8d /* 16-bit, little endian */
41 #define LTR501_PS_DATA_UPPER 0x8e /* upper 8 bits of LTR501_PS_DATA */
42 #define LTR501_INTR 0x8f /* output mode, polarity, mode */
43 #define LTR501_PS_THRESH_UP 0x90 /* 11 bit, ps upper threshold */
44 #define LTR501_PS_THRESH_LOW 0x92 /* 11 bit, ps lower threshold */
45 #define LTR501_ALS_THRESH_UP 0x97 /* 16 bit, ALS upper threshold */
46 #define LTR501_ALS_THRESH_LOW 0x99 /* 16 bit, ALS lower threshold */
47 #define LTR501_INTR_PRST 0x9e /* ps thresh, als thresh */
48 #define LTR501_MAX_REG 0x9f
49
50 #define LTR501_ALS_CONTR_SW_RESET BIT(2)
51 #define LTR501_CONTR_PS_GAIN_MASK (BIT(3) | BIT(2))
52 #define LTR501_CONTR_PS_GAIN_SHIFT 2
53 #define LTR501_CONTR_ALS_GAIN_MASK BIT(3)
54 #define LTR501_CONTR_ACTIVE BIT(1)
55
56 #define LTR501_STATUS_ALS_INTR BIT(3)
57 #define LTR501_STATUS_ALS_RDY BIT(2)
58 #define LTR501_STATUS_PS_INTR BIT(1)
59 #define LTR501_STATUS_PS_RDY BIT(0)
60
61 #define LTR501_PS_DATA_MASK 0x7ff
62 #define LTR501_PS_THRESH_MASK 0x7ff
63 #define LTR501_ALS_THRESH_MASK 0xffff
64
65 #define LTR501_ALS_DEF_PERIOD 500000
66 #define LTR501_PS_DEF_PERIOD 100000
67
68 #define LTR501_REGMAP_NAME "ltr501_regmap"
69
70 #define LTR501_LUX_CONV(vis_coeff, vis_data, ir_coeff, ir_data) \
71 ((vis_coeff * vis_data) - (ir_coeff * ir_data))
72
73 static const int int_time_mapping[] = {100000, 50000, 200000, 400000};
74
75 static const struct reg_field reg_field_it =
76 REG_FIELD(LTR501_ALS_MEAS_RATE, 3, 4);
77 static const struct reg_field reg_field_als_intr =
78 REG_FIELD(LTR501_INTR, 1, 1);
79 static const struct reg_field reg_field_ps_intr =
80 REG_FIELD(LTR501_INTR, 0, 0);
81 static const struct reg_field reg_field_als_rate =
82 REG_FIELD(LTR501_ALS_MEAS_RATE, 0, 2);
83 static const struct reg_field reg_field_ps_rate =
84 REG_FIELD(LTR501_PS_MEAS_RATE, 0, 3);
85 static const struct reg_field reg_field_als_prst =
86 REG_FIELD(LTR501_INTR_PRST, 0, 3);
87 static const struct reg_field reg_field_ps_prst =
88 REG_FIELD(LTR501_INTR_PRST, 4, 7);
89
90 struct ltr501_samp_table {
91 int freq_val; /* repetition frequency in micro HZ*/
92 int time_val; /* repetition rate in micro seconds */
93 };
94
95 #define LTR501_RESERVED_GAIN -1
96
97 enum {
98 ltr501 = 0,
99 ltr559,
100 ltr301,
101 ltr303,
102 };
103
104 struct ltr501_gain {
105 int scale;
106 int uscale;
107 };
108
109 static const struct ltr501_gain ltr501_als_gain_tbl[] = {
110 {1, 0},
111 {0, 5000},
112 };
113
114 static const struct ltr501_gain ltr559_als_gain_tbl[] = {
115 {1, 0},
116 {0, 500000},
117 {0, 250000},
118 {0, 125000},
119 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
120 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
121 {0, 20000},
122 {0, 10000},
123 };
124
125 static const struct ltr501_gain ltr501_ps_gain_tbl[] = {
126 {1, 0},
127 {0, 250000},
128 {0, 125000},
129 {0, 62500},
130 };
131
132 static const struct ltr501_gain ltr559_ps_gain_tbl[] = {
133 {0, 62500}, /* x16 gain */
134 {0, 31250}, /* x32 gain */
135 {0, 15625}, /* bits X1 are for x64 gain */
136 {0, 15624},
137 };
138
139 struct ltr501_chip_info {
140 u8 partid;
141 const struct ltr501_gain *als_gain;
142 int als_gain_tbl_size;
143 const struct ltr501_gain *ps_gain;
144 int ps_gain_tbl_size;
145 u8 als_mode_active;
146 u8 als_gain_mask;
147 u8 als_gain_shift;
148 struct iio_chan_spec const *channels;
149 const int no_channels;
150 const struct iio_info *info;
151 const struct iio_info *info_no_irq;
152 };
153
154 struct ltr501_data {
155 struct i2c_client *client;
156 struct mutex lock_als, lock_ps;
157 const struct ltr501_chip_info *chip_info;
158 u8 als_contr, ps_contr;
159 int als_period, ps_period; /* period in micro seconds */
160 struct regmap *regmap;
161 struct regmap_field *reg_it;
162 struct regmap_field *reg_als_intr;
163 struct regmap_field *reg_ps_intr;
164 struct regmap_field *reg_als_rate;
165 struct regmap_field *reg_ps_rate;
166 struct regmap_field *reg_als_prst;
167 struct regmap_field *reg_ps_prst;
168 uint32_t near_level;
169 };
170
171 static const struct ltr501_samp_table ltr501_als_samp_table[] = {
172 {20000000, 50000}, {10000000, 100000},
173 {5000000, 200000}, {2000000, 500000},
174 {1000000, 1000000}, {500000, 2000000},
175 {500000, 2000000}, {500000, 2000000}
176 };
177
178 static const struct ltr501_samp_table ltr501_ps_samp_table[] = {
179 {20000000, 50000}, {14285714, 70000},
180 {10000000, 100000}, {5000000, 200000},
181 {2000000, 500000}, {1000000, 1000000},
182 {500000, 2000000}, {500000, 2000000},
183 {500000, 2000000}
184 };
185
ltr501_match_samp_freq(const struct ltr501_samp_table * tab,int len,int val,int val2)186 static int ltr501_match_samp_freq(const struct ltr501_samp_table *tab,
187 int len, int val, int val2)
188 {
189 int i, freq;
190
191 freq = val * 1000000 + val2;
192
193 for (i = 0; i < len; i++) {
194 if (tab[i].freq_val == freq)
195 return i;
196 }
197
198 return -EINVAL;
199 }
200
ltr501_als_read_samp_freq(const struct ltr501_data * data,int * val,int * val2)201 static int ltr501_als_read_samp_freq(const struct ltr501_data *data,
202 int *val, int *val2)
203 {
204 int ret, i;
205
206 ret = regmap_field_read(data->reg_als_rate, &i);
207 if (ret < 0)
208 return ret;
209
210 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
211 return -EINVAL;
212
213 *val = ltr501_als_samp_table[i].freq_val / 1000000;
214 *val2 = ltr501_als_samp_table[i].freq_val % 1000000;
215
216 return IIO_VAL_INT_PLUS_MICRO;
217 }
218
ltr501_ps_read_samp_freq(const struct ltr501_data * data,int * val,int * val2)219 static int ltr501_ps_read_samp_freq(const struct ltr501_data *data,
220 int *val, int *val2)
221 {
222 int ret, i;
223
224 ret = regmap_field_read(data->reg_ps_rate, &i);
225 if (ret < 0)
226 return ret;
227
228 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
229 return -EINVAL;
230
231 *val = ltr501_ps_samp_table[i].freq_val / 1000000;
232 *val2 = ltr501_ps_samp_table[i].freq_val % 1000000;
233
234 return IIO_VAL_INT_PLUS_MICRO;
235 }
236
ltr501_als_write_samp_freq(struct ltr501_data * data,int val,int val2)237 static int ltr501_als_write_samp_freq(struct ltr501_data *data,
238 int val, int val2)
239 {
240 int i, ret;
241
242 i = ltr501_match_samp_freq(ltr501_als_samp_table,
243 ARRAY_SIZE(ltr501_als_samp_table),
244 val, val2);
245
246 if (i < 0)
247 return i;
248
249 mutex_lock(&data->lock_als);
250 ret = regmap_field_write(data->reg_als_rate, i);
251 mutex_unlock(&data->lock_als);
252
253 return ret;
254 }
255
ltr501_ps_write_samp_freq(struct ltr501_data * data,int val,int val2)256 static int ltr501_ps_write_samp_freq(struct ltr501_data *data,
257 int val, int val2)
258 {
259 int i, ret;
260
261 i = ltr501_match_samp_freq(ltr501_ps_samp_table,
262 ARRAY_SIZE(ltr501_ps_samp_table),
263 val, val2);
264
265 if (i < 0)
266 return i;
267
268 mutex_lock(&data->lock_ps);
269 ret = regmap_field_write(data->reg_ps_rate, i);
270 mutex_unlock(&data->lock_ps);
271
272 return ret;
273 }
274
ltr501_als_read_samp_period(const struct ltr501_data * data,int * val)275 static int ltr501_als_read_samp_period(const struct ltr501_data *data, int *val)
276 {
277 int ret, i;
278
279 ret = regmap_field_read(data->reg_als_rate, &i);
280 if (ret < 0)
281 return ret;
282
283 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
284 return -EINVAL;
285
286 *val = ltr501_als_samp_table[i].time_val;
287
288 return IIO_VAL_INT;
289 }
290
ltr501_ps_read_samp_period(const struct ltr501_data * data,int * val)291 static int ltr501_ps_read_samp_period(const struct ltr501_data *data, int *val)
292 {
293 int ret, i;
294
295 ret = regmap_field_read(data->reg_ps_rate, &i);
296 if (ret < 0)
297 return ret;
298
299 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
300 return -EINVAL;
301
302 *val = ltr501_ps_samp_table[i].time_val;
303
304 return IIO_VAL_INT;
305 }
306
307 /* IR and visible spectrum coeff's are given in data sheet */
ltr501_calculate_lux(u16 vis_data,u16 ir_data)308 static unsigned long ltr501_calculate_lux(u16 vis_data, u16 ir_data)
309 {
310 unsigned long ratio, lux;
311
312 if (vis_data == 0)
313 return 0;
314
315 /* multiply numerator by 100 to avoid handling ratio < 1 */
316 ratio = DIV_ROUND_UP(ir_data * 100, ir_data + vis_data);
317
318 if (ratio < 45)
319 lux = LTR501_LUX_CONV(1774, vis_data, -1105, ir_data);
320 else if (ratio >= 45 && ratio < 64)
321 lux = LTR501_LUX_CONV(3772, vis_data, 1336, ir_data);
322 else if (ratio >= 64 && ratio < 85)
323 lux = LTR501_LUX_CONV(1690, vis_data, 169, ir_data);
324 else
325 lux = 0;
326
327 return lux / 1000;
328 }
329
ltr501_drdy(const struct ltr501_data * data,u8 drdy_mask)330 static int ltr501_drdy(const struct ltr501_data *data, u8 drdy_mask)
331 {
332 int tries = 100;
333 int ret, status;
334
335 while (tries--) {
336 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
337 if (ret < 0)
338 return ret;
339 if ((status & drdy_mask) == drdy_mask)
340 return 0;
341 msleep(25);
342 }
343
344 dev_err(&data->client->dev, "ltr501_drdy() failed, data not ready\n");
345 return -EIO;
346 }
347
ltr501_set_it_time(struct ltr501_data * data,int it)348 static int ltr501_set_it_time(struct ltr501_data *data, int it)
349 {
350 int ret, i, index = -1, status;
351
352 for (i = 0; i < ARRAY_SIZE(int_time_mapping); i++) {
353 if (int_time_mapping[i] == it) {
354 index = i;
355 break;
356 }
357 }
358 /* Make sure integ time index is valid */
359 if (index < 0)
360 return -EINVAL;
361
362 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
363 if (ret < 0)
364 return ret;
365
366 if (status & LTR501_CONTR_ALS_GAIN_MASK) {
367 /*
368 * 200 ms and 400 ms integ time can only be
369 * used in dynamic range 1
370 */
371 if (index > 1)
372 return -EINVAL;
373 } else
374 /* 50 ms integ time can only be used in dynamic range 2 */
375 if (index == 1)
376 return -EINVAL;
377
378 return regmap_field_write(data->reg_it, index);
379 }
380
381 /* read int time in micro seconds */
ltr501_read_it_time(const struct ltr501_data * data,int * val,int * val2)382 static int ltr501_read_it_time(const struct ltr501_data *data,
383 int *val, int *val2)
384 {
385 int ret, index;
386
387 ret = regmap_field_read(data->reg_it, &index);
388 if (ret < 0)
389 return ret;
390
391 /* Make sure integ time index is valid */
392 if (index < 0 || index >= ARRAY_SIZE(int_time_mapping))
393 return -EINVAL;
394
395 *val2 = int_time_mapping[index];
396 *val = 0;
397
398 return IIO_VAL_INT_PLUS_MICRO;
399 }
400
ltr501_read_als(const struct ltr501_data * data,__le16 buf[2])401 static int ltr501_read_als(const struct ltr501_data *data, __le16 buf[2])
402 {
403 int ret;
404
405 ret = ltr501_drdy(data, LTR501_STATUS_ALS_RDY);
406 if (ret < 0)
407 return ret;
408 /* always read both ALS channels in given order */
409 return regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
410 buf, 2 * sizeof(__le16));
411 }
412
ltr501_read_ps(const struct ltr501_data * data)413 static int ltr501_read_ps(const struct ltr501_data *data)
414 {
415 __le16 status;
416 int ret;
417
418 ret = ltr501_drdy(data, LTR501_STATUS_PS_RDY);
419 if (ret < 0)
420 return ret;
421
422 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
423 &status, sizeof(status));
424 if (ret < 0)
425 return ret;
426
427 return le16_to_cpu(status);
428 }
429
ltr501_read_intr_prst(const struct ltr501_data * data,enum iio_chan_type type,int * val2)430 static int ltr501_read_intr_prst(const struct ltr501_data *data,
431 enum iio_chan_type type,
432 int *val2)
433 {
434 int ret, samp_period, prst;
435
436 switch (type) {
437 case IIO_INTENSITY:
438 ret = regmap_field_read(data->reg_als_prst, &prst);
439 if (ret < 0)
440 return ret;
441
442 ret = ltr501_als_read_samp_period(data, &samp_period);
443
444 if (ret < 0)
445 return ret;
446 *val2 = samp_period * prst;
447 return IIO_VAL_INT_PLUS_MICRO;
448 case IIO_PROXIMITY:
449 ret = regmap_field_read(data->reg_ps_prst, &prst);
450 if (ret < 0)
451 return ret;
452
453 ret = ltr501_ps_read_samp_period(data, &samp_period);
454
455 if (ret < 0)
456 return ret;
457
458 *val2 = samp_period * prst;
459 return IIO_VAL_INT_PLUS_MICRO;
460 default:
461 return -EINVAL;
462 }
463
464 return -EINVAL;
465 }
466
ltr501_write_intr_prst(struct ltr501_data * data,enum iio_chan_type type,int val,int val2)467 static int ltr501_write_intr_prst(struct ltr501_data *data,
468 enum iio_chan_type type,
469 int val, int val2)
470 {
471 int ret, samp_period, new_val;
472 unsigned long period;
473
474 if (val < 0 || val2 < 0)
475 return -EINVAL;
476
477 /* period in microseconds */
478 period = ((val * 1000000) + val2);
479
480 switch (type) {
481 case IIO_INTENSITY:
482 ret = ltr501_als_read_samp_period(data, &samp_period);
483 if (ret < 0)
484 return ret;
485
486 /* period should be atleast equal to sampling period */
487 if (period < samp_period)
488 return -EINVAL;
489
490 new_val = DIV_ROUND_UP(period, samp_period);
491 if (new_val < 0 || new_val > 0x0f)
492 return -EINVAL;
493
494 mutex_lock(&data->lock_als);
495 ret = regmap_field_write(data->reg_als_prst, new_val);
496 mutex_unlock(&data->lock_als);
497 if (ret >= 0)
498 data->als_period = period;
499
500 return ret;
501 case IIO_PROXIMITY:
502 ret = ltr501_ps_read_samp_period(data, &samp_period);
503 if (ret < 0)
504 return ret;
505
506 /* period should be atleast equal to rate */
507 if (period < samp_period)
508 return -EINVAL;
509
510 new_val = DIV_ROUND_UP(period, samp_period);
511 if (new_val < 0 || new_val > 0x0f)
512 return -EINVAL;
513
514 mutex_lock(&data->lock_ps);
515 ret = regmap_field_write(data->reg_ps_prst, new_val);
516 mutex_unlock(&data->lock_ps);
517 if (ret >= 0)
518 data->ps_period = period;
519
520 return ret;
521 default:
522 return -EINVAL;
523 }
524
525 return -EINVAL;
526 }
527
ltr501_read_near_level(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)528 static ssize_t ltr501_read_near_level(struct iio_dev *indio_dev,
529 uintptr_t priv,
530 const struct iio_chan_spec *chan,
531 char *buf)
532 {
533 struct ltr501_data *data = iio_priv(indio_dev);
534
535 return sprintf(buf, "%u\n", data->near_level);
536 }
537
538 static const struct iio_chan_spec_ext_info ltr501_ext_info[] = {
539 {
540 .name = "nearlevel",
541 .shared = IIO_SEPARATE,
542 .read = ltr501_read_near_level,
543 },
544 { /* sentinel */ }
545 };
546
547 static const struct iio_event_spec ltr501_als_event_spec[] = {
548 {
549 .type = IIO_EV_TYPE_THRESH,
550 .dir = IIO_EV_DIR_RISING,
551 .mask_separate = BIT(IIO_EV_INFO_VALUE),
552 }, {
553 .type = IIO_EV_TYPE_THRESH,
554 .dir = IIO_EV_DIR_FALLING,
555 .mask_separate = BIT(IIO_EV_INFO_VALUE),
556 }, {
557 .type = IIO_EV_TYPE_THRESH,
558 .dir = IIO_EV_DIR_EITHER,
559 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
560 BIT(IIO_EV_INFO_PERIOD),
561 },
562
563 };
564
565 static const struct iio_event_spec ltr501_pxs_event_spec[] = {
566 {
567 .type = IIO_EV_TYPE_THRESH,
568 .dir = IIO_EV_DIR_RISING,
569 .mask_separate = BIT(IIO_EV_INFO_VALUE),
570 }, {
571 .type = IIO_EV_TYPE_THRESH,
572 .dir = IIO_EV_DIR_FALLING,
573 .mask_separate = BIT(IIO_EV_INFO_VALUE),
574 }, {
575 .type = IIO_EV_TYPE_THRESH,
576 .dir = IIO_EV_DIR_EITHER,
577 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
578 BIT(IIO_EV_INFO_PERIOD),
579 },
580 };
581
582 #define LTR501_INTENSITY_CHANNEL(_idx, _addr, _mod, _shared, \
583 _evspec, _evsize) { \
584 .type = IIO_INTENSITY, \
585 .modified = 1, \
586 .address = (_addr), \
587 .channel2 = (_mod), \
588 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
589 .info_mask_shared_by_type = (_shared), \
590 .scan_index = (_idx), \
591 .scan_type = { \
592 .sign = 'u', \
593 .realbits = 16, \
594 .storagebits = 16, \
595 .endianness = IIO_CPU, \
596 }, \
597 .event_spec = _evspec,\
598 .num_event_specs = _evsize,\
599 }
600
601 #define LTR501_LIGHT_CHANNEL() { \
602 .type = IIO_LIGHT, \
603 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
604 .scan_index = -1, \
605 }
606
607 static const struct iio_chan_spec ltr501_channels[] = {
608 LTR501_LIGHT_CHANNEL(),
609 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
610 ltr501_als_event_spec,
611 ARRAY_SIZE(ltr501_als_event_spec)),
612 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
613 BIT(IIO_CHAN_INFO_SCALE) |
614 BIT(IIO_CHAN_INFO_INT_TIME) |
615 BIT(IIO_CHAN_INFO_SAMP_FREQ),
616 NULL, 0),
617 {
618 .type = IIO_PROXIMITY,
619 .address = LTR501_PS_DATA,
620 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
621 BIT(IIO_CHAN_INFO_SCALE),
622 .scan_index = 2,
623 .scan_type = {
624 .sign = 'u',
625 .realbits = 11,
626 .storagebits = 16,
627 .endianness = IIO_CPU,
628 },
629 .event_spec = ltr501_pxs_event_spec,
630 .num_event_specs = ARRAY_SIZE(ltr501_pxs_event_spec),
631 .ext_info = ltr501_ext_info,
632 },
633 IIO_CHAN_SOFT_TIMESTAMP(3),
634 };
635
636 static const struct iio_chan_spec ltr301_channels[] = {
637 LTR501_LIGHT_CHANNEL(),
638 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
639 ltr501_als_event_spec,
640 ARRAY_SIZE(ltr501_als_event_spec)),
641 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
642 BIT(IIO_CHAN_INFO_SCALE) |
643 BIT(IIO_CHAN_INFO_INT_TIME) |
644 BIT(IIO_CHAN_INFO_SAMP_FREQ),
645 NULL, 0),
646 IIO_CHAN_SOFT_TIMESTAMP(2),
647 };
648
ltr501_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)649 static int ltr501_read_raw(struct iio_dev *indio_dev,
650 struct iio_chan_spec const *chan,
651 int *val, int *val2, long mask)
652 {
653 struct ltr501_data *data = iio_priv(indio_dev);
654 __le16 buf[2];
655 int ret, i;
656
657 switch (mask) {
658 case IIO_CHAN_INFO_PROCESSED:
659 switch (chan->type) {
660 case IIO_LIGHT:
661 ret = iio_device_claim_direct_mode(indio_dev);
662 if (ret)
663 return ret;
664
665 mutex_lock(&data->lock_als);
666 ret = ltr501_read_als(data, buf);
667 mutex_unlock(&data->lock_als);
668 iio_device_release_direct_mode(indio_dev);
669 if (ret < 0)
670 return ret;
671 *val = ltr501_calculate_lux(le16_to_cpu(buf[1]),
672 le16_to_cpu(buf[0]));
673 return IIO_VAL_INT;
674 default:
675 return -EINVAL;
676 }
677 case IIO_CHAN_INFO_RAW:
678 ret = iio_device_claim_direct_mode(indio_dev);
679 if (ret)
680 return ret;
681
682 switch (chan->type) {
683 case IIO_INTENSITY:
684 mutex_lock(&data->lock_als);
685 ret = ltr501_read_als(data, buf);
686 mutex_unlock(&data->lock_als);
687 if (ret < 0)
688 break;
689 *val = le16_to_cpu(chan->address == LTR501_ALS_DATA1 ?
690 buf[0] : buf[1]);
691 ret = IIO_VAL_INT;
692 break;
693 case IIO_PROXIMITY:
694 mutex_lock(&data->lock_ps);
695 ret = ltr501_read_ps(data);
696 mutex_unlock(&data->lock_ps);
697 if (ret < 0)
698 break;
699 *val = ret & LTR501_PS_DATA_MASK;
700 ret = IIO_VAL_INT;
701 break;
702 default:
703 ret = -EINVAL;
704 break;
705 }
706
707 iio_device_release_direct_mode(indio_dev);
708 return ret;
709
710 case IIO_CHAN_INFO_SCALE:
711 switch (chan->type) {
712 case IIO_INTENSITY:
713 i = (data->als_contr & data->chip_info->als_gain_mask)
714 >> data->chip_info->als_gain_shift;
715 *val = data->chip_info->als_gain[i].scale;
716 *val2 = data->chip_info->als_gain[i].uscale;
717 return IIO_VAL_INT_PLUS_MICRO;
718 case IIO_PROXIMITY:
719 i = (data->ps_contr & LTR501_CONTR_PS_GAIN_MASK) >>
720 LTR501_CONTR_PS_GAIN_SHIFT;
721 *val = data->chip_info->ps_gain[i].scale;
722 *val2 = data->chip_info->ps_gain[i].uscale;
723 return IIO_VAL_INT_PLUS_MICRO;
724 default:
725 return -EINVAL;
726 }
727 case IIO_CHAN_INFO_INT_TIME:
728 switch (chan->type) {
729 case IIO_INTENSITY:
730 return ltr501_read_it_time(data, val, val2);
731 default:
732 return -EINVAL;
733 }
734 case IIO_CHAN_INFO_SAMP_FREQ:
735 switch (chan->type) {
736 case IIO_INTENSITY:
737 return ltr501_als_read_samp_freq(data, val, val2);
738 case IIO_PROXIMITY:
739 return ltr501_ps_read_samp_freq(data, val, val2);
740 default:
741 return -EINVAL;
742 }
743 }
744 return -EINVAL;
745 }
746
ltr501_get_gain_index(const struct ltr501_gain * gain,int size,int val,int val2)747 static int ltr501_get_gain_index(const struct ltr501_gain *gain, int size,
748 int val, int val2)
749 {
750 int i;
751
752 for (i = 0; i < size; i++)
753 if (val == gain[i].scale && val2 == gain[i].uscale)
754 return i;
755
756 return -1;
757 }
758
ltr501_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)759 static int ltr501_write_raw(struct iio_dev *indio_dev,
760 struct iio_chan_spec const *chan,
761 int val, int val2, long mask)
762 {
763 struct ltr501_data *data = iio_priv(indio_dev);
764 int i, ret, freq_val, freq_val2;
765 const struct ltr501_chip_info *info = data->chip_info;
766
767 ret = iio_device_claim_direct_mode(indio_dev);
768 if (ret)
769 return ret;
770
771 switch (mask) {
772 case IIO_CHAN_INFO_SCALE:
773 switch (chan->type) {
774 case IIO_INTENSITY:
775 i = ltr501_get_gain_index(info->als_gain,
776 info->als_gain_tbl_size,
777 val, val2);
778 if (i < 0) {
779 ret = -EINVAL;
780 break;
781 }
782
783 data->als_contr &= ~info->als_gain_mask;
784 data->als_contr |= i << info->als_gain_shift;
785
786 ret = regmap_write(data->regmap, LTR501_ALS_CONTR,
787 data->als_contr);
788 break;
789 case IIO_PROXIMITY:
790 i = ltr501_get_gain_index(info->ps_gain,
791 info->ps_gain_tbl_size,
792 val, val2);
793 if (i < 0) {
794 ret = -EINVAL;
795 break;
796 }
797 data->ps_contr &= ~LTR501_CONTR_PS_GAIN_MASK;
798 data->ps_contr |= i << LTR501_CONTR_PS_GAIN_SHIFT;
799
800 ret = regmap_write(data->regmap, LTR501_PS_CONTR,
801 data->ps_contr);
802 break;
803 default:
804 ret = -EINVAL;
805 break;
806 }
807 break;
808
809 case IIO_CHAN_INFO_INT_TIME:
810 switch (chan->type) {
811 case IIO_INTENSITY:
812 if (val != 0) {
813 ret = -EINVAL;
814 break;
815 }
816 mutex_lock(&data->lock_als);
817 ret = ltr501_set_it_time(data, val2);
818 mutex_unlock(&data->lock_als);
819 break;
820 default:
821 ret = -EINVAL;
822 break;
823 }
824 break;
825
826 case IIO_CHAN_INFO_SAMP_FREQ:
827 switch (chan->type) {
828 case IIO_INTENSITY:
829 ret = ltr501_als_read_samp_freq(data, &freq_val,
830 &freq_val2);
831 if (ret < 0)
832 break;
833
834 ret = ltr501_als_write_samp_freq(data, val, val2);
835 if (ret < 0)
836 break;
837
838 /* update persistence count when changing frequency */
839 ret = ltr501_write_intr_prst(data, chan->type,
840 0, data->als_period);
841
842 if (ret < 0)
843 ret = ltr501_als_write_samp_freq(data, freq_val,
844 freq_val2);
845 break;
846 case IIO_PROXIMITY:
847 ret = ltr501_ps_read_samp_freq(data, &freq_val,
848 &freq_val2);
849 if (ret < 0)
850 break;
851
852 ret = ltr501_ps_write_samp_freq(data, val, val2);
853 if (ret < 0)
854 break;
855
856 /* update persistence count when changing frequency */
857 ret = ltr501_write_intr_prst(data, chan->type,
858 0, data->ps_period);
859
860 if (ret < 0)
861 ret = ltr501_ps_write_samp_freq(data, freq_val,
862 freq_val2);
863 break;
864 default:
865 ret = -EINVAL;
866 break;
867 }
868 break;
869
870 default:
871 ret = -EINVAL;
872 break;
873 }
874
875 iio_device_release_direct_mode(indio_dev);
876 return ret;
877 }
878
ltr501_read_thresh(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int * val,int * val2)879 static int ltr501_read_thresh(const struct iio_dev *indio_dev,
880 const struct iio_chan_spec *chan,
881 enum iio_event_type type,
882 enum iio_event_direction dir,
883 enum iio_event_info info,
884 int *val, int *val2)
885 {
886 const struct ltr501_data *data = iio_priv(indio_dev);
887 int ret, thresh_data;
888
889 switch (chan->type) {
890 case IIO_INTENSITY:
891 switch (dir) {
892 case IIO_EV_DIR_RISING:
893 ret = regmap_bulk_read(data->regmap,
894 LTR501_ALS_THRESH_UP,
895 &thresh_data, 2);
896 if (ret < 0)
897 return ret;
898 *val = thresh_data & LTR501_ALS_THRESH_MASK;
899 return IIO_VAL_INT;
900 case IIO_EV_DIR_FALLING:
901 ret = regmap_bulk_read(data->regmap,
902 LTR501_ALS_THRESH_LOW,
903 &thresh_data, 2);
904 if (ret < 0)
905 return ret;
906 *val = thresh_data & LTR501_ALS_THRESH_MASK;
907 return IIO_VAL_INT;
908 default:
909 return -EINVAL;
910 }
911 case IIO_PROXIMITY:
912 switch (dir) {
913 case IIO_EV_DIR_RISING:
914 ret = regmap_bulk_read(data->regmap,
915 LTR501_PS_THRESH_UP,
916 &thresh_data, 2);
917 if (ret < 0)
918 return ret;
919 *val = thresh_data & LTR501_PS_THRESH_MASK;
920 return IIO_VAL_INT;
921 case IIO_EV_DIR_FALLING:
922 ret = regmap_bulk_read(data->regmap,
923 LTR501_PS_THRESH_LOW,
924 &thresh_data, 2);
925 if (ret < 0)
926 return ret;
927 *val = thresh_data & LTR501_PS_THRESH_MASK;
928 return IIO_VAL_INT;
929 default:
930 return -EINVAL;
931 }
932 default:
933 return -EINVAL;
934 }
935
936 return -EINVAL;
937 }
938
ltr501_write_thresh(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int val,int val2)939 static int ltr501_write_thresh(struct iio_dev *indio_dev,
940 const struct iio_chan_spec *chan,
941 enum iio_event_type type,
942 enum iio_event_direction dir,
943 enum iio_event_info info,
944 int val, int val2)
945 {
946 struct ltr501_data *data = iio_priv(indio_dev);
947 int ret;
948
949 if (val < 0)
950 return -EINVAL;
951
952 switch (chan->type) {
953 case IIO_INTENSITY:
954 if (val > LTR501_ALS_THRESH_MASK)
955 return -EINVAL;
956 switch (dir) {
957 case IIO_EV_DIR_RISING:
958 mutex_lock(&data->lock_als);
959 ret = regmap_bulk_write(data->regmap,
960 LTR501_ALS_THRESH_UP,
961 &val, 2);
962 mutex_unlock(&data->lock_als);
963 return ret;
964 case IIO_EV_DIR_FALLING:
965 mutex_lock(&data->lock_als);
966 ret = regmap_bulk_write(data->regmap,
967 LTR501_ALS_THRESH_LOW,
968 &val, 2);
969 mutex_unlock(&data->lock_als);
970 return ret;
971 default:
972 return -EINVAL;
973 }
974 case IIO_PROXIMITY:
975 if (val > LTR501_PS_THRESH_MASK)
976 return -EINVAL;
977 switch (dir) {
978 case IIO_EV_DIR_RISING:
979 mutex_lock(&data->lock_ps);
980 ret = regmap_bulk_write(data->regmap,
981 LTR501_PS_THRESH_UP,
982 &val, 2);
983 mutex_unlock(&data->lock_ps);
984 return ret;
985 case IIO_EV_DIR_FALLING:
986 mutex_lock(&data->lock_ps);
987 ret = regmap_bulk_write(data->regmap,
988 LTR501_PS_THRESH_LOW,
989 &val, 2);
990 mutex_unlock(&data->lock_ps);
991 return ret;
992 default:
993 return -EINVAL;
994 }
995 default:
996 return -EINVAL;
997 }
998
999 return -EINVAL;
1000 }
1001
ltr501_read_event(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int * val,int * val2)1002 static int ltr501_read_event(struct iio_dev *indio_dev,
1003 const struct iio_chan_spec *chan,
1004 enum iio_event_type type,
1005 enum iio_event_direction dir,
1006 enum iio_event_info info,
1007 int *val, int *val2)
1008 {
1009 int ret;
1010
1011 switch (info) {
1012 case IIO_EV_INFO_VALUE:
1013 return ltr501_read_thresh(indio_dev, chan, type, dir,
1014 info, val, val2);
1015 case IIO_EV_INFO_PERIOD:
1016 ret = ltr501_read_intr_prst(iio_priv(indio_dev),
1017 chan->type, val2);
1018 *val = *val2 / 1000000;
1019 *val2 = *val2 % 1000000;
1020 return ret;
1021 default:
1022 return -EINVAL;
1023 }
1024
1025 return -EINVAL;
1026 }
1027
ltr501_write_event(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int val,int val2)1028 static int ltr501_write_event(struct iio_dev *indio_dev,
1029 const struct iio_chan_spec *chan,
1030 enum iio_event_type type,
1031 enum iio_event_direction dir,
1032 enum iio_event_info info,
1033 int val, int val2)
1034 {
1035 switch (info) {
1036 case IIO_EV_INFO_VALUE:
1037 if (val2 != 0)
1038 return -EINVAL;
1039 return ltr501_write_thresh(indio_dev, chan, type, dir,
1040 info, val, val2);
1041 case IIO_EV_INFO_PERIOD:
1042 return ltr501_write_intr_prst(iio_priv(indio_dev), chan->type,
1043 val, val2);
1044 default:
1045 return -EINVAL;
1046 }
1047
1048 return -EINVAL;
1049 }
1050
ltr501_read_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir)1051 static int ltr501_read_event_config(struct iio_dev *indio_dev,
1052 const struct iio_chan_spec *chan,
1053 enum iio_event_type type,
1054 enum iio_event_direction dir)
1055 {
1056 struct ltr501_data *data = iio_priv(indio_dev);
1057 int ret, status;
1058
1059 switch (chan->type) {
1060 case IIO_INTENSITY:
1061 ret = regmap_field_read(data->reg_als_intr, &status);
1062 if (ret < 0)
1063 return ret;
1064 return status;
1065 case IIO_PROXIMITY:
1066 ret = regmap_field_read(data->reg_ps_intr, &status);
1067 if (ret < 0)
1068 return ret;
1069 return status;
1070 default:
1071 return -EINVAL;
1072 }
1073
1074 return -EINVAL;
1075 }
1076
ltr501_write_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,int state)1077 static int ltr501_write_event_config(struct iio_dev *indio_dev,
1078 const struct iio_chan_spec *chan,
1079 enum iio_event_type type,
1080 enum iio_event_direction dir, int state)
1081 {
1082 struct ltr501_data *data = iio_priv(indio_dev);
1083 int ret;
1084
1085 /* only 1 and 0 are valid inputs */
1086 if (state != 1 && state != 0)
1087 return -EINVAL;
1088
1089 switch (chan->type) {
1090 case IIO_INTENSITY:
1091 mutex_lock(&data->lock_als);
1092 ret = regmap_field_write(data->reg_als_intr, state);
1093 mutex_unlock(&data->lock_als);
1094 return ret;
1095 case IIO_PROXIMITY:
1096 mutex_lock(&data->lock_ps);
1097 ret = regmap_field_write(data->reg_ps_intr, state);
1098 mutex_unlock(&data->lock_ps);
1099 return ret;
1100 default:
1101 return -EINVAL;
1102 }
1103
1104 return -EINVAL;
1105 }
1106
ltr501_show_proximity_scale_avail(struct device * dev,struct device_attribute * attr,char * buf)1107 static ssize_t ltr501_show_proximity_scale_avail(struct device *dev,
1108 struct device_attribute *attr,
1109 char *buf)
1110 {
1111 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1112 const struct ltr501_chip_info *info = data->chip_info;
1113 ssize_t len = 0;
1114 int i;
1115
1116 for (i = 0; i < info->ps_gain_tbl_size; i++) {
1117 if (info->ps_gain[i].scale == LTR501_RESERVED_GAIN)
1118 continue;
1119 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1120 info->ps_gain[i].scale,
1121 info->ps_gain[i].uscale);
1122 }
1123
1124 buf[len - 1] = '\n';
1125
1126 return len;
1127 }
1128
ltr501_show_intensity_scale_avail(struct device * dev,struct device_attribute * attr,char * buf)1129 static ssize_t ltr501_show_intensity_scale_avail(struct device *dev,
1130 struct device_attribute *attr,
1131 char *buf)
1132 {
1133 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1134 const struct ltr501_chip_info *info = data->chip_info;
1135 ssize_t len = 0;
1136 int i;
1137
1138 for (i = 0; i < info->als_gain_tbl_size; i++) {
1139 if (info->als_gain[i].scale == LTR501_RESERVED_GAIN)
1140 continue;
1141 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1142 info->als_gain[i].scale,
1143 info->als_gain[i].uscale);
1144 }
1145
1146 buf[len - 1] = '\n';
1147
1148 return len;
1149 }
1150
1151 static IIO_CONST_ATTR_INT_TIME_AVAIL("0.05 0.1 0.2 0.4");
1152 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("20 10 5 2 1 0.5");
1153
1154 static IIO_DEVICE_ATTR(in_proximity_scale_available, S_IRUGO,
1155 ltr501_show_proximity_scale_avail, NULL, 0);
1156 static IIO_DEVICE_ATTR(in_intensity_scale_available, S_IRUGO,
1157 ltr501_show_intensity_scale_avail, NULL, 0);
1158
1159 static struct attribute *ltr501_attributes[] = {
1160 &iio_dev_attr_in_proximity_scale_available.dev_attr.attr,
1161 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1162 &iio_const_attr_integration_time_available.dev_attr.attr,
1163 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
1164 NULL
1165 };
1166
1167 static struct attribute *ltr301_attributes[] = {
1168 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1169 &iio_const_attr_integration_time_available.dev_attr.attr,
1170 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
1171 NULL
1172 };
1173
1174 static const struct attribute_group ltr501_attribute_group = {
1175 .attrs = ltr501_attributes,
1176 };
1177
1178 static const struct attribute_group ltr301_attribute_group = {
1179 .attrs = ltr301_attributes,
1180 };
1181
1182 static const struct iio_info ltr501_info_no_irq = {
1183 .read_raw = ltr501_read_raw,
1184 .write_raw = ltr501_write_raw,
1185 .attrs = <r501_attribute_group,
1186 };
1187
1188 static const struct iio_info ltr501_info = {
1189 .read_raw = ltr501_read_raw,
1190 .write_raw = ltr501_write_raw,
1191 .attrs = <r501_attribute_group,
1192 .read_event_value = <r501_read_event,
1193 .write_event_value = <r501_write_event,
1194 .read_event_config = <r501_read_event_config,
1195 .write_event_config = <r501_write_event_config,
1196 };
1197
1198 static const struct iio_info ltr301_info_no_irq = {
1199 .read_raw = ltr501_read_raw,
1200 .write_raw = ltr501_write_raw,
1201 .attrs = <r301_attribute_group,
1202 };
1203
1204 static const struct iio_info ltr301_info = {
1205 .read_raw = ltr501_read_raw,
1206 .write_raw = ltr501_write_raw,
1207 .attrs = <r301_attribute_group,
1208 .read_event_value = <r501_read_event,
1209 .write_event_value = <r501_write_event,
1210 .read_event_config = <r501_read_event_config,
1211 .write_event_config = <r501_write_event_config,
1212 };
1213
1214 static const struct ltr501_chip_info ltr501_chip_info_tbl[] = {
1215 [ltr501] = {
1216 .partid = 0x08,
1217 .als_gain = ltr501_als_gain_tbl,
1218 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1219 .ps_gain = ltr501_ps_gain_tbl,
1220 .ps_gain_tbl_size = ARRAY_SIZE(ltr501_ps_gain_tbl),
1221 .als_mode_active = BIT(0) | BIT(1),
1222 .als_gain_mask = BIT(3),
1223 .als_gain_shift = 3,
1224 .info = <r501_info,
1225 .info_no_irq = <r501_info_no_irq,
1226 .channels = ltr501_channels,
1227 .no_channels = ARRAY_SIZE(ltr501_channels),
1228 },
1229 [ltr559] = {
1230 .partid = 0x09,
1231 .als_gain = ltr559_als_gain_tbl,
1232 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl),
1233 .ps_gain = ltr559_ps_gain_tbl,
1234 .ps_gain_tbl_size = ARRAY_SIZE(ltr559_ps_gain_tbl),
1235 .als_mode_active = BIT(0),
1236 .als_gain_mask = BIT(2) | BIT(3) | BIT(4),
1237 .als_gain_shift = 2,
1238 .info = <r501_info,
1239 .info_no_irq = <r501_info_no_irq,
1240 .channels = ltr501_channels,
1241 .no_channels = ARRAY_SIZE(ltr501_channels),
1242 },
1243 [ltr301] = {
1244 .partid = 0x08,
1245 .als_gain = ltr501_als_gain_tbl,
1246 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1247 .als_mode_active = BIT(0) | BIT(1),
1248 .als_gain_mask = BIT(3),
1249 .als_gain_shift = 3,
1250 .info = <r301_info,
1251 .info_no_irq = <r301_info_no_irq,
1252 .channels = ltr301_channels,
1253 .no_channels = ARRAY_SIZE(ltr301_channels),
1254 },
1255 [ltr303] = {
1256 .partid = 0x0A,
1257 .als_gain = ltr559_als_gain_tbl,
1258 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl),
1259 .als_mode_active = BIT(0),
1260 .als_gain_mask = BIT(2) | BIT(3) | BIT(4),
1261 .als_gain_shift = 2,
1262 .info = <r301_info,
1263 .info_no_irq = <r301_info_no_irq,
1264 .channels = ltr301_channels,
1265 .no_channels = ARRAY_SIZE(ltr301_channels),
1266 },
1267 };
1268
ltr501_write_contr(struct ltr501_data * data,u8 als_val,u8 ps_val)1269 static int ltr501_write_contr(struct ltr501_data *data, u8 als_val, u8 ps_val)
1270 {
1271 int ret;
1272
1273 ret = regmap_write(data->regmap, LTR501_ALS_CONTR, als_val);
1274 if (ret < 0)
1275 return ret;
1276
1277 return regmap_write(data->regmap, LTR501_PS_CONTR, ps_val);
1278 }
1279
ltr501_trigger_handler(int irq,void * p)1280 static irqreturn_t ltr501_trigger_handler(int irq, void *p)
1281 {
1282 struct iio_poll_func *pf = p;
1283 struct iio_dev *indio_dev = pf->indio_dev;
1284 struct ltr501_data *data = iio_priv(indio_dev);
1285 struct {
1286 u16 channels[3];
1287 s64 ts __aligned(8);
1288 } scan;
1289 __le16 als_buf[2];
1290 u8 mask = 0;
1291 int j = 0;
1292 int ret, psdata;
1293
1294 memset(&scan, 0, sizeof(scan));
1295
1296 /* figure out which data needs to be ready */
1297 if (test_bit(0, indio_dev->active_scan_mask) ||
1298 test_bit(1, indio_dev->active_scan_mask))
1299 mask |= LTR501_STATUS_ALS_RDY;
1300 if (test_bit(2, indio_dev->active_scan_mask))
1301 mask |= LTR501_STATUS_PS_RDY;
1302
1303 ret = ltr501_drdy(data, mask);
1304 if (ret < 0)
1305 goto done;
1306
1307 if (mask & LTR501_STATUS_ALS_RDY) {
1308 ret = regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
1309 als_buf, sizeof(als_buf));
1310 if (ret < 0)
1311 goto done;
1312 if (test_bit(0, indio_dev->active_scan_mask))
1313 scan.channels[j++] = le16_to_cpu(als_buf[1]);
1314 if (test_bit(1, indio_dev->active_scan_mask))
1315 scan.channels[j++] = le16_to_cpu(als_buf[0]);
1316 }
1317
1318 if (mask & LTR501_STATUS_PS_RDY) {
1319 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
1320 &psdata, 2);
1321 if (ret < 0)
1322 goto done;
1323 scan.channels[j++] = psdata & LTR501_PS_DATA_MASK;
1324 }
1325
1326 iio_push_to_buffers_with_timestamp(indio_dev, &scan,
1327 iio_get_time_ns(indio_dev));
1328
1329 done:
1330 iio_trigger_notify_done(indio_dev->trig);
1331
1332 return IRQ_HANDLED;
1333 }
1334
ltr501_interrupt_handler(int irq,void * private)1335 static irqreturn_t ltr501_interrupt_handler(int irq, void *private)
1336 {
1337 struct iio_dev *indio_dev = private;
1338 struct ltr501_data *data = iio_priv(indio_dev);
1339 int ret, status;
1340
1341 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
1342 if (ret < 0) {
1343 dev_err(&data->client->dev,
1344 "irq read int reg failed\n");
1345 return IRQ_HANDLED;
1346 }
1347
1348 if (status & LTR501_STATUS_ALS_INTR)
1349 iio_push_event(indio_dev,
1350 IIO_UNMOD_EVENT_CODE(IIO_INTENSITY, 0,
1351 IIO_EV_TYPE_THRESH,
1352 IIO_EV_DIR_EITHER),
1353 iio_get_time_ns(indio_dev));
1354
1355 if (status & LTR501_STATUS_PS_INTR)
1356 iio_push_event(indio_dev,
1357 IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
1358 IIO_EV_TYPE_THRESH,
1359 IIO_EV_DIR_EITHER),
1360 iio_get_time_ns(indio_dev));
1361
1362 return IRQ_HANDLED;
1363 }
1364
ltr501_init(struct ltr501_data * data)1365 static int ltr501_init(struct ltr501_data *data)
1366 {
1367 int ret, status;
1368
1369 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
1370 if (ret < 0)
1371 return ret;
1372
1373 data->als_contr = status | data->chip_info->als_mode_active;
1374
1375 ret = regmap_read(data->regmap, LTR501_PS_CONTR, &status);
1376 if (ret < 0)
1377 return ret;
1378
1379 data->ps_contr = status | LTR501_CONTR_ACTIVE;
1380
1381 ret = ltr501_read_intr_prst(data, IIO_INTENSITY, &data->als_period);
1382 if (ret < 0)
1383 return ret;
1384
1385 ret = ltr501_read_intr_prst(data, IIO_PROXIMITY, &data->ps_period);
1386 if (ret < 0)
1387 return ret;
1388
1389 return ltr501_write_contr(data, data->als_contr, data->ps_contr);
1390 }
1391
ltr501_is_volatile_reg(struct device * dev,unsigned int reg)1392 static bool ltr501_is_volatile_reg(struct device *dev, unsigned int reg)
1393 {
1394 switch (reg) {
1395 case LTR501_ALS_DATA1:
1396 case LTR501_ALS_DATA1_UPPER:
1397 case LTR501_ALS_DATA0:
1398 case LTR501_ALS_DATA0_UPPER:
1399 case LTR501_ALS_PS_STATUS:
1400 case LTR501_PS_DATA:
1401 case LTR501_PS_DATA_UPPER:
1402 return true;
1403 default:
1404 return false;
1405 }
1406 }
1407
1408 static const struct regmap_config ltr501_regmap_config = {
1409 .name = LTR501_REGMAP_NAME,
1410 .reg_bits = 8,
1411 .val_bits = 8,
1412 .max_register = LTR501_MAX_REG,
1413 .cache_type = REGCACHE_RBTREE,
1414 .volatile_reg = ltr501_is_volatile_reg,
1415 };
1416
ltr501_powerdown(struct ltr501_data * data)1417 static int ltr501_powerdown(struct ltr501_data *data)
1418 {
1419 return ltr501_write_contr(data, data->als_contr &
1420 ~data->chip_info->als_mode_active,
1421 data->ps_contr & ~LTR501_CONTR_ACTIVE);
1422 }
1423
ltr501_match_acpi_device(struct device * dev,int * chip_idx)1424 static const char *ltr501_match_acpi_device(struct device *dev, int *chip_idx)
1425 {
1426 const struct acpi_device_id *id;
1427
1428 id = acpi_match_device(dev->driver->acpi_match_table, dev);
1429 if (!id)
1430 return NULL;
1431 *chip_idx = id->driver_data;
1432 return dev_name(dev);
1433 }
1434
ltr501_probe(struct i2c_client * client)1435 static int ltr501_probe(struct i2c_client *client)
1436 {
1437 const struct i2c_device_id *id = i2c_client_get_device_id(client);
1438 static const char * const regulator_names[] = { "vdd", "vddio" };
1439 struct ltr501_data *data;
1440 struct iio_dev *indio_dev;
1441 struct regmap *regmap;
1442 int ret, partid, chip_idx = 0;
1443 const char *name = NULL;
1444
1445 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
1446 if (!indio_dev)
1447 return -ENOMEM;
1448
1449 regmap = devm_regmap_init_i2c(client, <r501_regmap_config);
1450 if (IS_ERR(regmap)) {
1451 dev_err(&client->dev, "Regmap initialization failed.\n");
1452 return PTR_ERR(regmap);
1453 }
1454
1455 data = iio_priv(indio_dev);
1456 i2c_set_clientdata(client, indio_dev);
1457 data->client = client;
1458 data->regmap = regmap;
1459 mutex_init(&data->lock_als);
1460 mutex_init(&data->lock_ps);
1461
1462 ret = devm_regulator_bulk_get_enable(&client->dev,
1463 ARRAY_SIZE(regulator_names),
1464 regulator_names);
1465 if (ret)
1466 return dev_err_probe(&client->dev, ret,
1467 "Failed to get regulators\n");
1468
1469 data->reg_it = devm_regmap_field_alloc(&client->dev, regmap,
1470 reg_field_it);
1471 if (IS_ERR(data->reg_it)) {
1472 dev_err(&client->dev, "Integ time reg field init failed.\n");
1473 return PTR_ERR(data->reg_it);
1474 }
1475
1476 data->reg_als_intr = devm_regmap_field_alloc(&client->dev, regmap,
1477 reg_field_als_intr);
1478 if (IS_ERR(data->reg_als_intr)) {
1479 dev_err(&client->dev, "ALS intr mode reg field init failed\n");
1480 return PTR_ERR(data->reg_als_intr);
1481 }
1482
1483 data->reg_ps_intr = devm_regmap_field_alloc(&client->dev, regmap,
1484 reg_field_ps_intr);
1485 if (IS_ERR(data->reg_ps_intr)) {
1486 dev_err(&client->dev, "PS intr mode reg field init failed.\n");
1487 return PTR_ERR(data->reg_ps_intr);
1488 }
1489
1490 data->reg_als_rate = devm_regmap_field_alloc(&client->dev, regmap,
1491 reg_field_als_rate);
1492 if (IS_ERR(data->reg_als_rate)) {
1493 dev_err(&client->dev, "ALS samp rate field init failed.\n");
1494 return PTR_ERR(data->reg_als_rate);
1495 }
1496
1497 data->reg_ps_rate = devm_regmap_field_alloc(&client->dev, regmap,
1498 reg_field_ps_rate);
1499 if (IS_ERR(data->reg_ps_rate)) {
1500 dev_err(&client->dev, "PS samp rate field init failed.\n");
1501 return PTR_ERR(data->reg_ps_rate);
1502 }
1503
1504 data->reg_als_prst = devm_regmap_field_alloc(&client->dev, regmap,
1505 reg_field_als_prst);
1506 if (IS_ERR(data->reg_als_prst)) {
1507 dev_err(&client->dev, "ALS prst reg field init failed\n");
1508 return PTR_ERR(data->reg_als_prst);
1509 }
1510
1511 data->reg_ps_prst = devm_regmap_field_alloc(&client->dev, regmap,
1512 reg_field_ps_prst);
1513 if (IS_ERR(data->reg_ps_prst)) {
1514 dev_err(&client->dev, "PS prst reg field init failed.\n");
1515 return PTR_ERR(data->reg_ps_prst);
1516 }
1517
1518 ret = regmap_read(data->regmap, LTR501_PART_ID, &partid);
1519 if (ret < 0)
1520 return ret;
1521
1522 if (id) {
1523 name = id->name;
1524 chip_idx = id->driver_data;
1525 } else if (ACPI_HANDLE(&client->dev)) {
1526 name = ltr501_match_acpi_device(&client->dev, &chip_idx);
1527 } else {
1528 return -ENODEV;
1529 }
1530
1531 data->chip_info = <r501_chip_info_tbl[chip_idx];
1532
1533 if ((partid >> 4) != data->chip_info->partid)
1534 return -ENODEV;
1535
1536 if (device_property_read_u32(&client->dev, "proximity-near-level",
1537 &data->near_level))
1538 data->near_level = 0;
1539
1540 indio_dev->info = data->chip_info->info;
1541 indio_dev->channels = data->chip_info->channels;
1542 indio_dev->num_channels = data->chip_info->no_channels;
1543 indio_dev->name = name;
1544 indio_dev->modes = INDIO_DIRECT_MODE;
1545
1546 ret = ltr501_init(data);
1547 if (ret < 0)
1548 return ret;
1549
1550 if (client->irq > 0) {
1551 ret = devm_request_threaded_irq(&client->dev, client->irq,
1552 NULL, ltr501_interrupt_handler,
1553 IRQF_TRIGGER_FALLING |
1554 IRQF_ONESHOT,
1555 "ltr501_thresh_event",
1556 indio_dev);
1557 if (ret) {
1558 dev_err(&client->dev, "request irq (%d) failed\n",
1559 client->irq);
1560 return ret;
1561 }
1562 } else {
1563 indio_dev->info = data->chip_info->info_no_irq;
1564 }
1565
1566 ret = iio_triggered_buffer_setup(indio_dev, NULL,
1567 ltr501_trigger_handler, NULL);
1568 if (ret)
1569 goto powerdown_on_error;
1570
1571 ret = iio_device_register(indio_dev);
1572 if (ret)
1573 goto error_unreg_buffer;
1574
1575 return 0;
1576
1577 error_unreg_buffer:
1578 iio_triggered_buffer_cleanup(indio_dev);
1579 powerdown_on_error:
1580 ltr501_powerdown(data);
1581 return ret;
1582 }
1583
ltr501_remove(struct i2c_client * client)1584 static void ltr501_remove(struct i2c_client *client)
1585 {
1586 struct iio_dev *indio_dev = i2c_get_clientdata(client);
1587
1588 iio_device_unregister(indio_dev);
1589 iio_triggered_buffer_cleanup(indio_dev);
1590 ltr501_powerdown(iio_priv(indio_dev));
1591 }
1592
ltr501_suspend(struct device * dev)1593 static int ltr501_suspend(struct device *dev)
1594 {
1595 struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1596 to_i2c_client(dev)));
1597 return ltr501_powerdown(data);
1598 }
1599
ltr501_resume(struct device * dev)1600 static int ltr501_resume(struct device *dev)
1601 {
1602 struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1603 to_i2c_client(dev)));
1604
1605 return ltr501_write_contr(data, data->als_contr,
1606 data->ps_contr);
1607 }
1608
1609 static DEFINE_SIMPLE_DEV_PM_OPS(ltr501_pm_ops, ltr501_suspend, ltr501_resume);
1610
1611 static const struct acpi_device_id ltr_acpi_match[] = {
1612 { "LTER0501", ltr501 },
1613 { "LTER0559", ltr559 },
1614 { "LTER0301", ltr301 },
1615 { },
1616 };
1617 MODULE_DEVICE_TABLE(acpi, ltr_acpi_match);
1618
1619 static const struct i2c_device_id ltr501_id[] = {
1620 { "ltr501", ltr501 },
1621 { "ltr559", ltr559 },
1622 { "ltr301", ltr301 },
1623 { "ltr303", ltr303 },
1624 { }
1625 };
1626 MODULE_DEVICE_TABLE(i2c, ltr501_id);
1627
1628 static const struct of_device_id ltr501_of_match[] = {
1629 { .compatible = "liteon,ltr501", },
1630 { .compatible = "liteon,ltr559", },
1631 { .compatible = "liteon,ltr301", },
1632 { .compatible = "liteon,ltr303", },
1633 {}
1634 };
1635 MODULE_DEVICE_TABLE(of, ltr501_of_match);
1636
1637 static struct i2c_driver ltr501_driver = {
1638 .driver = {
1639 .name = LTR501_DRV_NAME,
1640 .of_match_table = ltr501_of_match,
1641 .pm = pm_sleep_ptr(<r501_pm_ops),
1642 .acpi_match_table = ACPI_PTR(ltr_acpi_match),
1643 },
1644 .probe = ltr501_probe,
1645 .remove = ltr501_remove,
1646 .id_table = ltr501_id,
1647 };
1648
1649 module_i2c_driver(ltr501_driver);
1650
1651 MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>");
1652 MODULE_DESCRIPTION("Lite-On LTR501 ambient light and proximity sensor driver");
1653 MODULE_LICENSE("GPL");
1654