xref: /openbmc/linux/drivers/iio/industrialio-core.c (revision 7bd571b274fd15e0e7dc3d79d104f32928010eff)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* The industrial I/O core
3  *
4  * Copyright (c) 2008 Jonathan Cameron
5  *
6  * Based on elements of hwmon and input subsystems.
7  */
8 
9 #define pr_fmt(fmt) "iio-core: " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/idr.h>
14 #include <linux/kdev_t.h>
15 #include <linux/err.h>
16 #include <linux/device.h>
17 #include <linux/fs.h>
18 #include <linux/poll.h>
19 #include <linux/property.h>
20 #include <linux/sched.h>
21 #include <linux/wait.h>
22 #include <linux/cdev.h>
23 #include <linux/slab.h>
24 #include <linux/anon_inodes.h>
25 #include <linux/debugfs.h>
26 #include <linux/mutex.h>
27 #include <linux/iio/iio.h>
28 #include <linux/iio/iio-opaque.h>
29 #include "iio_core.h"
30 #include "iio_core_trigger.h"
31 #include <linux/iio/sysfs.h>
32 #include <linux/iio/events.h>
33 #include <linux/iio/buffer.h>
34 #include <linux/iio/buffer_impl.h>
35 
36 /* IDA to assign each registered device a unique id */
37 static DEFINE_IDA(iio_ida);
38 
39 static dev_t iio_devt;
40 
41 #define IIO_DEV_MAX 256
42 struct bus_type iio_bus_type = {
43 	.name = "iio",
44 };
45 EXPORT_SYMBOL(iio_bus_type);
46 
47 static struct dentry *iio_debugfs_dentry;
48 
49 static const char * const iio_direction[] = {
50 	[0] = "in",
51 	[1] = "out",
52 };
53 
54 static const char * const iio_chan_type_name_spec[] = {
55 	[IIO_VOLTAGE] = "voltage",
56 	[IIO_CURRENT] = "current",
57 	[IIO_POWER] = "power",
58 	[IIO_ACCEL] = "accel",
59 	[IIO_ANGL_VEL] = "anglvel",
60 	[IIO_MAGN] = "magn",
61 	[IIO_LIGHT] = "illuminance",
62 	[IIO_INTENSITY] = "intensity",
63 	[IIO_PROXIMITY] = "proximity",
64 	[IIO_TEMP] = "temp",
65 	[IIO_INCLI] = "incli",
66 	[IIO_ROT] = "rot",
67 	[IIO_ANGL] = "angl",
68 	[IIO_TIMESTAMP] = "timestamp",
69 	[IIO_CAPACITANCE] = "capacitance",
70 	[IIO_ALTVOLTAGE] = "altvoltage",
71 	[IIO_CCT] = "cct",
72 	[IIO_PRESSURE] = "pressure",
73 	[IIO_HUMIDITYRELATIVE] = "humidityrelative",
74 	[IIO_ACTIVITY] = "activity",
75 	[IIO_STEPS] = "steps",
76 	[IIO_ENERGY] = "energy",
77 	[IIO_DISTANCE] = "distance",
78 	[IIO_VELOCITY] = "velocity",
79 	[IIO_CONCENTRATION] = "concentration",
80 	[IIO_RESISTANCE] = "resistance",
81 	[IIO_PH] = "ph",
82 	[IIO_UVINDEX] = "uvindex",
83 	[IIO_ELECTRICALCONDUCTIVITY] = "electricalconductivity",
84 	[IIO_COUNT] = "count",
85 	[IIO_INDEX] = "index",
86 	[IIO_GRAVITY]  = "gravity",
87 	[IIO_POSITIONRELATIVE]  = "positionrelative",
88 	[IIO_PHASE] = "phase",
89 	[IIO_MASSCONCENTRATION] = "massconcentration",
90 };
91 
92 static const char * const iio_modifier_names[] = {
93 	[IIO_MOD_X] = "x",
94 	[IIO_MOD_Y] = "y",
95 	[IIO_MOD_Z] = "z",
96 	[IIO_MOD_X_AND_Y] = "x&y",
97 	[IIO_MOD_X_AND_Z] = "x&z",
98 	[IIO_MOD_Y_AND_Z] = "y&z",
99 	[IIO_MOD_X_AND_Y_AND_Z] = "x&y&z",
100 	[IIO_MOD_X_OR_Y] = "x|y",
101 	[IIO_MOD_X_OR_Z] = "x|z",
102 	[IIO_MOD_Y_OR_Z] = "y|z",
103 	[IIO_MOD_X_OR_Y_OR_Z] = "x|y|z",
104 	[IIO_MOD_ROOT_SUM_SQUARED_X_Y] = "sqrt(x^2+y^2)",
105 	[IIO_MOD_SUM_SQUARED_X_Y_Z] = "x^2+y^2+z^2",
106 	[IIO_MOD_LIGHT_BOTH] = "both",
107 	[IIO_MOD_LIGHT_IR] = "ir",
108 	[IIO_MOD_LIGHT_CLEAR] = "clear",
109 	[IIO_MOD_LIGHT_RED] = "red",
110 	[IIO_MOD_LIGHT_GREEN] = "green",
111 	[IIO_MOD_LIGHT_BLUE] = "blue",
112 	[IIO_MOD_LIGHT_UV] = "uv",
113 	[IIO_MOD_LIGHT_DUV] = "duv",
114 	[IIO_MOD_QUATERNION] = "quaternion",
115 	[IIO_MOD_TEMP_AMBIENT] = "ambient",
116 	[IIO_MOD_TEMP_OBJECT] = "object",
117 	[IIO_MOD_NORTH_MAGN] = "from_north_magnetic",
118 	[IIO_MOD_NORTH_TRUE] = "from_north_true",
119 	[IIO_MOD_NORTH_MAGN_TILT_COMP] = "from_north_magnetic_tilt_comp",
120 	[IIO_MOD_NORTH_TRUE_TILT_COMP] = "from_north_true_tilt_comp",
121 	[IIO_MOD_RUNNING] = "running",
122 	[IIO_MOD_JOGGING] = "jogging",
123 	[IIO_MOD_WALKING] = "walking",
124 	[IIO_MOD_STILL] = "still",
125 	[IIO_MOD_ROOT_SUM_SQUARED_X_Y_Z] = "sqrt(x^2+y^2+z^2)",
126 	[IIO_MOD_I] = "i",
127 	[IIO_MOD_Q] = "q",
128 	[IIO_MOD_CO2] = "co2",
129 	[IIO_MOD_VOC] = "voc",
130 	[IIO_MOD_PM1] = "pm1",
131 	[IIO_MOD_PM2P5] = "pm2p5",
132 	[IIO_MOD_PM4] = "pm4",
133 	[IIO_MOD_PM10] = "pm10",
134 	[IIO_MOD_ETHANOL] = "ethanol",
135 	[IIO_MOD_H2] = "h2",
136 	[IIO_MOD_O2] = "o2",
137 	[IIO_MOD_LINEAR_X] = "linear_x",
138 	[IIO_MOD_LINEAR_Y] = "linear_y",
139 	[IIO_MOD_LINEAR_Z] = "linear_z",
140 	[IIO_MOD_PITCH] = "pitch",
141 	[IIO_MOD_YAW] = "yaw",
142 	[IIO_MOD_ROLL] = "roll",
143 };
144 
145 /* relies on pairs of these shared then separate */
146 static const char * const iio_chan_info_postfix[] = {
147 	[IIO_CHAN_INFO_RAW] = "raw",
148 	[IIO_CHAN_INFO_PROCESSED] = "input",
149 	[IIO_CHAN_INFO_SCALE] = "scale",
150 	[IIO_CHAN_INFO_OFFSET] = "offset",
151 	[IIO_CHAN_INFO_CALIBSCALE] = "calibscale",
152 	[IIO_CHAN_INFO_CALIBBIAS] = "calibbias",
153 	[IIO_CHAN_INFO_PEAK] = "peak_raw",
154 	[IIO_CHAN_INFO_PEAK_SCALE] = "peak_scale",
155 	[IIO_CHAN_INFO_QUADRATURE_CORRECTION_RAW] = "quadrature_correction_raw",
156 	[IIO_CHAN_INFO_AVERAGE_RAW] = "mean_raw",
157 	[IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY]
158 	= "filter_low_pass_3db_frequency",
159 	[IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY]
160 	= "filter_high_pass_3db_frequency",
161 	[IIO_CHAN_INFO_SAMP_FREQ] = "sampling_frequency",
162 	[IIO_CHAN_INFO_FREQUENCY] = "frequency",
163 	[IIO_CHAN_INFO_PHASE] = "phase",
164 	[IIO_CHAN_INFO_HARDWAREGAIN] = "hardwaregain",
165 	[IIO_CHAN_INFO_HYSTERESIS] = "hysteresis",
166 	[IIO_CHAN_INFO_HYSTERESIS_RELATIVE] = "hysteresis_relative",
167 	[IIO_CHAN_INFO_INT_TIME] = "integration_time",
168 	[IIO_CHAN_INFO_ENABLE] = "en",
169 	[IIO_CHAN_INFO_CALIBHEIGHT] = "calibheight",
170 	[IIO_CHAN_INFO_CALIBWEIGHT] = "calibweight",
171 	[IIO_CHAN_INFO_DEBOUNCE_COUNT] = "debounce_count",
172 	[IIO_CHAN_INFO_DEBOUNCE_TIME] = "debounce_time",
173 	[IIO_CHAN_INFO_CALIBEMISSIVITY] = "calibemissivity",
174 	[IIO_CHAN_INFO_OVERSAMPLING_RATIO] = "oversampling_ratio",
175 	[IIO_CHAN_INFO_THERMOCOUPLE_TYPE] = "thermocouple_type",
176 	[IIO_CHAN_INFO_CALIBAMBIENT] = "calibambient",
177 	[IIO_CHAN_INFO_ZEROPOINT] = "zeropoint",
178 };
179 /**
180  * iio_device_id() - query the unique ID for the device
181  * @indio_dev:		Device structure whose ID is being queried
182  *
183  * The IIO device ID is a unique index used for example for the naming
184  * of the character device /dev/iio\:device[ID]
185  */
186 int iio_device_id(struct iio_dev *indio_dev)
187 {
188 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
189 
190 	return iio_dev_opaque->id;
191 }
192 EXPORT_SYMBOL_GPL(iio_device_id);
193 
194 /**
195  * iio_buffer_enabled() - helper function to test if the buffer is enabled
196  * @indio_dev:		IIO device structure for device
197  */
198 bool iio_buffer_enabled(struct iio_dev *indio_dev)
199 {
200 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
201 
202 	return iio_dev_opaque->currentmode
203 		& (INDIO_BUFFER_TRIGGERED | INDIO_BUFFER_HARDWARE |
204 		   INDIO_BUFFER_SOFTWARE);
205 }
206 EXPORT_SYMBOL_GPL(iio_buffer_enabled);
207 
208 /**
209  * iio_sysfs_match_string_with_gaps - matches given string in an array with gaps
210  * @array: array of strings
211  * @n: number of strings in the array
212  * @str: string to match with
213  *
214  * Returns index of @str in the @array or -EINVAL, similar to match_string().
215  * Uses sysfs_streq instead of strcmp for matching.
216  *
217  * This routine will look for a string in an array of strings.
218  * The search will continue until the element is found or the n-th element
219  * is reached, regardless of any NULL elements in the array.
220  */
221 static int iio_sysfs_match_string_with_gaps(const char * const *array, size_t n,
222 					    const char *str)
223 {
224 	const char *item;
225 	int index;
226 
227 	for (index = 0; index < n; index++) {
228 		item = array[index];
229 		if (!item)
230 			continue;
231 		if (sysfs_streq(item, str))
232 			return index;
233 	}
234 
235 	return -EINVAL;
236 }
237 
238 #if defined(CONFIG_DEBUG_FS)
239 /*
240  * There's also a CONFIG_DEBUG_FS guard in include/linux/iio/iio.h for
241  * iio_get_debugfs_dentry() to make it inline if CONFIG_DEBUG_FS is undefined
242  */
243 struct dentry *iio_get_debugfs_dentry(struct iio_dev *indio_dev)
244 {
245 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
246 
247 	return iio_dev_opaque->debugfs_dentry;
248 }
249 EXPORT_SYMBOL_GPL(iio_get_debugfs_dentry);
250 #endif
251 
252 /**
253  * iio_find_channel_from_si() - get channel from its scan index
254  * @indio_dev:		device
255  * @si:			scan index to match
256  */
257 const struct iio_chan_spec
258 *iio_find_channel_from_si(struct iio_dev *indio_dev, int si)
259 {
260 	int i;
261 
262 	for (i = 0; i < indio_dev->num_channels; i++)
263 		if (indio_dev->channels[i].scan_index == si)
264 			return &indio_dev->channels[i];
265 	return NULL;
266 }
267 
268 /* This turns up an awful lot */
269 ssize_t iio_read_const_attr(struct device *dev,
270 			    struct device_attribute *attr,
271 			    char *buf)
272 {
273 	return sysfs_emit(buf, "%s\n", to_iio_const_attr(attr)->string);
274 }
275 EXPORT_SYMBOL(iio_read_const_attr);
276 
277 /**
278  * iio_device_set_clock() - Set current timestamping clock for the device
279  * @indio_dev: IIO device structure containing the device
280  * @clock_id: timestamping clock posix identifier to set.
281  */
282 int iio_device_set_clock(struct iio_dev *indio_dev, clockid_t clock_id)
283 {
284 	int ret;
285 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
286 	const struct iio_event_interface *ev_int = iio_dev_opaque->event_interface;
287 
288 	ret = mutex_lock_interruptible(&iio_dev_opaque->mlock);
289 	if (ret)
290 		return ret;
291 	if ((ev_int && iio_event_enabled(ev_int)) ||
292 	    iio_buffer_enabled(indio_dev)) {
293 		mutex_unlock(&iio_dev_opaque->mlock);
294 		return -EBUSY;
295 	}
296 	iio_dev_opaque->clock_id = clock_id;
297 	mutex_unlock(&iio_dev_opaque->mlock);
298 
299 	return 0;
300 }
301 EXPORT_SYMBOL(iio_device_set_clock);
302 
303 /**
304  * iio_device_get_clock() - Retrieve current timestamping clock for the device
305  * @indio_dev: IIO device structure containing the device
306  */
307 clockid_t iio_device_get_clock(const struct iio_dev *indio_dev)
308 {
309 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
310 
311 	return iio_dev_opaque->clock_id;
312 }
313 EXPORT_SYMBOL(iio_device_get_clock);
314 
315 /**
316  * iio_get_time_ns() - utility function to get a time stamp for events etc
317  * @indio_dev: device
318  */
319 s64 iio_get_time_ns(const struct iio_dev *indio_dev)
320 {
321 	struct timespec64 tp;
322 
323 	switch (iio_device_get_clock(indio_dev)) {
324 	case CLOCK_REALTIME:
325 		return ktime_get_real_ns();
326 	case CLOCK_MONOTONIC:
327 		return ktime_get_ns();
328 	case CLOCK_MONOTONIC_RAW:
329 		return ktime_get_raw_ns();
330 	case CLOCK_REALTIME_COARSE:
331 		return ktime_to_ns(ktime_get_coarse_real());
332 	case CLOCK_MONOTONIC_COARSE:
333 		ktime_get_coarse_ts64(&tp);
334 		return timespec64_to_ns(&tp);
335 	case CLOCK_BOOTTIME:
336 		return ktime_get_boottime_ns();
337 	case CLOCK_TAI:
338 		return ktime_get_clocktai_ns();
339 	default:
340 		BUG();
341 	}
342 }
343 EXPORT_SYMBOL(iio_get_time_ns);
344 
345 static int __init iio_init(void)
346 {
347 	int ret;
348 
349 	/* Register sysfs bus */
350 	ret  = bus_register(&iio_bus_type);
351 	if (ret < 0) {
352 		pr_err("could not register bus type\n");
353 		goto error_nothing;
354 	}
355 
356 	ret = alloc_chrdev_region(&iio_devt, 0, IIO_DEV_MAX, "iio");
357 	if (ret < 0) {
358 		pr_err("failed to allocate char dev region\n");
359 		goto error_unregister_bus_type;
360 	}
361 
362 	iio_debugfs_dentry = debugfs_create_dir("iio", NULL);
363 
364 	return 0;
365 
366 error_unregister_bus_type:
367 	bus_unregister(&iio_bus_type);
368 error_nothing:
369 	return ret;
370 }
371 
372 static void __exit iio_exit(void)
373 {
374 	if (iio_devt)
375 		unregister_chrdev_region(iio_devt, IIO_DEV_MAX);
376 	bus_unregister(&iio_bus_type);
377 	debugfs_remove(iio_debugfs_dentry);
378 }
379 
380 #if defined(CONFIG_DEBUG_FS)
381 static ssize_t iio_debugfs_read_reg(struct file *file, char __user *userbuf,
382 			      size_t count, loff_t *ppos)
383 {
384 	struct iio_dev *indio_dev = file->private_data;
385 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
386 	unsigned int val = 0;
387 	int ret;
388 
389 	if (*ppos > 0)
390 		return simple_read_from_buffer(userbuf, count, ppos,
391 					       iio_dev_opaque->read_buf,
392 					       iio_dev_opaque->read_buf_len);
393 
394 	ret = indio_dev->info->debugfs_reg_access(indio_dev,
395 						  iio_dev_opaque->cached_reg_addr,
396 						  0, &val);
397 	if (ret) {
398 		dev_err(indio_dev->dev.parent, "%s: read failed\n", __func__);
399 		return ret;
400 	}
401 
402 	iio_dev_opaque->read_buf_len = snprintf(iio_dev_opaque->read_buf,
403 					      sizeof(iio_dev_opaque->read_buf),
404 					      "0x%X\n", val);
405 
406 	return simple_read_from_buffer(userbuf, count, ppos,
407 				       iio_dev_opaque->read_buf,
408 				       iio_dev_opaque->read_buf_len);
409 }
410 
411 static ssize_t iio_debugfs_write_reg(struct file *file,
412 		     const char __user *userbuf, size_t count, loff_t *ppos)
413 {
414 	struct iio_dev *indio_dev = file->private_data;
415 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
416 	unsigned int reg, val;
417 	char buf[80];
418 	int ret;
419 
420 	count = min_t(size_t, count, (sizeof(buf)-1));
421 	if (copy_from_user(buf, userbuf, count))
422 		return -EFAULT;
423 
424 	buf[count] = 0;
425 
426 	ret = sscanf(buf, "%i %i", &reg, &val);
427 
428 	switch (ret) {
429 	case 1:
430 		iio_dev_opaque->cached_reg_addr = reg;
431 		break;
432 	case 2:
433 		iio_dev_opaque->cached_reg_addr = reg;
434 		ret = indio_dev->info->debugfs_reg_access(indio_dev, reg,
435 							  val, NULL);
436 		if (ret) {
437 			dev_err(indio_dev->dev.parent, "%s: write failed\n",
438 				__func__);
439 			return ret;
440 		}
441 		break;
442 	default:
443 		return -EINVAL;
444 	}
445 
446 	return count;
447 }
448 
449 static const struct file_operations iio_debugfs_reg_fops = {
450 	.open = simple_open,
451 	.read = iio_debugfs_read_reg,
452 	.write = iio_debugfs_write_reg,
453 };
454 
455 static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
456 {
457 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
458 
459 	debugfs_remove_recursive(iio_dev_opaque->debugfs_dentry);
460 }
461 
462 static void iio_device_register_debugfs(struct iio_dev *indio_dev)
463 {
464 	struct iio_dev_opaque *iio_dev_opaque;
465 
466 	if (indio_dev->info->debugfs_reg_access == NULL)
467 		return;
468 
469 	if (!iio_debugfs_dentry)
470 		return;
471 
472 	iio_dev_opaque = to_iio_dev_opaque(indio_dev);
473 
474 	iio_dev_opaque->debugfs_dentry =
475 		debugfs_create_dir(dev_name(&indio_dev->dev),
476 				   iio_debugfs_dentry);
477 
478 	debugfs_create_file("direct_reg_access", 0644,
479 			    iio_dev_opaque->debugfs_dentry, indio_dev,
480 			    &iio_debugfs_reg_fops);
481 }
482 #else
483 static void iio_device_register_debugfs(struct iio_dev *indio_dev)
484 {
485 }
486 
487 static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
488 {
489 }
490 #endif /* CONFIG_DEBUG_FS */
491 
492 static ssize_t iio_read_channel_ext_info(struct device *dev,
493 				     struct device_attribute *attr,
494 				     char *buf)
495 {
496 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
497 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
498 	const struct iio_chan_spec_ext_info *ext_info;
499 
500 	ext_info = &this_attr->c->ext_info[this_attr->address];
501 
502 	return ext_info->read(indio_dev, ext_info->private, this_attr->c, buf);
503 }
504 
505 static ssize_t iio_write_channel_ext_info(struct device *dev,
506 				     struct device_attribute *attr,
507 				     const char *buf,
508 					 size_t len)
509 {
510 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
511 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
512 	const struct iio_chan_spec_ext_info *ext_info;
513 
514 	ext_info = &this_attr->c->ext_info[this_attr->address];
515 
516 	return ext_info->write(indio_dev, ext_info->private,
517 			       this_attr->c, buf, len);
518 }
519 
520 ssize_t iio_enum_available_read(struct iio_dev *indio_dev,
521 	uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
522 {
523 	const struct iio_enum *e = (const struct iio_enum *)priv;
524 	unsigned int i;
525 	size_t len = 0;
526 
527 	if (!e->num_items)
528 		return 0;
529 
530 	for (i = 0; i < e->num_items; ++i) {
531 		if (!e->items[i])
532 			continue;
533 		len += sysfs_emit_at(buf, len, "%s ", e->items[i]);
534 	}
535 
536 	/* replace last space with a newline */
537 	buf[len - 1] = '\n';
538 
539 	return len;
540 }
541 EXPORT_SYMBOL_GPL(iio_enum_available_read);
542 
543 ssize_t iio_enum_read(struct iio_dev *indio_dev,
544 	uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
545 {
546 	const struct iio_enum *e = (const struct iio_enum *)priv;
547 	int i;
548 
549 	if (!e->get)
550 		return -EINVAL;
551 
552 	i = e->get(indio_dev, chan);
553 	if (i < 0)
554 		return i;
555 	else if (i >= e->num_items || !e->items[i])
556 		return -EINVAL;
557 
558 	return sysfs_emit(buf, "%s\n", e->items[i]);
559 }
560 EXPORT_SYMBOL_GPL(iio_enum_read);
561 
562 ssize_t iio_enum_write(struct iio_dev *indio_dev,
563 	uintptr_t priv, const struct iio_chan_spec *chan, const char *buf,
564 	size_t len)
565 {
566 	const struct iio_enum *e = (const struct iio_enum *)priv;
567 	int ret;
568 
569 	if (!e->set)
570 		return -EINVAL;
571 
572 	ret = iio_sysfs_match_string_with_gaps(e->items, e->num_items, buf);
573 	if (ret < 0)
574 		return ret;
575 
576 	ret = e->set(indio_dev, chan, ret);
577 	return ret ? ret : len;
578 }
579 EXPORT_SYMBOL_GPL(iio_enum_write);
580 
581 static const struct iio_mount_matrix iio_mount_idmatrix = {
582 	.rotation = {
583 		"1", "0", "0",
584 		"0", "1", "0",
585 		"0", "0", "1"
586 	}
587 };
588 
589 static int iio_setup_mount_idmatrix(const struct device *dev,
590 				    struct iio_mount_matrix *matrix)
591 {
592 	*matrix = iio_mount_idmatrix;
593 	dev_info(dev, "mounting matrix not found: using identity...\n");
594 	return 0;
595 }
596 
597 ssize_t iio_show_mount_matrix(struct iio_dev *indio_dev, uintptr_t priv,
598 			      const struct iio_chan_spec *chan, char *buf)
599 {
600 	const struct iio_mount_matrix *mtx = ((iio_get_mount_matrix_t *)
601 					      priv)(indio_dev, chan);
602 
603 	if (IS_ERR(mtx))
604 		return PTR_ERR(mtx);
605 
606 	if (!mtx)
607 		mtx = &iio_mount_idmatrix;
608 
609 	return sysfs_emit(buf, "%s, %s, %s; %s, %s, %s; %s, %s, %s\n",
610 			  mtx->rotation[0], mtx->rotation[1], mtx->rotation[2],
611 			  mtx->rotation[3], mtx->rotation[4], mtx->rotation[5],
612 			  mtx->rotation[6], mtx->rotation[7], mtx->rotation[8]);
613 }
614 EXPORT_SYMBOL_GPL(iio_show_mount_matrix);
615 
616 /**
617  * iio_read_mount_matrix() - retrieve iio device mounting matrix from
618  *                           device "mount-matrix" property
619  * @dev:	device the mounting matrix property is assigned to
620  * @matrix:	where to store retrieved matrix
621  *
622  * If device is assigned no mounting matrix property, a default 3x3 identity
623  * matrix will be filled in.
624  *
625  * Return: 0 if success, or a negative error code on failure.
626  */
627 int iio_read_mount_matrix(struct device *dev, struct iio_mount_matrix *matrix)
628 {
629 	size_t len = ARRAY_SIZE(iio_mount_idmatrix.rotation);
630 	int err;
631 
632 	err = device_property_read_string_array(dev, "mount-matrix", matrix->rotation, len);
633 	if (err == len)
634 		return 0;
635 
636 	if (err >= 0)
637 		/* Invalid number of matrix entries. */
638 		return -EINVAL;
639 
640 	if (err != -EINVAL)
641 		/* Invalid matrix declaration format. */
642 		return err;
643 
644 	/* Matrix was not declared at all: fallback to identity. */
645 	return iio_setup_mount_idmatrix(dev, matrix);
646 }
647 EXPORT_SYMBOL(iio_read_mount_matrix);
648 
649 static ssize_t __iio_format_value(char *buf, size_t offset, unsigned int type,
650 				  int size, const int *vals)
651 {
652 	int tmp0, tmp1;
653 	s64 tmp2;
654 	bool scale_db = false;
655 
656 	switch (type) {
657 	case IIO_VAL_INT:
658 		return sysfs_emit_at(buf, offset, "%d", vals[0]);
659 	case IIO_VAL_INT_PLUS_MICRO_DB:
660 		scale_db = true;
661 		fallthrough;
662 	case IIO_VAL_INT_PLUS_MICRO:
663 		if (vals[1] < 0)
664 			return sysfs_emit_at(buf, offset, "-%d.%06u%s",
665 					     abs(vals[0]), -vals[1],
666 					     scale_db ? " dB" : "");
667 		else
668 			return sysfs_emit_at(buf, offset, "%d.%06u%s", vals[0],
669 					     vals[1], scale_db ? " dB" : "");
670 	case IIO_VAL_INT_PLUS_NANO:
671 		if (vals[1] < 0)
672 			return sysfs_emit_at(buf, offset, "-%d.%09u",
673 					     abs(vals[0]), -vals[1]);
674 		else
675 			return sysfs_emit_at(buf, offset, "%d.%09u", vals[0],
676 					     vals[1]);
677 	case IIO_VAL_FRACTIONAL:
678 		tmp2 = div_s64((s64)vals[0] * 1000000000LL, vals[1]);
679 		tmp1 = vals[1];
680 		tmp0 = (int)div_s64_rem(tmp2, 1000000000, &tmp1);
681 		if ((tmp2 < 0) && (tmp0 == 0))
682 			return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1));
683 		else
684 			return sysfs_emit_at(buf, offset, "%d.%09u", tmp0,
685 					     abs(tmp1));
686 	case IIO_VAL_FRACTIONAL_LOG2:
687 		tmp2 = shift_right((s64)vals[0] * 1000000000LL, vals[1]);
688 		tmp0 = (int)div_s64_rem(tmp2, 1000000000LL, &tmp1);
689 		if (tmp0 == 0 && tmp2 < 0)
690 			return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1));
691 		else
692 			return sysfs_emit_at(buf, offset, "%d.%09u", tmp0,
693 					     abs(tmp1));
694 	case IIO_VAL_INT_MULTIPLE:
695 	{
696 		int i;
697 		int l = 0;
698 
699 		for (i = 0; i < size; ++i)
700 			l += sysfs_emit_at(buf, offset + l, "%d ", vals[i]);
701 		return l;
702 	}
703 	case IIO_VAL_CHAR:
704 		return sysfs_emit_at(buf, offset, "%c", (char)vals[0]);
705 	case IIO_VAL_INT_64:
706 		tmp2 = (s64)((((u64)vals[1]) << 32) | (u32)vals[0]);
707 		return sysfs_emit_at(buf, offset, "%lld", tmp2);
708 	default:
709 		return 0;
710 	}
711 }
712 
713 /**
714  * iio_format_value() - Formats a IIO value into its string representation
715  * @buf:	The buffer to which the formatted value gets written
716  *		which is assumed to be big enough (i.e. PAGE_SIZE).
717  * @type:	One of the IIO_VAL_* constants. This decides how the val
718  *		and val2 parameters are formatted.
719  * @size:	Number of IIO value entries contained in vals
720  * @vals:	Pointer to the values, exact meaning depends on the
721  *		type parameter.
722  *
723  * Return: 0 by default, a negative number on failure or the
724  *	   total number of characters written for a type that belongs
725  *	   to the IIO_VAL_* constant.
726  */
727 ssize_t iio_format_value(char *buf, unsigned int type, int size, int *vals)
728 {
729 	ssize_t len;
730 
731 	len = __iio_format_value(buf, 0, type, size, vals);
732 	if (len >= PAGE_SIZE - 1)
733 		return -EFBIG;
734 
735 	return len + sysfs_emit_at(buf, len, "\n");
736 }
737 EXPORT_SYMBOL_GPL(iio_format_value);
738 
739 static ssize_t iio_read_channel_label(struct device *dev,
740 				      struct device_attribute *attr,
741 				      char *buf)
742 {
743 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
744 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
745 
746 	if (indio_dev->info->read_label)
747 		return indio_dev->info->read_label(indio_dev, this_attr->c, buf);
748 
749 	if (this_attr->c->extend_name)
750 		return sysfs_emit(buf, "%s\n", this_attr->c->extend_name);
751 
752 	return -EINVAL;
753 }
754 
755 static ssize_t iio_read_channel_info(struct device *dev,
756 				     struct device_attribute *attr,
757 				     char *buf)
758 {
759 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
760 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
761 	int vals[INDIO_MAX_RAW_ELEMENTS];
762 	int ret;
763 	int val_len = 2;
764 
765 	if (indio_dev->info->read_raw_multi)
766 		ret = indio_dev->info->read_raw_multi(indio_dev, this_attr->c,
767 							INDIO_MAX_RAW_ELEMENTS,
768 							vals, &val_len,
769 							this_attr->address);
770 	else
771 		ret = indio_dev->info->read_raw(indio_dev, this_attr->c,
772 				    &vals[0], &vals[1], this_attr->address);
773 
774 	if (ret < 0)
775 		return ret;
776 
777 	return iio_format_value(buf, ret, val_len, vals);
778 }
779 
780 static ssize_t iio_format_list(char *buf, const int *vals, int type, int length,
781 			       const char *prefix, const char *suffix)
782 {
783 	ssize_t len;
784 	int stride;
785 	int i;
786 
787 	switch (type) {
788 	case IIO_VAL_INT:
789 		stride = 1;
790 		break;
791 	default:
792 		stride = 2;
793 		break;
794 	}
795 
796 	len = sysfs_emit(buf, prefix);
797 
798 	for (i = 0; i <= length - stride; i += stride) {
799 		if (i != 0) {
800 			len += sysfs_emit_at(buf, len, " ");
801 			if (len >= PAGE_SIZE)
802 				return -EFBIG;
803 		}
804 
805 		len += __iio_format_value(buf, len, type, stride, &vals[i]);
806 		if (len >= PAGE_SIZE)
807 			return -EFBIG;
808 	}
809 
810 	len += sysfs_emit_at(buf, len, "%s\n", suffix);
811 
812 	return len;
813 }
814 
815 static ssize_t iio_format_avail_list(char *buf, const int *vals,
816 				     int type, int length)
817 {
818 
819 	return iio_format_list(buf, vals, type, length, "", "");
820 }
821 
822 static ssize_t iio_format_avail_range(char *buf, const int *vals, int type)
823 {
824 	int length;
825 
826 	/*
827 	 * length refers to the array size , not the number of elements.
828 	 * The purpose is to print the range [min , step ,max] so length should
829 	 * be 3 in case of int, and 6 for other types.
830 	 */
831 	switch (type) {
832 	case IIO_VAL_INT:
833 		length = 3;
834 		break;
835 	default:
836 		length = 6;
837 		break;
838 	}
839 
840 	return iio_format_list(buf, vals, type, length, "[", "]");
841 }
842 
843 static ssize_t iio_read_channel_info_avail(struct device *dev,
844 					   struct device_attribute *attr,
845 					   char *buf)
846 {
847 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
848 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
849 	const int *vals;
850 	int ret;
851 	int length;
852 	int type;
853 
854 	ret = indio_dev->info->read_avail(indio_dev, this_attr->c,
855 					  &vals, &type, &length,
856 					  this_attr->address);
857 
858 	if (ret < 0)
859 		return ret;
860 	switch (ret) {
861 	case IIO_AVAIL_LIST:
862 		return iio_format_avail_list(buf, vals, type, length);
863 	case IIO_AVAIL_RANGE:
864 		return iio_format_avail_range(buf, vals, type);
865 	default:
866 		return -EINVAL;
867 	}
868 }
869 
870 /**
871  * __iio_str_to_fixpoint() - Parse a fixed-point number from a string
872  * @str: The string to parse
873  * @fract_mult: Multiplier for the first decimal place, should be a power of 10
874  * @integer: The integer part of the number
875  * @fract: The fractional part of the number
876  * @scale_db: True if this should parse as dB
877  *
878  * Returns 0 on success, or a negative error code if the string could not be
879  * parsed.
880  */
881 static int __iio_str_to_fixpoint(const char *str, int fract_mult,
882 				 int *integer, int *fract, bool scale_db)
883 {
884 	int i = 0, f = 0;
885 	bool integer_part = true, negative = false;
886 
887 	if (fract_mult == 0) {
888 		*fract = 0;
889 
890 		return kstrtoint(str, 0, integer);
891 	}
892 
893 	if (str[0] == '-') {
894 		negative = true;
895 		str++;
896 	} else if (str[0] == '+') {
897 		str++;
898 	}
899 
900 	while (*str) {
901 		if ('0' <= *str && *str <= '9') {
902 			if (integer_part) {
903 				i = i * 10 + *str - '0';
904 			} else {
905 				f += fract_mult * (*str - '0');
906 				fract_mult /= 10;
907 			}
908 		} else if (*str == '\n') {
909 			if (*(str + 1) == '\0')
910 				break;
911 			return -EINVAL;
912 		} else if (!strncmp(str, " dB", sizeof(" dB") - 1) && scale_db) {
913 			/* Ignore the dB suffix */
914 			str += sizeof(" dB") - 1;
915 			continue;
916 		} else if (!strncmp(str, "dB", sizeof("dB") - 1) && scale_db) {
917 			/* Ignore the dB suffix */
918 			str += sizeof("dB") - 1;
919 			continue;
920 		} else if (*str == '.' && integer_part) {
921 			integer_part = false;
922 		} else {
923 			return -EINVAL;
924 		}
925 		str++;
926 	}
927 
928 	if (negative) {
929 		if (i)
930 			i = -i;
931 		else
932 			f = -f;
933 	}
934 
935 	*integer = i;
936 	*fract = f;
937 
938 	return 0;
939 }
940 
941 /**
942  * iio_str_to_fixpoint() - Parse a fixed-point number from a string
943  * @str: The string to parse
944  * @fract_mult: Multiplier for the first decimal place, should be a power of 10
945  * @integer: The integer part of the number
946  * @fract: The fractional part of the number
947  *
948  * Returns 0 on success, or a negative error code if the string could not be
949  * parsed.
950  */
951 int iio_str_to_fixpoint(const char *str, int fract_mult,
952 			int *integer, int *fract)
953 {
954 	return __iio_str_to_fixpoint(str, fract_mult, integer, fract, false);
955 }
956 EXPORT_SYMBOL_GPL(iio_str_to_fixpoint);
957 
958 static ssize_t iio_write_channel_info(struct device *dev,
959 				      struct device_attribute *attr,
960 				      const char *buf,
961 				      size_t len)
962 {
963 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
964 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
965 	int ret, fract_mult = 100000;
966 	int integer, fract = 0;
967 	bool is_char = false;
968 	bool scale_db = false;
969 
970 	/* Assumes decimal - precision based on number of digits */
971 	if (!indio_dev->info->write_raw)
972 		return -EINVAL;
973 
974 	if (indio_dev->info->write_raw_get_fmt)
975 		switch (indio_dev->info->write_raw_get_fmt(indio_dev,
976 			this_attr->c, this_attr->address)) {
977 		case IIO_VAL_INT:
978 			fract_mult = 0;
979 			break;
980 		case IIO_VAL_INT_PLUS_MICRO_DB:
981 			scale_db = true;
982 			fallthrough;
983 		case IIO_VAL_INT_PLUS_MICRO:
984 			fract_mult = 100000;
985 			break;
986 		case IIO_VAL_INT_PLUS_NANO:
987 			fract_mult = 100000000;
988 			break;
989 		case IIO_VAL_CHAR:
990 			is_char = true;
991 			break;
992 		default:
993 			return -EINVAL;
994 		}
995 
996 	if (is_char) {
997 		char ch;
998 
999 		if (sscanf(buf, "%c", &ch) != 1)
1000 			return -EINVAL;
1001 		integer = ch;
1002 	} else {
1003 		ret = __iio_str_to_fixpoint(buf, fract_mult, &integer, &fract,
1004 					    scale_db);
1005 		if (ret)
1006 			return ret;
1007 	}
1008 
1009 	ret = indio_dev->info->write_raw(indio_dev, this_attr->c,
1010 					 integer, fract, this_attr->address);
1011 	if (ret)
1012 		return ret;
1013 
1014 	return len;
1015 }
1016 
1017 static
1018 int __iio_device_attr_init(struct device_attribute *dev_attr,
1019 			   const char *postfix,
1020 			   struct iio_chan_spec const *chan,
1021 			   ssize_t (*readfunc)(struct device *dev,
1022 					       struct device_attribute *attr,
1023 					       char *buf),
1024 			   ssize_t (*writefunc)(struct device *dev,
1025 						struct device_attribute *attr,
1026 						const char *buf,
1027 						size_t len),
1028 			   enum iio_shared_by shared_by)
1029 {
1030 	int ret = 0;
1031 	char *name = NULL;
1032 	char *full_postfix;
1033 
1034 	sysfs_attr_init(&dev_attr->attr);
1035 
1036 	/* Build up postfix of <extend_name>_<modifier>_postfix */
1037 	if (chan->modified && (shared_by == IIO_SEPARATE)) {
1038 		if (chan->extend_name)
1039 			full_postfix = kasprintf(GFP_KERNEL, "%s_%s_%s",
1040 						 iio_modifier_names[chan
1041 								    ->channel2],
1042 						 chan->extend_name,
1043 						 postfix);
1044 		else
1045 			full_postfix = kasprintf(GFP_KERNEL, "%s_%s",
1046 						 iio_modifier_names[chan
1047 								    ->channel2],
1048 						 postfix);
1049 	} else {
1050 		if (chan->extend_name == NULL || shared_by != IIO_SEPARATE)
1051 			full_postfix = kstrdup(postfix, GFP_KERNEL);
1052 		else
1053 			full_postfix = kasprintf(GFP_KERNEL,
1054 						 "%s_%s",
1055 						 chan->extend_name,
1056 						 postfix);
1057 	}
1058 	if (full_postfix == NULL)
1059 		return -ENOMEM;
1060 
1061 	if (chan->differential) { /* Differential can not have modifier */
1062 		switch (shared_by) {
1063 		case IIO_SHARED_BY_ALL:
1064 			name = kasprintf(GFP_KERNEL, "%s", full_postfix);
1065 			break;
1066 		case IIO_SHARED_BY_DIR:
1067 			name = kasprintf(GFP_KERNEL, "%s_%s",
1068 						iio_direction[chan->output],
1069 						full_postfix);
1070 			break;
1071 		case IIO_SHARED_BY_TYPE:
1072 			name = kasprintf(GFP_KERNEL, "%s_%s-%s_%s",
1073 					    iio_direction[chan->output],
1074 					    iio_chan_type_name_spec[chan->type],
1075 					    iio_chan_type_name_spec[chan->type],
1076 					    full_postfix);
1077 			break;
1078 		case IIO_SEPARATE:
1079 			if (!chan->indexed) {
1080 				WARN(1, "Differential channels must be indexed\n");
1081 				ret = -EINVAL;
1082 				goto error_free_full_postfix;
1083 			}
1084 			name = kasprintf(GFP_KERNEL,
1085 					    "%s_%s%d-%s%d_%s",
1086 					    iio_direction[chan->output],
1087 					    iio_chan_type_name_spec[chan->type],
1088 					    chan->channel,
1089 					    iio_chan_type_name_spec[chan->type],
1090 					    chan->channel2,
1091 					    full_postfix);
1092 			break;
1093 		}
1094 	} else { /* Single ended */
1095 		switch (shared_by) {
1096 		case IIO_SHARED_BY_ALL:
1097 			name = kasprintf(GFP_KERNEL, "%s", full_postfix);
1098 			break;
1099 		case IIO_SHARED_BY_DIR:
1100 			name = kasprintf(GFP_KERNEL, "%s_%s",
1101 						iio_direction[chan->output],
1102 						full_postfix);
1103 			break;
1104 		case IIO_SHARED_BY_TYPE:
1105 			name = kasprintf(GFP_KERNEL, "%s_%s_%s",
1106 					    iio_direction[chan->output],
1107 					    iio_chan_type_name_spec[chan->type],
1108 					    full_postfix);
1109 			break;
1110 
1111 		case IIO_SEPARATE:
1112 			if (chan->indexed)
1113 				name = kasprintf(GFP_KERNEL, "%s_%s%d_%s",
1114 						    iio_direction[chan->output],
1115 						    iio_chan_type_name_spec[chan->type],
1116 						    chan->channel,
1117 						    full_postfix);
1118 			else
1119 				name = kasprintf(GFP_KERNEL, "%s_%s_%s",
1120 						    iio_direction[chan->output],
1121 						    iio_chan_type_name_spec[chan->type],
1122 						    full_postfix);
1123 			break;
1124 		}
1125 	}
1126 	if (name == NULL) {
1127 		ret = -ENOMEM;
1128 		goto error_free_full_postfix;
1129 	}
1130 	dev_attr->attr.name = name;
1131 
1132 	if (readfunc) {
1133 		dev_attr->attr.mode |= 0444;
1134 		dev_attr->show = readfunc;
1135 	}
1136 
1137 	if (writefunc) {
1138 		dev_attr->attr.mode |= 0200;
1139 		dev_attr->store = writefunc;
1140 	}
1141 
1142 error_free_full_postfix:
1143 	kfree(full_postfix);
1144 
1145 	return ret;
1146 }
1147 
1148 static void __iio_device_attr_deinit(struct device_attribute *dev_attr)
1149 {
1150 	kfree(dev_attr->attr.name);
1151 }
1152 
1153 int __iio_add_chan_devattr(const char *postfix,
1154 			   struct iio_chan_spec const *chan,
1155 			   ssize_t (*readfunc)(struct device *dev,
1156 					       struct device_attribute *attr,
1157 					       char *buf),
1158 			   ssize_t (*writefunc)(struct device *dev,
1159 						struct device_attribute *attr,
1160 						const char *buf,
1161 						size_t len),
1162 			   u64 mask,
1163 			   enum iio_shared_by shared_by,
1164 			   struct device *dev,
1165 			   struct iio_buffer *buffer,
1166 			   struct list_head *attr_list)
1167 {
1168 	int ret;
1169 	struct iio_dev_attr *iio_attr, *t;
1170 
1171 	iio_attr = kzalloc(sizeof(*iio_attr), GFP_KERNEL);
1172 	if (iio_attr == NULL)
1173 		return -ENOMEM;
1174 	ret = __iio_device_attr_init(&iio_attr->dev_attr,
1175 				     postfix, chan,
1176 				     readfunc, writefunc, shared_by);
1177 	if (ret)
1178 		goto error_iio_dev_attr_free;
1179 	iio_attr->c = chan;
1180 	iio_attr->address = mask;
1181 	iio_attr->buffer = buffer;
1182 	list_for_each_entry(t, attr_list, l)
1183 		if (strcmp(t->dev_attr.attr.name,
1184 			   iio_attr->dev_attr.attr.name) == 0) {
1185 			if (shared_by == IIO_SEPARATE)
1186 				dev_err(dev, "tried to double register : %s\n",
1187 					t->dev_attr.attr.name);
1188 			ret = -EBUSY;
1189 			goto error_device_attr_deinit;
1190 		}
1191 	list_add(&iio_attr->l, attr_list);
1192 
1193 	return 0;
1194 
1195 error_device_attr_deinit:
1196 	__iio_device_attr_deinit(&iio_attr->dev_attr);
1197 error_iio_dev_attr_free:
1198 	kfree(iio_attr);
1199 	return ret;
1200 }
1201 
1202 static int iio_device_add_channel_label(struct iio_dev *indio_dev,
1203 					 struct iio_chan_spec const *chan)
1204 {
1205 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1206 	int ret;
1207 
1208 	if (!indio_dev->info->read_label && !chan->extend_name)
1209 		return 0;
1210 
1211 	ret = __iio_add_chan_devattr("label",
1212 				     chan,
1213 				     &iio_read_channel_label,
1214 				     NULL,
1215 				     0,
1216 				     IIO_SEPARATE,
1217 				     &indio_dev->dev,
1218 				     NULL,
1219 				     &iio_dev_opaque->channel_attr_list);
1220 	if (ret < 0)
1221 		return ret;
1222 
1223 	return 1;
1224 }
1225 
1226 static int iio_device_add_info_mask_type(struct iio_dev *indio_dev,
1227 					 struct iio_chan_spec const *chan,
1228 					 enum iio_shared_by shared_by,
1229 					 const long *infomask)
1230 {
1231 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1232 	int i, ret, attrcount = 0;
1233 
1234 	for_each_set_bit(i, infomask, sizeof(*infomask)*8) {
1235 		if (i >= ARRAY_SIZE(iio_chan_info_postfix))
1236 			return -EINVAL;
1237 		ret = __iio_add_chan_devattr(iio_chan_info_postfix[i],
1238 					     chan,
1239 					     &iio_read_channel_info,
1240 					     &iio_write_channel_info,
1241 					     i,
1242 					     shared_by,
1243 					     &indio_dev->dev,
1244 					     NULL,
1245 					     &iio_dev_opaque->channel_attr_list);
1246 		if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
1247 			continue;
1248 		else if (ret < 0)
1249 			return ret;
1250 		attrcount++;
1251 	}
1252 
1253 	return attrcount;
1254 }
1255 
1256 static int iio_device_add_info_mask_type_avail(struct iio_dev *indio_dev,
1257 					       struct iio_chan_spec const *chan,
1258 					       enum iio_shared_by shared_by,
1259 					       const long *infomask)
1260 {
1261 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1262 	int i, ret, attrcount = 0;
1263 	char *avail_postfix;
1264 
1265 	for_each_set_bit(i, infomask, sizeof(*infomask) * 8) {
1266 		if (i >= ARRAY_SIZE(iio_chan_info_postfix))
1267 			return -EINVAL;
1268 		avail_postfix = kasprintf(GFP_KERNEL,
1269 					  "%s_available",
1270 					  iio_chan_info_postfix[i]);
1271 		if (!avail_postfix)
1272 			return -ENOMEM;
1273 
1274 		ret = __iio_add_chan_devattr(avail_postfix,
1275 					     chan,
1276 					     &iio_read_channel_info_avail,
1277 					     NULL,
1278 					     i,
1279 					     shared_by,
1280 					     &indio_dev->dev,
1281 					     NULL,
1282 					     &iio_dev_opaque->channel_attr_list);
1283 		kfree(avail_postfix);
1284 		if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
1285 			continue;
1286 		else if (ret < 0)
1287 			return ret;
1288 		attrcount++;
1289 	}
1290 
1291 	return attrcount;
1292 }
1293 
1294 static int iio_device_add_channel_sysfs(struct iio_dev *indio_dev,
1295 					struct iio_chan_spec const *chan)
1296 {
1297 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1298 	int ret, attrcount = 0;
1299 	const struct iio_chan_spec_ext_info *ext_info;
1300 
1301 	if (chan->channel < 0)
1302 		return 0;
1303 	ret = iio_device_add_info_mask_type(indio_dev, chan,
1304 					    IIO_SEPARATE,
1305 					    &chan->info_mask_separate);
1306 	if (ret < 0)
1307 		return ret;
1308 	attrcount += ret;
1309 
1310 	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1311 						  IIO_SEPARATE,
1312 						  &chan->info_mask_separate_available);
1313 	if (ret < 0)
1314 		return ret;
1315 	attrcount += ret;
1316 
1317 	ret = iio_device_add_info_mask_type(indio_dev, chan,
1318 					    IIO_SHARED_BY_TYPE,
1319 					    &chan->info_mask_shared_by_type);
1320 	if (ret < 0)
1321 		return ret;
1322 	attrcount += ret;
1323 
1324 	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1325 						  IIO_SHARED_BY_TYPE,
1326 						  &chan->info_mask_shared_by_type_available);
1327 	if (ret < 0)
1328 		return ret;
1329 	attrcount += ret;
1330 
1331 	ret = iio_device_add_info_mask_type(indio_dev, chan,
1332 					    IIO_SHARED_BY_DIR,
1333 					    &chan->info_mask_shared_by_dir);
1334 	if (ret < 0)
1335 		return ret;
1336 	attrcount += ret;
1337 
1338 	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1339 						  IIO_SHARED_BY_DIR,
1340 						  &chan->info_mask_shared_by_dir_available);
1341 	if (ret < 0)
1342 		return ret;
1343 	attrcount += ret;
1344 
1345 	ret = iio_device_add_info_mask_type(indio_dev, chan,
1346 					    IIO_SHARED_BY_ALL,
1347 					    &chan->info_mask_shared_by_all);
1348 	if (ret < 0)
1349 		return ret;
1350 	attrcount += ret;
1351 
1352 	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1353 						  IIO_SHARED_BY_ALL,
1354 						  &chan->info_mask_shared_by_all_available);
1355 	if (ret < 0)
1356 		return ret;
1357 	attrcount += ret;
1358 
1359 	ret = iio_device_add_channel_label(indio_dev, chan);
1360 	if (ret < 0)
1361 		return ret;
1362 	attrcount += ret;
1363 
1364 	if (chan->ext_info) {
1365 		unsigned int i = 0;
1366 
1367 		for (ext_info = chan->ext_info; ext_info->name; ext_info++) {
1368 			ret = __iio_add_chan_devattr(ext_info->name,
1369 					chan,
1370 					ext_info->read ?
1371 					    &iio_read_channel_ext_info : NULL,
1372 					ext_info->write ?
1373 					    &iio_write_channel_ext_info : NULL,
1374 					i,
1375 					ext_info->shared,
1376 					&indio_dev->dev,
1377 					NULL,
1378 					&iio_dev_opaque->channel_attr_list);
1379 			i++;
1380 			if (ret == -EBUSY && ext_info->shared)
1381 				continue;
1382 
1383 			if (ret)
1384 				return ret;
1385 
1386 			attrcount++;
1387 		}
1388 	}
1389 
1390 	return attrcount;
1391 }
1392 
1393 /**
1394  * iio_free_chan_devattr_list() - Free a list of IIO device attributes
1395  * @attr_list: List of IIO device attributes
1396  *
1397  * This function frees the memory allocated for each of the IIO device
1398  * attributes in the list.
1399  */
1400 void iio_free_chan_devattr_list(struct list_head *attr_list)
1401 {
1402 	struct iio_dev_attr *p, *n;
1403 
1404 	list_for_each_entry_safe(p, n, attr_list, l) {
1405 		kfree_const(p->dev_attr.attr.name);
1406 		list_del(&p->l);
1407 		kfree(p);
1408 	}
1409 }
1410 
1411 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
1412 			 char *buf)
1413 {
1414 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1415 
1416 	return sysfs_emit(buf, "%s\n", indio_dev->name);
1417 }
1418 
1419 static DEVICE_ATTR_RO(name);
1420 
1421 static ssize_t label_show(struct device *dev, struct device_attribute *attr,
1422 			  char *buf)
1423 {
1424 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1425 
1426 	return sysfs_emit(buf, "%s\n", indio_dev->label);
1427 }
1428 
1429 static DEVICE_ATTR_RO(label);
1430 
1431 static ssize_t current_timestamp_clock_show(struct device *dev,
1432 					    struct device_attribute *attr,
1433 					    char *buf)
1434 {
1435 	const struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1436 	const clockid_t clk = iio_device_get_clock(indio_dev);
1437 	const char *name;
1438 	ssize_t sz;
1439 
1440 	switch (clk) {
1441 	case CLOCK_REALTIME:
1442 		name = "realtime\n";
1443 		sz = sizeof("realtime\n");
1444 		break;
1445 	case CLOCK_MONOTONIC:
1446 		name = "monotonic\n";
1447 		sz = sizeof("monotonic\n");
1448 		break;
1449 	case CLOCK_MONOTONIC_RAW:
1450 		name = "monotonic_raw\n";
1451 		sz = sizeof("monotonic_raw\n");
1452 		break;
1453 	case CLOCK_REALTIME_COARSE:
1454 		name = "realtime_coarse\n";
1455 		sz = sizeof("realtime_coarse\n");
1456 		break;
1457 	case CLOCK_MONOTONIC_COARSE:
1458 		name = "monotonic_coarse\n";
1459 		sz = sizeof("monotonic_coarse\n");
1460 		break;
1461 	case CLOCK_BOOTTIME:
1462 		name = "boottime\n";
1463 		sz = sizeof("boottime\n");
1464 		break;
1465 	case CLOCK_TAI:
1466 		name = "tai\n";
1467 		sz = sizeof("tai\n");
1468 		break;
1469 	default:
1470 		BUG();
1471 	}
1472 
1473 	memcpy(buf, name, sz);
1474 	return sz;
1475 }
1476 
1477 static ssize_t current_timestamp_clock_store(struct device *dev,
1478 					     struct device_attribute *attr,
1479 					     const char *buf, size_t len)
1480 {
1481 	clockid_t clk;
1482 	int ret;
1483 
1484 	if (sysfs_streq(buf, "realtime"))
1485 		clk = CLOCK_REALTIME;
1486 	else if (sysfs_streq(buf, "monotonic"))
1487 		clk = CLOCK_MONOTONIC;
1488 	else if (sysfs_streq(buf, "monotonic_raw"))
1489 		clk = CLOCK_MONOTONIC_RAW;
1490 	else if (sysfs_streq(buf, "realtime_coarse"))
1491 		clk = CLOCK_REALTIME_COARSE;
1492 	else if (sysfs_streq(buf, "monotonic_coarse"))
1493 		clk = CLOCK_MONOTONIC_COARSE;
1494 	else if (sysfs_streq(buf, "boottime"))
1495 		clk = CLOCK_BOOTTIME;
1496 	else if (sysfs_streq(buf, "tai"))
1497 		clk = CLOCK_TAI;
1498 	else
1499 		return -EINVAL;
1500 
1501 	ret = iio_device_set_clock(dev_to_iio_dev(dev), clk);
1502 	if (ret)
1503 		return ret;
1504 
1505 	return len;
1506 }
1507 
1508 int iio_device_register_sysfs_group(struct iio_dev *indio_dev,
1509 				    const struct attribute_group *group)
1510 {
1511 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1512 	const struct attribute_group **new, **old = iio_dev_opaque->groups;
1513 	unsigned int cnt = iio_dev_opaque->groupcounter;
1514 
1515 	new = krealloc(old, sizeof(*new) * (cnt + 2), GFP_KERNEL);
1516 	if (!new)
1517 		return -ENOMEM;
1518 
1519 	new[iio_dev_opaque->groupcounter++] = group;
1520 	new[iio_dev_opaque->groupcounter] = NULL;
1521 
1522 	iio_dev_opaque->groups = new;
1523 
1524 	return 0;
1525 }
1526 
1527 static DEVICE_ATTR_RW(current_timestamp_clock);
1528 
1529 static int iio_device_register_sysfs(struct iio_dev *indio_dev)
1530 {
1531 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1532 	int i, ret = 0, attrcount, attrn, attrcount_orig = 0;
1533 	struct iio_dev_attr *p;
1534 	struct attribute **attr, *clk = NULL;
1535 
1536 	/* First count elements in any existing group */
1537 	if (indio_dev->info->attrs) {
1538 		attr = indio_dev->info->attrs->attrs;
1539 		while (*attr++ != NULL)
1540 			attrcount_orig++;
1541 	}
1542 	attrcount = attrcount_orig;
1543 	/*
1544 	 * New channel registration method - relies on the fact a group does
1545 	 * not need to be initialized if its name is NULL.
1546 	 */
1547 	if (indio_dev->channels)
1548 		for (i = 0; i < indio_dev->num_channels; i++) {
1549 			const struct iio_chan_spec *chan =
1550 				&indio_dev->channels[i];
1551 
1552 			if (chan->type == IIO_TIMESTAMP)
1553 				clk = &dev_attr_current_timestamp_clock.attr;
1554 
1555 			ret = iio_device_add_channel_sysfs(indio_dev, chan);
1556 			if (ret < 0)
1557 				goto error_clear_attrs;
1558 			attrcount += ret;
1559 		}
1560 
1561 	if (iio_dev_opaque->event_interface)
1562 		clk = &dev_attr_current_timestamp_clock.attr;
1563 
1564 	if (indio_dev->name)
1565 		attrcount++;
1566 	if (indio_dev->label)
1567 		attrcount++;
1568 	if (clk)
1569 		attrcount++;
1570 
1571 	iio_dev_opaque->chan_attr_group.attrs =
1572 		kcalloc(attrcount + 1,
1573 			sizeof(iio_dev_opaque->chan_attr_group.attrs[0]),
1574 			GFP_KERNEL);
1575 	if (iio_dev_opaque->chan_attr_group.attrs == NULL) {
1576 		ret = -ENOMEM;
1577 		goto error_clear_attrs;
1578 	}
1579 	/* Copy across original attributes, and point to original binary attributes */
1580 	if (indio_dev->info->attrs) {
1581 		memcpy(iio_dev_opaque->chan_attr_group.attrs,
1582 		       indio_dev->info->attrs->attrs,
1583 		       sizeof(iio_dev_opaque->chan_attr_group.attrs[0])
1584 		       *attrcount_orig);
1585 		iio_dev_opaque->chan_attr_group.is_visible =
1586 			indio_dev->info->attrs->is_visible;
1587 		iio_dev_opaque->chan_attr_group.bin_attrs =
1588 			indio_dev->info->attrs->bin_attrs;
1589 	}
1590 	attrn = attrcount_orig;
1591 	/* Add all elements from the list. */
1592 	list_for_each_entry(p, &iio_dev_opaque->channel_attr_list, l)
1593 		iio_dev_opaque->chan_attr_group.attrs[attrn++] = &p->dev_attr.attr;
1594 	if (indio_dev->name)
1595 		iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_name.attr;
1596 	if (indio_dev->label)
1597 		iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_label.attr;
1598 	if (clk)
1599 		iio_dev_opaque->chan_attr_group.attrs[attrn++] = clk;
1600 
1601 	ret = iio_device_register_sysfs_group(indio_dev,
1602 					      &iio_dev_opaque->chan_attr_group);
1603 	if (ret)
1604 		goto error_clear_attrs;
1605 
1606 	return 0;
1607 
1608 error_clear_attrs:
1609 	iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
1610 
1611 	return ret;
1612 }
1613 
1614 static void iio_device_unregister_sysfs(struct iio_dev *indio_dev)
1615 {
1616 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1617 
1618 	iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
1619 	kfree(iio_dev_opaque->chan_attr_group.attrs);
1620 	iio_dev_opaque->chan_attr_group.attrs = NULL;
1621 	kfree(iio_dev_opaque->groups);
1622 	iio_dev_opaque->groups = NULL;
1623 }
1624 
1625 static void iio_dev_release(struct device *device)
1626 {
1627 	struct iio_dev *indio_dev = dev_to_iio_dev(device);
1628 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1629 
1630 	if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
1631 		iio_device_unregister_trigger_consumer(indio_dev);
1632 	iio_device_unregister_eventset(indio_dev);
1633 	iio_device_unregister_sysfs(indio_dev);
1634 
1635 	iio_device_detach_buffers(indio_dev);
1636 
1637 	lockdep_unregister_key(&iio_dev_opaque->mlock_key);
1638 
1639 	ida_free(&iio_ida, iio_dev_opaque->id);
1640 	kfree(iio_dev_opaque);
1641 }
1642 
1643 const struct device_type iio_device_type = {
1644 	.name = "iio_device",
1645 	.release = iio_dev_release,
1646 };
1647 
1648 /**
1649  * iio_device_alloc() - allocate an iio_dev from a driver
1650  * @parent:		Parent device.
1651  * @sizeof_priv:	Space to allocate for private structure.
1652  **/
1653 struct iio_dev *iio_device_alloc(struct device *parent, int sizeof_priv)
1654 {
1655 	struct iio_dev_opaque *iio_dev_opaque;
1656 	struct iio_dev *indio_dev;
1657 	size_t alloc_size;
1658 
1659 	alloc_size = sizeof(struct iio_dev_opaque);
1660 	if (sizeof_priv) {
1661 		alloc_size = ALIGN(alloc_size, IIO_DMA_MINALIGN);
1662 		alloc_size += sizeof_priv;
1663 	}
1664 
1665 	iio_dev_opaque = kzalloc(alloc_size, GFP_KERNEL);
1666 	if (!iio_dev_opaque)
1667 		return NULL;
1668 
1669 	indio_dev = &iio_dev_opaque->indio_dev;
1670 	indio_dev->priv = (char *)iio_dev_opaque +
1671 		ALIGN(sizeof(struct iio_dev_opaque), IIO_DMA_MINALIGN);
1672 
1673 	indio_dev->dev.parent = parent;
1674 	indio_dev->dev.type = &iio_device_type;
1675 	indio_dev->dev.bus = &iio_bus_type;
1676 	device_initialize(&indio_dev->dev);
1677 	mutex_init(&iio_dev_opaque->mlock);
1678 	mutex_init(&iio_dev_opaque->info_exist_lock);
1679 	INIT_LIST_HEAD(&iio_dev_opaque->channel_attr_list);
1680 
1681 	iio_dev_opaque->id = ida_alloc(&iio_ida, GFP_KERNEL);
1682 	if (iio_dev_opaque->id < 0) {
1683 		/* cannot use a dev_err as the name isn't available */
1684 		pr_err("failed to get device id\n");
1685 		kfree(iio_dev_opaque);
1686 		return NULL;
1687 	}
1688 
1689 	if (dev_set_name(&indio_dev->dev, "iio:device%d", iio_dev_opaque->id)) {
1690 		ida_free(&iio_ida, iio_dev_opaque->id);
1691 		kfree(iio_dev_opaque);
1692 		return NULL;
1693 	}
1694 
1695 	INIT_LIST_HEAD(&iio_dev_opaque->buffer_list);
1696 	INIT_LIST_HEAD(&iio_dev_opaque->ioctl_handlers);
1697 
1698 	lockdep_register_key(&iio_dev_opaque->mlock_key);
1699 	lockdep_set_class(&iio_dev_opaque->mlock, &iio_dev_opaque->mlock_key);
1700 
1701 	return indio_dev;
1702 }
1703 EXPORT_SYMBOL(iio_device_alloc);
1704 
1705 /**
1706  * iio_device_free() - free an iio_dev from a driver
1707  * @dev:		the iio_dev associated with the device
1708  **/
1709 void iio_device_free(struct iio_dev *dev)
1710 {
1711 	if (dev)
1712 		put_device(&dev->dev);
1713 }
1714 EXPORT_SYMBOL(iio_device_free);
1715 
1716 static void devm_iio_device_release(void *iio_dev)
1717 {
1718 	iio_device_free(iio_dev);
1719 }
1720 
1721 /**
1722  * devm_iio_device_alloc - Resource-managed iio_device_alloc()
1723  * @parent:		Device to allocate iio_dev for, and parent for this IIO device
1724  * @sizeof_priv:	Space to allocate for private structure.
1725  *
1726  * Managed iio_device_alloc. iio_dev allocated with this function is
1727  * automatically freed on driver detach.
1728  *
1729  * RETURNS:
1730  * Pointer to allocated iio_dev on success, NULL on failure.
1731  */
1732 struct iio_dev *devm_iio_device_alloc(struct device *parent, int sizeof_priv)
1733 {
1734 	struct iio_dev *iio_dev;
1735 	int ret;
1736 
1737 	iio_dev = iio_device_alloc(parent, sizeof_priv);
1738 	if (!iio_dev)
1739 		return NULL;
1740 
1741 	ret = devm_add_action_or_reset(parent, devm_iio_device_release,
1742 				       iio_dev);
1743 	if (ret)
1744 		return NULL;
1745 
1746 	return iio_dev;
1747 }
1748 EXPORT_SYMBOL_GPL(devm_iio_device_alloc);
1749 
1750 /**
1751  * iio_chrdev_open() - chrdev file open for buffer access and ioctls
1752  * @inode:	Inode structure for identifying the device in the file system
1753  * @filp:	File structure for iio device used to keep and later access
1754  *		private data
1755  *
1756  * Return: 0 on success or -EBUSY if the device is already opened
1757  **/
1758 static int iio_chrdev_open(struct inode *inode, struct file *filp)
1759 {
1760 	struct iio_dev_opaque *iio_dev_opaque =
1761 		container_of(inode->i_cdev, struct iio_dev_opaque, chrdev);
1762 	struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev;
1763 	struct iio_dev_buffer_pair *ib;
1764 
1765 	if (test_and_set_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags))
1766 		return -EBUSY;
1767 
1768 	iio_device_get(indio_dev);
1769 
1770 	ib = kmalloc(sizeof(*ib), GFP_KERNEL);
1771 	if (!ib) {
1772 		iio_device_put(indio_dev);
1773 		clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags);
1774 		return -ENOMEM;
1775 	}
1776 
1777 	ib->indio_dev = indio_dev;
1778 	ib->buffer = indio_dev->buffer;
1779 
1780 	filp->private_data = ib;
1781 
1782 	return 0;
1783 }
1784 
1785 /**
1786  * iio_chrdev_release() - chrdev file close buffer access and ioctls
1787  * @inode:	Inode structure pointer for the char device
1788  * @filp:	File structure pointer for the char device
1789  *
1790  * Return: 0 for successful release
1791  */
1792 static int iio_chrdev_release(struct inode *inode, struct file *filp)
1793 {
1794 	struct iio_dev_buffer_pair *ib = filp->private_data;
1795 	struct iio_dev_opaque *iio_dev_opaque =
1796 		container_of(inode->i_cdev, struct iio_dev_opaque, chrdev);
1797 	struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev;
1798 
1799 	kfree(ib);
1800 	clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags);
1801 	iio_device_put(indio_dev);
1802 
1803 	return 0;
1804 }
1805 
1806 void iio_device_ioctl_handler_register(struct iio_dev *indio_dev,
1807 				       struct iio_ioctl_handler *h)
1808 {
1809 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1810 
1811 	list_add_tail(&h->entry, &iio_dev_opaque->ioctl_handlers);
1812 }
1813 
1814 void iio_device_ioctl_handler_unregister(struct iio_ioctl_handler *h)
1815 {
1816 	list_del(&h->entry);
1817 }
1818 
1819 static long iio_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1820 {
1821 	struct iio_dev_buffer_pair *ib = filp->private_data;
1822 	struct iio_dev *indio_dev = ib->indio_dev;
1823 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1824 	struct iio_ioctl_handler *h;
1825 	int ret = -ENODEV;
1826 
1827 	mutex_lock(&iio_dev_opaque->info_exist_lock);
1828 
1829 	/**
1830 	 * The NULL check here is required to prevent crashing when a device
1831 	 * is being removed while userspace would still have open file handles
1832 	 * to try to access this device.
1833 	 */
1834 	if (!indio_dev->info)
1835 		goto out_unlock;
1836 
1837 	list_for_each_entry(h, &iio_dev_opaque->ioctl_handlers, entry) {
1838 		ret = h->ioctl(indio_dev, filp, cmd, arg);
1839 		if (ret != IIO_IOCTL_UNHANDLED)
1840 			break;
1841 	}
1842 
1843 	if (ret == IIO_IOCTL_UNHANDLED)
1844 		ret = -ENODEV;
1845 
1846 out_unlock:
1847 	mutex_unlock(&iio_dev_opaque->info_exist_lock);
1848 
1849 	return ret;
1850 }
1851 
1852 static const struct file_operations iio_buffer_fileops = {
1853 	.owner = THIS_MODULE,
1854 	.llseek = noop_llseek,
1855 	.read = iio_buffer_read_outer_addr,
1856 	.write = iio_buffer_write_outer_addr,
1857 	.poll = iio_buffer_poll_addr,
1858 	.unlocked_ioctl = iio_ioctl,
1859 	.compat_ioctl = compat_ptr_ioctl,
1860 	.open = iio_chrdev_open,
1861 	.release = iio_chrdev_release,
1862 };
1863 
1864 static const struct file_operations iio_event_fileops = {
1865 	.owner = THIS_MODULE,
1866 	.llseek = noop_llseek,
1867 	.unlocked_ioctl = iio_ioctl,
1868 	.compat_ioctl = compat_ptr_ioctl,
1869 	.open = iio_chrdev_open,
1870 	.release = iio_chrdev_release,
1871 };
1872 
1873 static int iio_check_unique_scan_index(struct iio_dev *indio_dev)
1874 {
1875 	int i, j;
1876 	const struct iio_chan_spec *channels = indio_dev->channels;
1877 
1878 	if (!(indio_dev->modes & INDIO_ALL_BUFFER_MODES))
1879 		return 0;
1880 
1881 	for (i = 0; i < indio_dev->num_channels - 1; i++) {
1882 		if (channels[i].scan_index < 0)
1883 			continue;
1884 		for (j = i + 1; j < indio_dev->num_channels; j++)
1885 			if (channels[i].scan_index == channels[j].scan_index) {
1886 				dev_err(&indio_dev->dev,
1887 					"Duplicate scan index %d\n",
1888 					channels[i].scan_index);
1889 				return -EINVAL;
1890 			}
1891 	}
1892 
1893 	return 0;
1894 }
1895 
1896 static int iio_check_extended_name(const struct iio_dev *indio_dev)
1897 {
1898 	unsigned int i;
1899 
1900 	if (!indio_dev->info->read_label)
1901 		return 0;
1902 
1903 	for (i = 0; i < indio_dev->num_channels; i++) {
1904 		if (indio_dev->channels[i].extend_name) {
1905 			dev_err(&indio_dev->dev,
1906 				"Cannot use labels and extend_name at the same time\n");
1907 			return -EINVAL;
1908 		}
1909 	}
1910 
1911 	return 0;
1912 }
1913 
1914 static const struct iio_buffer_setup_ops noop_ring_setup_ops;
1915 
1916 int __iio_device_register(struct iio_dev *indio_dev, struct module *this_mod)
1917 {
1918 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1919 	struct fwnode_handle *fwnode;
1920 	int ret;
1921 
1922 	if (!indio_dev->info)
1923 		return -EINVAL;
1924 
1925 	iio_dev_opaque->driver_module = this_mod;
1926 
1927 	/* If the calling driver did not initialize firmware node, do it here */
1928 	if (dev_fwnode(&indio_dev->dev))
1929 		fwnode = dev_fwnode(&indio_dev->dev);
1930 	else
1931 		fwnode = dev_fwnode(indio_dev->dev.parent);
1932 	device_set_node(&indio_dev->dev, fwnode);
1933 
1934 	fwnode_property_read_string(fwnode, "label", &indio_dev->label);
1935 
1936 	ret = iio_check_unique_scan_index(indio_dev);
1937 	if (ret < 0)
1938 		return ret;
1939 
1940 	ret = iio_check_extended_name(indio_dev);
1941 	if (ret < 0)
1942 		return ret;
1943 
1944 	iio_device_register_debugfs(indio_dev);
1945 
1946 	ret = iio_buffers_alloc_sysfs_and_mask(indio_dev);
1947 	if (ret) {
1948 		dev_err(indio_dev->dev.parent,
1949 			"Failed to create buffer sysfs interfaces\n");
1950 		goto error_unreg_debugfs;
1951 	}
1952 
1953 	ret = iio_device_register_sysfs(indio_dev);
1954 	if (ret) {
1955 		dev_err(indio_dev->dev.parent,
1956 			"Failed to register sysfs interfaces\n");
1957 		goto error_buffer_free_sysfs;
1958 	}
1959 	ret = iio_device_register_eventset(indio_dev);
1960 	if (ret) {
1961 		dev_err(indio_dev->dev.parent,
1962 			"Failed to register event set\n");
1963 		goto error_free_sysfs;
1964 	}
1965 	if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
1966 		iio_device_register_trigger_consumer(indio_dev);
1967 
1968 	if ((indio_dev->modes & INDIO_ALL_BUFFER_MODES) &&
1969 		indio_dev->setup_ops == NULL)
1970 		indio_dev->setup_ops = &noop_ring_setup_ops;
1971 
1972 	if (iio_dev_opaque->attached_buffers_cnt)
1973 		cdev_init(&iio_dev_opaque->chrdev, &iio_buffer_fileops);
1974 	else if (iio_dev_opaque->event_interface)
1975 		cdev_init(&iio_dev_opaque->chrdev, &iio_event_fileops);
1976 
1977 	if (iio_dev_opaque->attached_buffers_cnt || iio_dev_opaque->event_interface) {
1978 		indio_dev->dev.devt = MKDEV(MAJOR(iio_devt), iio_dev_opaque->id);
1979 		iio_dev_opaque->chrdev.owner = this_mod;
1980 	}
1981 
1982 	/* assign device groups now; they should be all registered now */
1983 	indio_dev->dev.groups = iio_dev_opaque->groups;
1984 
1985 	ret = cdev_device_add(&iio_dev_opaque->chrdev, &indio_dev->dev);
1986 	if (ret < 0)
1987 		goto error_unreg_eventset;
1988 
1989 	return 0;
1990 
1991 error_unreg_eventset:
1992 	iio_device_unregister_eventset(indio_dev);
1993 error_free_sysfs:
1994 	iio_device_unregister_sysfs(indio_dev);
1995 error_buffer_free_sysfs:
1996 	iio_buffers_free_sysfs_and_mask(indio_dev);
1997 error_unreg_debugfs:
1998 	iio_device_unregister_debugfs(indio_dev);
1999 	return ret;
2000 }
2001 EXPORT_SYMBOL(__iio_device_register);
2002 
2003 /**
2004  * iio_device_unregister() - unregister a device from the IIO subsystem
2005  * @indio_dev:		Device structure representing the device.
2006  **/
2007 void iio_device_unregister(struct iio_dev *indio_dev)
2008 {
2009 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2010 
2011 	cdev_device_del(&iio_dev_opaque->chrdev, &indio_dev->dev);
2012 
2013 	mutex_lock(&iio_dev_opaque->info_exist_lock);
2014 
2015 	iio_device_unregister_debugfs(indio_dev);
2016 
2017 	iio_disable_all_buffers(indio_dev);
2018 
2019 	indio_dev->info = NULL;
2020 
2021 	iio_device_wakeup_eventset(indio_dev);
2022 	iio_buffer_wakeup_poll(indio_dev);
2023 
2024 	mutex_unlock(&iio_dev_opaque->info_exist_lock);
2025 
2026 	iio_buffers_free_sysfs_and_mask(indio_dev);
2027 }
2028 EXPORT_SYMBOL(iio_device_unregister);
2029 
2030 static void devm_iio_device_unreg(void *indio_dev)
2031 {
2032 	iio_device_unregister(indio_dev);
2033 }
2034 
2035 int __devm_iio_device_register(struct device *dev, struct iio_dev *indio_dev,
2036 			       struct module *this_mod)
2037 {
2038 	int ret;
2039 
2040 	ret = __iio_device_register(indio_dev, this_mod);
2041 	if (ret)
2042 		return ret;
2043 
2044 	return devm_add_action_or_reset(dev, devm_iio_device_unreg, indio_dev);
2045 }
2046 EXPORT_SYMBOL_GPL(__devm_iio_device_register);
2047 
2048 /**
2049  * iio_device_claim_direct_mode - Keep device in direct mode
2050  * @indio_dev:	the iio_dev associated with the device
2051  *
2052  * If the device is in direct mode it is guaranteed to stay
2053  * that way until iio_device_release_direct_mode() is called.
2054  *
2055  * Use with iio_device_release_direct_mode()
2056  *
2057  * Returns: 0 on success, -EBUSY on failure
2058  */
2059 int iio_device_claim_direct_mode(struct iio_dev *indio_dev)
2060 {
2061 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2062 
2063 	mutex_lock(&iio_dev_opaque->mlock);
2064 
2065 	if (iio_buffer_enabled(indio_dev)) {
2066 		mutex_unlock(&iio_dev_opaque->mlock);
2067 		return -EBUSY;
2068 	}
2069 	return 0;
2070 }
2071 EXPORT_SYMBOL_GPL(iio_device_claim_direct_mode);
2072 
2073 /**
2074  * iio_device_release_direct_mode - releases claim on direct mode
2075  * @indio_dev:	the iio_dev associated with the device
2076  *
2077  * Release the claim. Device is no longer guaranteed to stay
2078  * in direct mode.
2079  *
2080  * Use with iio_device_claim_direct_mode()
2081  */
2082 void iio_device_release_direct_mode(struct iio_dev *indio_dev)
2083 {
2084 	mutex_unlock(&to_iio_dev_opaque(indio_dev)->mlock);
2085 }
2086 EXPORT_SYMBOL_GPL(iio_device_release_direct_mode);
2087 
2088 /**
2089  * iio_device_claim_buffer_mode - Keep device in buffer mode
2090  * @indio_dev:	the iio_dev associated with the device
2091  *
2092  * If the device is in buffer mode it is guaranteed to stay
2093  * that way until iio_device_release_buffer_mode() is called.
2094  *
2095  * Use with iio_device_release_buffer_mode().
2096  *
2097  * Returns: 0 on success, -EBUSY on failure.
2098  */
2099 int iio_device_claim_buffer_mode(struct iio_dev *indio_dev)
2100 {
2101 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2102 
2103 	mutex_lock(&iio_dev_opaque->mlock);
2104 
2105 	if (iio_buffer_enabled(indio_dev))
2106 		return 0;
2107 
2108 	mutex_unlock(&iio_dev_opaque->mlock);
2109 	return -EBUSY;
2110 }
2111 EXPORT_SYMBOL_GPL(iio_device_claim_buffer_mode);
2112 
2113 /**
2114  * iio_device_release_buffer_mode - releases claim on buffer mode
2115  * @indio_dev:	the iio_dev associated with the device
2116  *
2117  * Release the claim. Device is no longer guaranteed to stay
2118  * in buffer mode.
2119  *
2120  * Use with iio_device_claim_buffer_mode().
2121  */
2122 void iio_device_release_buffer_mode(struct iio_dev *indio_dev)
2123 {
2124 	mutex_unlock(&to_iio_dev_opaque(indio_dev)->mlock);
2125 }
2126 EXPORT_SYMBOL_GPL(iio_device_release_buffer_mode);
2127 
2128 /**
2129  * iio_device_get_current_mode() - helper function providing read-only access to
2130  *				   the opaque @currentmode variable
2131  * @indio_dev:			   IIO device structure for device
2132  */
2133 int iio_device_get_current_mode(struct iio_dev *indio_dev)
2134 {
2135 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2136 
2137 	return iio_dev_opaque->currentmode;
2138 }
2139 EXPORT_SYMBOL_GPL(iio_device_get_current_mode);
2140 
2141 subsys_initcall(iio_init);
2142 module_exit(iio_exit);
2143 
2144 MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
2145 MODULE_DESCRIPTION("Industrial I/O core");
2146 MODULE_LICENSE("GPL");
2147