1 // SPDX-License-Identifier: GPL-2.0-only 2 /* The industrial I/O core 3 * 4 * Copyright (c) 2008 Jonathan Cameron 5 * 6 * Based on elements of hwmon and input subsystems. 7 */ 8 9 #define pr_fmt(fmt) "iio-core: " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/idr.h> 14 #include <linux/kdev_t.h> 15 #include <linux/err.h> 16 #include <linux/device.h> 17 #include <linux/fs.h> 18 #include <linux/poll.h> 19 #include <linux/property.h> 20 #include <linux/sched.h> 21 #include <linux/wait.h> 22 #include <linux/cdev.h> 23 #include <linux/slab.h> 24 #include <linux/anon_inodes.h> 25 #include <linux/debugfs.h> 26 #include <linux/mutex.h> 27 #include <linux/iio/iio.h> 28 #include <linux/iio/iio-opaque.h> 29 #include "iio_core.h" 30 #include "iio_core_trigger.h" 31 #include <linux/iio/sysfs.h> 32 #include <linux/iio/events.h> 33 #include <linux/iio/buffer.h> 34 #include <linux/iio/buffer_impl.h> 35 36 /* IDA to assign each registered device a unique id */ 37 static DEFINE_IDA(iio_ida); 38 39 static dev_t iio_devt; 40 41 #define IIO_DEV_MAX 256 42 struct bus_type iio_bus_type = { 43 .name = "iio", 44 }; 45 EXPORT_SYMBOL(iio_bus_type); 46 47 static struct dentry *iio_debugfs_dentry; 48 49 static const char * const iio_direction[] = { 50 [0] = "in", 51 [1] = "out", 52 }; 53 54 static const char * const iio_chan_type_name_spec[] = { 55 [IIO_VOLTAGE] = "voltage", 56 [IIO_CURRENT] = "current", 57 [IIO_POWER] = "power", 58 [IIO_ACCEL] = "accel", 59 [IIO_ANGL_VEL] = "anglvel", 60 [IIO_MAGN] = "magn", 61 [IIO_LIGHT] = "illuminance", 62 [IIO_INTENSITY] = "intensity", 63 [IIO_PROXIMITY] = "proximity", 64 [IIO_TEMP] = "temp", 65 [IIO_INCLI] = "incli", 66 [IIO_ROT] = "rot", 67 [IIO_ANGL] = "angl", 68 [IIO_TIMESTAMP] = "timestamp", 69 [IIO_CAPACITANCE] = "capacitance", 70 [IIO_ALTVOLTAGE] = "altvoltage", 71 [IIO_CCT] = "cct", 72 [IIO_PRESSURE] = "pressure", 73 [IIO_HUMIDITYRELATIVE] = "humidityrelative", 74 [IIO_ACTIVITY] = "activity", 75 [IIO_STEPS] = "steps", 76 [IIO_ENERGY] = "energy", 77 [IIO_DISTANCE] = "distance", 78 [IIO_VELOCITY] = "velocity", 79 [IIO_CONCENTRATION] = "concentration", 80 [IIO_RESISTANCE] = "resistance", 81 [IIO_PH] = "ph", 82 [IIO_UVINDEX] = "uvindex", 83 [IIO_ELECTRICALCONDUCTIVITY] = "electricalconductivity", 84 [IIO_COUNT] = "count", 85 [IIO_INDEX] = "index", 86 [IIO_GRAVITY] = "gravity", 87 [IIO_POSITIONRELATIVE] = "positionrelative", 88 [IIO_PHASE] = "phase", 89 [IIO_MASSCONCENTRATION] = "massconcentration", 90 }; 91 92 static const char * const iio_modifier_names[] = { 93 [IIO_MOD_X] = "x", 94 [IIO_MOD_Y] = "y", 95 [IIO_MOD_Z] = "z", 96 [IIO_MOD_X_AND_Y] = "x&y", 97 [IIO_MOD_X_AND_Z] = "x&z", 98 [IIO_MOD_Y_AND_Z] = "y&z", 99 [IIO_MOD_X_AND_Y_AND_Z] = "x&y&z", 100 [IIO_MOD_X_OR_Y] = "x|y", 101 [IIO_MOD_X_OR_Z] = "x|z", 102 [IIO_MOD_Y_OR_Z] = "y|z", 103 [IIO_MOD_X_OR_Y_OR_Z] = "x|y|z", 104 [IIO_MOD_ROOT_SUM_SQUARED_X_Y] = "sqrt(x^2+y^2)", 105 [IIO_MOD_SUM_SQUARED_X_Y_Z] = "x^2+y^2+z^2", 106 [IIO_MOD_LIGHT_BOTH] = "both", 107 [IIO_MOD_LIGHT_IR] = "ir", 108 [IIO_MOD_LIGHT_CLEAR] = "clear", 109 [IIO_MOD_LIGHT_RED] = "red", 110 [IIO_MOD_LIGHT_GREEN] = "green", 111 [IIO_MOD_LIGHT_BLUE] = "blue", 112 [IIO_MOD_LIGHT_UV] = "uv", 113 [IIO_MOD_LIGHT_DUV] = "duv", 114 [IIO_MOD_QUATERNION] = "quaternion", 115 [IIO_MOD_TEMP_AMBIENT] = "ambient", 116 [IIO_MOD_TEMP_OBJECT] = "object", 117 [IIO_MOD_NORTH_MAGN] = "from_north_magnetic", 118 [IIO_MOD_NORTH_TRUE] = "from_north_true", 119 [IIO_MOD_NORTH_MAGN_TILT_COMP] = "from_north_magnetic_tilt_comp", 120 [IIO_MOD_NORTH_TRUE_TILT_COMP] = "from_north_true_tilt_comp", 121 [IIO_MOD_RUNNING] = "running", 122 [IIO_MOD_JOGGING] = "jogging", 123 [IIO_MOD_WALKING] = "walking", 124 [IIO_MOD_STILL] = "still", 125 [IIO_MOD_ROOT_SUM_SQUARED_X_Y_Z] = "sqrt(x^2+y^2+z^2)", 126 [IIO_MOD_I] = "i", 127 [IIO_MOD_Q] = "q", 128 [IIO_MOD_CO2] = "co2", 129 [IIO_MOD_VOC] = "voc", 130 [IIO_MOD_PM1] = "pm1", 131 [IIO_MOD_PM2P5] = "pm2p5", 132 [IIO_MOD_PM4] = "pm4", 133 [IIO_MOD_PM10] = "pm10", 134 [IIO_MOD_ETHANOL] = "ethanol", 135 [IIO_MOD_H2] = "h2", 136 [IIO_MOD_O2] = "o2", 137 }; 138 139 /* relies on pairs of these shared then separate */ 140 static const char * const iio_chan_info_postfix[] = { 141 [IIO_CHAN_INFO_RAW] = "raw", 142 [IIO_CHAN_INFO_PROCESSED] = "input", 143 [IIO_CHAN_INFO_SCALE] = "scale", 144 [IIO_CHAN_INFO_OFFSET] = "offset", 145 [IIO_CHAN_INFO_CALIBSCALE] = "calibscale", 146 [IIO_CHAN_INFO_CALIBBIAS] = "calibbias", 147 [IIO_CHAN_INFO_PEAK] = "peak_raw", 148 [IIO_CHAN_INFO_PEAK_SCALE] = "peak_scale", 149 [IIO_CHAN_INFO_QUADRATURE_CORRECTION_RAW] = "quadrature_correction_raw", 150 [IIO_CHAN_INFO_AVERAGE_RAW] = "mean_raw", 151 [IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY] 152 = "filter_low_pass_3db_frequency", 153 [IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY] 154 = "filter_high_pass_3db_frequency", 155 [IIO_CHAN_INFO_SAMP_FREQ] = "sampling_frequency", 156 [IIO_CHAN_INFO_FREQUENCY] = "frequency", 157 [IIO_CHAN_INFO_PHASE] = "phase", 158 [IIO_CHAN_INFO_HARDWAREGAIN] = "hardwaregain", 159 [IIO_CHAN_INFO_HYSTERESIS] = "hysteresis", 160 [IIO_CHAN_INFO_HYSTERESIS_RELATIVE] = "hysteresis_relative", 161 [IIO_CHAN_INFO_INT_TIME] = "integration_time", 162 [IIO_CHAN_INFO_ENABLE] = "en", 163 [IIO_CHAN_INFO_CALIBHEIGHT] = "calibheight", 164 [IIO_CHAN_INFO_CALIBWEIGHT] = "calibweight", 165 [IIO_CHAN_INFO_DEBOUNCE_COUNT] = "debounce_count", 166 [IIO_CHAN_INFO_DEBOUNCE_TIME] = "debounce_time", 167 [IIO_CHAN_INFO_CALIBEMISSIVITY] = "calibemissivity", 168 [IIO_CHAN_INFO_OVERSAMPLING_RATIO] = "oversampling_ratio", 169 [IIO_CHAN_INFO_THERMOCOUPLE_TYPE] = "thermocouple_type", 170 [IIO_CHAN_INFO_CALIBAMBIENT] = "calibambient", 171 }; 172 /** 173 * iio_device_id() - query the unique ID for the device 174 * @indio_dev: Device structure whose ID is being queried 175 * 176 * The IIO device ID is a unique index used for example for the naming 177 * of the character device /dev/iio\:device[ID] 178 */ 179 int iio_device_id(struct iio_dev *indio_dev) 180 { 181 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 182 183 return iio_dev_opaque->id; 184 } 185 EXPORT_SYMBOL_GPL(iio_device_id); 186 187 /** 188 * iio_buffer_enabled() - helper function to test if the buffer is enabled 189 * @indio_dev: IIO device structure for device 190 */ 191 bool iio_buffer_enabled(struct iio_dev *indio_dev) 192 { 193 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 194 195 return iio_dev_opaque->currentmode 196 & (INDIO_BUFFER_TRIGGERED | INDIO_BUFFER_HARDWARE | 197 INDIO_BUFFER_SOFTWARE); 198 } 199 EXPORT_SYMBOL_GPL(iio_buffer_enabled); 200 201 /** 202 * iio_sysfs_match_string_with_gaps - matches given string in an array with gaps 203 * @array: array of strings 204 * @n: number of strings in the array 205 * @str: string to match with 206 * 207 * Returns index of @str in the @array or -EINVAL, similar to match_string(). 208 * Uses sysfs_streq instead of strcmp for matching. 209 * 210 * This routine will look for a string in an array of strings. 211 * The search will continue until the element is found or the n-th element 212 * is reached, regardless of any NULL elements in the array. 213 */ 214 static int iio_sysfs_match_string_with_gaps(const char * const *array, size_t n, 215 const char *str) 216 { 217 const char *item; 218 int index; 219 220 for (index = 0; index < n; index++) { 221 item = array[index]; 222 if (!item) 223 continue; 224 if (sysfs_streq(item, str)) 225 return index; 226 } 227 228 return -EINVAL; 229 } 230 231 #if defined(CONFIG_DEBUG_FS) 232 /* 233 * There's also a CONFIG_DEBUG_FS guard in include/linux/iio/iio.h for 234 * iio_get_debugfs_dentry() to make it inline if CONFIG_DEBUG_FS is undefined 235 */ 236 struct dentry *iio_get_debugfs_dentry(struct iio_dev *indio_dev) 237 { 238 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 239 return iio_dev_opaque->debugfs_dentry; 240 } 241 EXPORT_SYMBOL_GPL(iio_get_debugfs_dentry); 242 #endif 243 244 /** 245 * iio_find_channel_from_si() - get channel from its scan index 246 * @indio_dev: device 247 * @si: scan index to match 248 */ 249 const struct iio_chan_spec 250 *iio_find_channel_from_si(struct iio_dev *indio_dev, int si) 251 { 252 int i; 253 254 for (i = 0; i < indio_dev->num_channels; i++) 255 if (indio_dev->channels[i].scan_index == si) 256 return &indio_dev->channels[i]; 257 return NULL; 258 } 259 260 /* This turns up an awful lot */ 261 ssize_t iio_read_const_attr(struct device *dev, 262 struct device_attribute *attr, 263 char *buf) 264 { 265 return sysfs_emit(buf, "%s\n", to_iio_const_attr(attr)->string); 266 } 267 EXPORT_SYMBOL(iio_read_const_attr); 268 269 /** 270 * iio_device_set_clock() - Set current timestamping clock for the device 271 * @indio_dev: IIO device structure containing the device 272 * @clock_id: timestamping clock posix identifier to set. 273 */ 274 int iio_device_set_clock(struct iio_dev *indio_dev, clockid_t clock_id) 275 { 276 int ret; 277 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 278 const struct iio_event_interface *ev_int = iio_dev_opaque->event_interface; 279 280 ret = mutex_lock_interruptible(&indio_dev->mlock); 281 if (ret) 282 return ret; 283 if ((ev_int && iio_event_enabled(ev_int)) || 284 iio_buffer_enabled(indio_dev)) { 285 mutex_unlock(&indio_dev->mlock); 286 return -EBUSY; 287 } 288 iio_dev_opaque->clock_id = clock_id; 289 mutex_unlock(&indio_dev->mlock); 290 291 return 0; 292 } 293 EXPORT_SYMBOL(iio_device_set_clock); 294 295 /** 296 * iio_device_get_clock() - Retrieve current timestamping clock for the device 297 * @indio_dev: IIO device structure containing the device 298 */ 299 clockid_t iio_device_get_clock(const struct iio_dev *indio_dev) 300 { 301 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 302 303 return iio_dev_opaque->clock_id; 304 } 305 EXPORT_SYMBOL(iio_device_get_clock); 306 307 /** 308 * iio_get_time_ns() - utility function to get a time stamp for events etc 309 * @indio_dev: device 310 */ 311 s64 iio_get_time_ns(const struct iio_dev *indio_dev) 312 { 313 struct timespec64 tp; 314 315 switch (iio_device_get_clock(indio_dev)) { 316 case CLOCK_REALTIME: 317 return ktime_get_real_ns(); 318 case CLOCK_MONOTONIC: 319 return ktime_get_ns(); 320 case CLOCK_MONOTONIC_RAW: 321 return ktime_get_raw_ns(); 322 case CLOCK_REALTIME_COARSE: 323 return ktime_to_ns(ktime_get_coarse_real()); 324 case CLOCK_MONOTONIC_COARSE: 325 ktime_get_coarse_ts64(&tp); 326 return timespec64_to_ns(&tp); 327 case CLOCK_BOOTTIME: 328 return ktime_get_boottime_ns(); 329 case CLOCK_TAI: 330 return ktime_get_clocktai_ns(); 331 default: 332 BUG(); 333 } 334 } 335 EXPORT_SYMBOL(iio_get_time_ns); 336 337 static int __init iio_init(void) 338 { 339 int ret; 340 341 /* Register sysfs bus */ 342 ret = bus_register(&iio_bus_type); 343 if (ret < 0) { 344 pr_err("could not register bus type\n"); 345 goto error_nothing; 346 } 347 348 ret = alloc_chrdev_region(&iio_devt, 0, IIO_DEV_MAX, "iio"); 349 if (ret < 0) { 350 pr_err("failed to allocate char dev region\n"); 351 goto error_unregister_bus_type; 352 } 353 354 iio_debugfs_dentry = debugfs_create_dir("iio", NULL); 355 356 return 0; 357 358 error_unregister_bus_type: 359 bus_unregister(&iio_bus_type); 360 error_nothing: 361 return ret; 362 } 363 364 static void __exit iio_exit(void) 365 { 366 if (iio_devt) 367 unregister_chrdev_region(iio_devt, IIO_DEV_MAX); 368 bus_unregister(&iio_bus_type); 369 debugfs_remove(iio_debugfs_dentry); 370 } 371 372 #if defined(CONFIG_DEBUG_FS) 373 static ssize_t iio_debugfs_read_reg(struct file *file, char __user *userbuf, 374 size_t count, loff_t *ppos) 375 { 376 struct iio_dev *indio_dev = file->private_data; 377 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 378 unsigned int val = 0; 379 int ret; 380 381 if (*ppos > 0) 382 return simple_read_from_buffer(userbuf, count, ppos, 383 iio_dev_opaque->read_buf, 384 iio_dev_opaque->read_buf_len); 385 386 ret = indio_dev->info->debugfs_reg_access(indio_dev, 387 iio_dev_opaque->cached_reg_addr, 388 0, &val); 389 if (ret) { 390 dev_err(indio_dev->dev.parent, "%s: read failed\n", __func__); 391 return ret; 392 } 393 394 iio_dev_opaque->read_buf_len = snprintf(iio_dev_opaque->read_buf, 395 sizeof(iio_dev_opaque->read_buf), 396 "0x%X\n", val); 397 398 return simple_read_from_buffer(userbuf, count, ppos, 399 iio_dev_opaque->read_buf, 400 iio_dev_opaque->read_buf_len); 401 } 402 403 static ssize_t iio_debugfs_write_reg(struct file *file, 404 const char __user *userbuf, size_t count, loff_t *ppos) 405 { 406 struct iio_dev *indio_dev = file->private_data; 407 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 408 unsigned int reg, val; 409 char buf[80]; 410 int ret; 411 412 count = min_t(size_t, count, (sizeof(buf)-1)); 413 if (copy_from_user(buf, userbuf, count)) 414 return -EFAULT; 415 416 buf[count] = 0; 417 418 ret = sscanf(buf, "%i %i", ®, &val); 419 420 switch (ret) { 421 case 1: 422 iio_dev_opaque->cached_reg_addr = reg; 423 break; 424 case 2: 425 iio_dev_opaque->cached_reg_addr = reg; 426 ret = indio_dev->info->debugfs_reg_access(indio_dev, reg, 427 val, NULL); 428 if (ret) { 429 dev_err(indio_dev->dev.parent, "%s: write failed\n", 430 __func__); 431 return ret; 432 } 433 break; 434 default: 435 return -EINVAL; 436 } 437 438 return count; 439 } 440 441 static const struct file_operations iio_debugfs_reg_fops = { 442 .open = simple_open, 443 .read = iio_debugfs_read_reg, 444 .write = iio_debugfs_write_reg, 445 }; 446 447 static void iio_device_unregister_debugfs(struct iio_dev *indio_dev) 448 { 449 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 450 debugfs_remove_recursive(iio_dev_opaque->debugfs_dentry); 451 } 452 453 static void iio_device_register_debugfs(struct iio_dev *indio_dev) 454 { 455 struct iio_dev_opaque *iio_dev_opaque; 456 457 if (indio_dev->info->debugfs_reg_access == NULL) 458 return; 459 460 if (!iio_debugfs_dentry) 461 return; 462 463 iio_dev_opaque = to_iio_dev_opaque(indio_dev); 464 465 iio_dev_opaque->debugfs_dentry = 466 debugfs_create_dir(dev_name(&indio_dev->dev), 467 iio_debugfs_dentry); 468 469 debugfs_create_file("direct_reg_access", 0644, 470 iio_dev_opaque->debugfs_dentry, indio_dev, 471 &iio_debugfs_reg_fops); 472 } 473 #else 474 static void iio_device_register_debugfs(struct iio_dev *indio_dev) 475 { 476 } 477 478 static void iio_device_unregister_debugfs(struct iio_dev *indio_dev) 479 { 480 } 481 #endif /* CONFIG_DEBUG_FS */ 482 483 static ssize_t iio_read_channel_ext_info(struct device *dev, 484 struct device_attribute *attr, 485 char *buf) 486 { 487 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 488 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); 489 const struct iio_chan_spec_ext_info *ext_info; 490 491 ext_info = &this_attr->c->ext_info[this_attr->address]; 492 493 return ext_info->read(indio_dev, ext_info->private, this_attr->c, buf); 494 } 495 496 static ssize_t iio_write_channel_ext_info(struct device *dev, 497 struct device_attribute *attr, 498 const char *buf, 499 size_t len) 500 { 501 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 502 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); 503 const struct iio_chan_spec_ext_info *ext_info; 504 505 ext_info = &this_attr->c->ext_info[this_attr->address]; 506 507 return ext_info->write(indio_dev, ext_info->private, 508 this_attr->c, buf, len); 509 } 510 511 ssize_t iio_enum_available_read(struct iio_dev *indio_dev, 512 uintptr_t priv, const struct iio_chan_spec *chan, char *buf) 513 { 514 const struct iio_enum *e = (const struct iio_enum *)priv; 515 unsigned int i; 516 size_t len = 0; 517 518 if (!e->num_items) 519 return 0; 520 521 for (i = 0; i < e->num_items; ++i) { 522 if (!e->items[i]) 523 continue; 524 len += sysfs_emit_at(buf, len, "%s ", e->items[i]); 525 } 526 527 /* replace last space with a newline */ 528 buf[len - 1] = '\n'; 529 530 return len; 531 } 532 EXPORT_SYMBOL_GPL(iio_enum_available_read); 533 534 ssize_t iio_enum_read(struct iio_dev *indio_dev, 535 uintptr_t priv, const struct iio_chan_spec *chan, char *buf) 536 { 537 const struct iio_enum *e = (const struct iio_enum *)priv; 538 int i; 539 540 if (!e->get) 541 return -EINVAL; 542 543 i = e->get(indio_dev, chan); 544 if (i < 0) 545 return i; 546 else if (i >= e->num_items || !e->items[i]) 547 return -EINVAL; 548 549 return sysfs_emit(buf, "%s\n", e->items[i]); 550 } 551 EXPORT_SYMBOL_GPL(iio_enum_read); 552 553 ssize_t iio_enum_write(struct iio_dev *indio_dev, 554 uintptr_t priv, const struct iio_chan_spec *chan, const char *buf, 555 size_t len) 556 { 557 const struct iio_enum *e = (const struct iio_enum *)priv; 558 int ret; 559 560 if (!e->set) 561 return -EINVAL; 562 563 ret = iio_sysfs_match_string_with_gaps(e->items, e->num_items, buf); 564 if (ret < 0) 565 return ret; 566 567 ret = e->set(indio_dev, chan, ret); 568 return ret ? ret : len; 569 } 570 EXPORT_SYMBOL_GPL(iio_enum_write); 571 572 static const struct iio_mount_matrix iio_mount_idmatrix = { 573 .rotation = { 574 "1", "0", "0", 575 "0", "1", "0", 576 "0", "0", "1" 577 } 578 }; 579 580 static int iio_setup_mount_idmatrix(const struct device *dev, 581 struct iio_mount_matrix *matrix) 582 { 583 *matrix = iio_mount_idmatrix; 584 dev_info(dev, "mounting matrix not found: using identity...\n"); 585 return 0; 586 } 587 588 ssize_t iio_show_mount_matrix(struct iio_dev *indio_dev, uintptr_t priv, 589 const struct iio_chan_spec *chan, char *buf) 590 { 591 const struct iio_mount_matrix *mtx = ((iio_get_mount_matrix_t *) 592 priv)(indio_dev, chan); 593 594 if (IS_ERR(mtx)) 595 return PTR_ERR(mtx); 596 597 if (!mtx) 598 mtx = &iio_mount_idmatrix; 599 600 return sysfs_emit(buf, "%s, %s, %s; %s, %s, %s; %s, %s, %s\n", 601 mtx->rotation[0], mtx->rotation[1], mtx->rotation[2], 602 mtx->rotation[3], mtx->rotation[4], mtx->rotation[5], 603 mtx->rotation[6], mtx->rotation[7], mtx->rotation[8]); 604 } 605 EXPORT_SYMBOL_GPL(iio_show_mount_matrix); 606 607 /** 608 * iio_read_mount_matrix() - retrieve iio device mounting matrix from 609 * device "mount-matrix" property 610 * @dev: device the mounting matrix property is assigned to 611 * @matrix: where to store retrieved matrix 612 * 613 * If device is assigned no mounting matrix property, a default 3x3 identity 614 * matrix will be filled in. 615 * 616 * Return: 0 if success, or a negative error code on failure. 617 */ 618 int iio_read_mount_matrix(struct device *dev, struct iio_mount_matrix *matrix) 619 { 620 size_t len = ARRAY_SIZE(iio_mount_idmatrix.rotation); 621 int err; 622 623 err = device_property_read_string_array(dev, "mount-matrix", matrix->rotation, len); 624 if (err == len) 625 return 0; 626 627 if (err >= 0) 628 /* Invalid number of matrix entries. */ 629 return -EINVAL; 630 631 if (err != -EINVAL) 632 /* Invalid matrix declaration format. */ 633 return err; 634 635 /* Matrix was not declared at all: fallback to identity. */ 636 return iio_setup_mount_idmatrix(dev, matrix); 637 } 638 EXPORT_SYMBOL(iio_read_mount_matrix); 639 640 static ssize_t __iio_format_value(char *buf, size_t offset, unsigned int type, 641 int size, const int *vals) 642 { 643 int tmp0, tmp1; 644 s64 tmp2; 645 bool scale_db = false; 646 647 switch (type) { 648 case IIO_VAL_INT: 649 return sysfs_emit_at(buf, offset, "%d", vals[0]); 650 case IIO_VAL_INT_PLUS_MICRO_DB: 651 scale_db = true; 652 fallthrough; 653 case IIO_VAL_INT_PLUS_MICRO: 654 if (vals[1] < 0) 655 return sysfs_emit_at(buf, offset, "-%d.%06u%s", 656 abs(vals[0]), -vals[1], 657 scale_db ? " dB" : ""); 658 else 659 return sysfs_emit_at(buf, offset, "%d.%06u%s", vals[0], 660 vals[1], scale_db ? " dB" : ""); 661 case IIO_VAL_INT_PLUS_NANO: 662 if (vals[1] < 0) 663 return sysfs_emit_at(buf, offset, "-%d.%09u", 664 abs(vals[0]), -vals[1]); 665 else 666 return sysfs_emit_at(buf, offset, "%d.%09u", vals[0], 667 vals[1]); 668 case IIO_VAL_FRACTIONAL: 669 tmp2 = div_s64((s64)vals[0] * 1000000000LL, vals[1]); 670 tmp1 = vals[1]; 671 tmp0 = (int)div_s64_rem(tmp2, 1000000000, &tmp1); 672 if ((tmp2 < 0) && (tmp0 == 0)) 673 return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1)); 674 else 675 return sysfs_emit_at(buf, offset, "%d.%09u", tmp0, 676 abs(tmp1)); 677 case IIO_VAL_FRACTIONAL_LOG2: 678 tmp2 = shift_right((s64)vals[0] * 1000000000LL, vals[1]); 679 tmp0 = (int)div_s64_rem(tmp2, 1000000000LL, &tmp1); 680 if (tmp0 == 0 && tmp2 < 0) 681 return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1)); 682 else 683 return sysfs_emit_at(buf, offset, "%d.%09u", tmp0, 684 abs(tmp1)); 685 case IIO_VAL_INT_MULTIPLE: 686 { 687 int i; 688 int l = 0; 689 690 for (i = 0; i < size; ++i) 691 l += sysfs_emit_at(buf, offset + l, "%d ", vals[i]); 692 return l; 693 } 694 case IIO_VAL_CHAR: 695 return sysfs_emit_at(buf, offset, "%c", (char)vals[0]); 696 case IIO_VAL_INT_64: 697 tmp2 = (s64)((((u64)vals[1]) << 32) | (u32)vals[0]); 698 return sysfs_emit_at(buf, offset, "%lld", tmp2); 699 default: 700 return 0; 701 } 702 } 703 704 /** 705 * iio_format_value() - Formats a IIO value into its string representation 706 * @buf: The buffer to which the formatted value gets written 707 * which is assumed to be big enough (i.e. PAGE_SIZE). 708 * @type: One of the IIO_VAL_* constants. This decides how the val 709 * and val2 parameters are formatted. 710 * @size: Number of IIO value entries contained in vals 711 * @vals: Pointer to the values, exact meaning depends on the 712 * type parameter. 713 * 714 * Return: 0 by default, a negative number on failure or the 715 * total number of characters written for a type that belongs 716 * to the IIO_VAL_* constant. 717 */ 718 ssize_t iio_format_value(char *buf, unsigned int type, int size, int *vals) 719 { 720 ssize_t len; 721 722 len = __iio_format_value(buf, 0, type, size, vals); 723 if (len >= PAGE_SIZE - 1) 724 return -EFBIG; 725 726 return len + sysfs_emit_at(buf, len, "\n"); 727 } 728 EXPORT_SYMBOL_GPL(iio_format_value); 729 730 static ssize_t iio_read_channel_label(struct device *dev, 731 struct device_attribute *attr, 732 char *buf) 733 { 734 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 735 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); 736 737 if (indio_dev->info->read_label) 738 return indio_dev->info->read_label(indio_dev, this_attr->c, buf); 739 740 if (this_attr->c->extend_name) 741 return sysfs_emit(buf, "%s\n", this_attr->c->extend_name); 742 743 return -EINVAL; 744 } 745 746 static ssize_t iio_read_channel_info(struct device *dev, 747 struct device_attribute *attr, 748 char *buf) 749 { 750 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 751 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); 752 int vals[INDIO_MAX_RAW_ELEMENTS]; 753 int ret; 754 int val_len = 2; 755 756 if (indio_dev->info->read_raw_multi) 757 ret = indio_dev->info->read_raw_multi(indio_dev, this_attr->c, 758 INDIO_MAX_RAW_ELEMENTS, 759 vals, &val_len, 760 this_attr->address); 761 else 762 ret = indio_dev->info->read_raw(indio_dev, this_attr->c, 763 &vals[0], &vals[1], this_attr->address); 764 765 if (ret < 0) 766 return ret; 767 768 return iio_format_value(buf, ret, val_len, vals); 769 } 770 771 static ssize_t iio_format_list(char *buf, const int *vals, int type, int length, 772 const char *prefix, const char *suffix) 773 { 774 ssize_t len; 775 int stride; 776 int i; 777 778 switch (type) { 779 case IIO_VAL_INT: 780 stride = 1; 781 break; 782 default: 783 stride = 2; 784 break; 785 } 786 787 len = sysfs_emit(buf, prefix); 788 789 for (i = 0; i <= length - stride; i += stride) { 790 if (i != 0) { 791 len += sysfs_emit_at(buf, len, " "); 792 if (len >= PAGE_SIZE) 793 return -EFBIG; 794 } 795 796 len += __iio_format_value(buf, len, type, stride, &vals[i]); 797 if (len >= PAGE_SIZE) 798 return -EFBIG; 799 } 800 801 len += sysfs_emit_at(buf, len, "%s\n", suffix); 802 803 return len; 804 } 805 806 static ssize_t iio_format_avail_list(char *buf, const int *vals, 807 int type, int length) 808 { 809 810 return iio_format_list(buf, vals, type, length, "", ""); 811 } 812 813 static ssize_t iio_format_avail_range(char *buf, const int *vals, int type) 814 { 815 int length; 816 817 /* 818 * length refers to the array size , not the number of elements. 819 * The purpose is to print the range [min , step ,max] so length should 820 * be 3 in case of int, and 6 for other types. 821 */ 822 switch (type) { 823 case IIO_VAL_INT: 824 length = 3; 825 break; 826 default: 827 length = 6; 828 break; 829 } 830 831 return iio_format_list(buf, vals, type, length, "[", "]"); 832 } 833 834 static ssize_t iio_read_channel_info_avail(struct device *dev, 835 struct device_attribute *attr, 836 char *buf) 837 { 838 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 839 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); 840 const int *vals; 841 int ret; 842 int length; 843 int type; 844 845 ret = indio_dev->info->read_avail(indio_dev, this_attr->c, 846 &vals, &type, &length, 847 this_attr->address); 848 849 if (ret < 0) 850 return ret; 851 switch (ret) { 852 case IIO_AVAIL_LIST: 853 return iio_format_avail_list(buf, vals, type, length); 854 case IIO_AVAIL_RANGE: 855 return iio_format_avail_range(buf, vals, type); 856 default: 857 return -EINVAL; 858 } 859 } 860 861 /** 862 * __iio_str_to_fixpoint() - Parse a fixed-point number from a string 863 * @str: The string to parse 864 * @fract_mult: Multiplier for the first decimal place, should be a power of 10 865 * @integer: The integer part of the number 866 * @fract: The fractional part of the number 867 * @scale_db: True if this should parse as dB 868 * 869 * Returns 0 on success, or a negative error code if the string could not be 870 * parsed. 871 */ 872 static int __iio_str_to_fixpoint(const char *str, int fract_mult, 873 int *integer, int *fract, bool scale_db) 874 { 875 int i = 0, f = 0; 876 bool integer_part = true, negative = false; 877 878 if (fract_mult == 0) { 879 *fract = 0; 880 881 return kstrtoint(str, 0, integer); 882 } 883 884 if (str[0] == '-') { 885 negative = true; 886 str++; 887 } else if (str[0] == '+') { 888 str++; 889 } 890 891 while (*str) { 892 if ('0' <= *str && *str <= '9') { 893 if (integer_part) { 894 i = i * 10 + *str - '0'; 895 } else { 896 f += fract_mult * (*str - '0'); 897 fract_mult /= 10; 898 } 899 } else if (*str == '\n') { 900 if (*(str + 1) == '\0') 901 break; 902 return -EINVAL; 903 } else if (!strncmp(str, " dB", sizeof(" dB") - 1) && scale_db) { 904 /* Ignore the dB suffix */ 905 str += sizeof(" dB") - 1; 906 continue; 907 } else if (!strncmp(str, "dB", sizeof("dB") - 1) && scale_db) { 908 /* Ignore the dB suffix */ 909 str += sizeof("dB") - 1; 910 continue; 911 } else if (*str == '.' && integer_part) { 912 integer_part = false; 913 } else { 914 return -EINVAL; 915 } 916 str++; 917 } 918 919 if (negative) { 920 if (i) 921 i = -i; 922 else 923 f = -f; 924 } 925 926 *integer = i; 927 *fract = f; 928 929 return 0; 930 } 931 932 /** 933 * iio_str_to_fixpoint() - Parse a fixed-point number from a string 934 * @str: The string to parse 935 * @fract_mult: Multiplier for the first decimal place, should be a power of 10 936 * @integer: The integer part of the number 937 * @fract: The fractional part of the number 938 * 939 * Returns 0 on success, or a negative error code if the string could not be 940 * parsed. 941 */ 942 int iio_str_to_fixpoint(const char *str, int fract_mult, 943 int *integer, int *fract) 944 { 945 return __iio_str_to_fixpoint(str, fract_mult, integer, fract, false); 946 } 947 EXPORT_SYMBOL_GPL(iio_str_to_fixpoint); 948 949 static ssize_t iio_write_channel_info(struct device *dev, 950 struct device_attribute *attr, 951 const char *buf, 952 size_t len) 953 { 954 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 955 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); 956 int ret, fract_mult = 100000; 957 int integer, fract = 0; 958 bool is_char = false; 959 bool scale_db = false; 960 961 /* Assumes decimal - precision based on number of digits */ 962 if (!indio_dev->info->write_raw) 963 return -EINVAL; 964 965 if (indio_dev->info->write_raw_get_fmt) 966 switch (indio_dev->info->write_raw_get_fmt(indio_dev, 967 this_attr->c, this_attr->address)) { 968 case IIO_VAL_INT: 969 fract_mult = 0; 970 break; 971 case IIO_VAL_INT_PLUS_MICRO_DB: 972 scale_db = true; 973 fallthrough; 974 case IIO_VAL_INT_PLUS_MICRO: 975 fract_mult = 100000; 976 break; 977 case IIO_VAL_INT_PLUS_NANO: 978 fract_mult = 100000000; 979 break; 980 case IIO_VAL_CHAR: 981 is_char = true; 982 break; 983 default: 984 return -EINVAL; 985 } 986 987 if (is_char) { 988 char ch; 989 990 if (sscanf(buf, "%c", &ch) != 1) 991 return -EINVAL; 992 integer = ch; 993 } else { 994 ret = __iio_str_to_fixpoint(buf, fract_mult, &integer, &fract, 995 scale_db); 996 if (ret) 997 return ret; 998 } 999 1000 ret = indio_dev->info->write_raw(indio_dev, this_attr->c, 1001 integer, fract, this_attr->address); 1002 if (ret) 1003 return ret; 1004 1005 return len; 1006 } 1007 1008 static 1009 int __iio_device_attr_init(struct device_attribute *dev_attr, 1010 const char *postfix, 1011 struct iio_chan_spec const *chan, 1012 ssize_t (*readfunc)(struct device *dev, 1013 struct device_attribute *attr, 1014 char *buf), 1015 ssize_t (*writefunc)(struct device *dev, 1016 struct device_attribute *attr, 1017 const char *buf, 1018 size_t len), 1019 enum iio_shared_by shared_by) 1020 { 1021 int ret = 0; 1022 char *name = NULL; 1023 char *full_postfix; 1024 sysfs_attr_init(&dev_attr->attr); 1025 1026 /* Build up postfix of <extend_name>_<modifier>_postfix */ 1027 if (chan->modified && (shared_by == IIO_SEPARATE)) { 1028 if (chan->extend_name) 1029 full_postfix = kasprintf(GFP_KERNEL, "%s_%s_%s", 1030 iio_modifier_names[chan 1031 ->channel2], 1032 chan->extend_name, 1033 postfix); 1034 else 1035 full_postfix = kasprintf(GFP_KERNEL, "%s_%s", 1036 iio_modifier_names[chan 1037 ->channel2], 1038 postfix); 1039 } else { 1040 if (chan->extend_name == NULL || shared_by != IIO_SEPARATE) 1041 full_postfix = kstrdup(postfix, GFP_KERNEL); 1042 else 1043 full_postfix = kasprintf(GFP_KERNEL, 1044 "%s_%s", 1045 chan->extend_name, 1046 postfix); 1047 } 1048 if (full_postfix == NULL) 1049 return -ENOMEM; 1050 1051 if (chan->differential) { /* Differential can not have modifier */ 1052 switch (shared_by) { 1053 case IIO_SHARED_BY_ALL: 1054 name = kasprintf(GFP_KERNEL, "%s", full_postfix); 1055 break; 1056 case IIO_SHARED_BY_DIR: 1057 name = kasprintf(GFP_KERNEL, "%s_%s", 1058 iio_direction[chan->output], 1059 full_postfix); 1060 break; 1061 case IIO_SHARED_BY_TYPE: 1062 name = kasprintf(GFP_KERNEL, "%s_%s-%s_%s", 1063 iio_direction[chan->output], 1064 iio_chan_type_name_spec[chan->type], 1065 iio_chan_type_name_spec[chan->type], 1066 full_postfix); 1067 break; 1068 case IIO_SEPARATE: 1069 if (!chan->indexed) { 1070 WARN(1, "Differential channels must be indexed\n"); 1071 ret = -EINVAL; 1072 goto error_free_full_postfix; 1073 } 1074 name = kasprintf(GFP_KERNEL, 1075 "%s_%s%d-%s%d_%s", 1076 iio_direction[chan->output], 1077 iio_chan_type_name_spec[chan->type], 1078 chan->channel, 1079 iio_chan_type_name_spec[chan->type], 1080 chan->channel2, 1081 full_postfix); 1082 break; 1083 } 1084 } else { /* Single ended */ 1085 switch (shared_by) { 1086 case IIO_SHARED_BY_ALL: 1087 name = kasprintf(GFP_KERNEL, "%s", full_postfix); 1088 break; 1089 case IIO_SHARED_BY_DIR: 1090 name = kasprintf(GFP_KERNEL, "%s_%s", 1091 iio_direction[chan->output], 1092 full_postfix); 1093 break; 1094 case IIO_SHARED_BY_TYPE: 1095 name = kasprintf(GFP_KERNEL, "%s_%s_%s", 1096 iio_direction[chan->output], 1097 iio_chan_type_name_spec[chan->type], 1098 full_postfix); 1099 break; 1100 1101 case IIO_SEPARATE: 1102 if (chan->indexed) 1103 name = kasprintf(GFP_KERNEL, "%s_%s%d_%s", 1104 iio_direction[chan->output], 1105 iio_chan_type_name_spec[chan->type], 1106 chan->channel, 1107 full_postfix); 1108 else 1109 name = kasprintf(GFP_KERNEL, "%s_%s_%s", 1110 iio_direction[chan->output], 1111 iio_chan_type_name_spec[chan->type], 1112 full_postfix); 1113 break; 1114 } 1115 } 1116 if (name == NULL) { 1117 ret = -ENOMEM; 1118 goto error_free_full_postfix; 1119 } 1120 dev_attr->attr.name = name; 1121 1122 if (readfunc) { 1123 dev_attr->attr.mode |= 0444; 1124 dev_attr->show = readfunc; 1125 } 1126 1127 if (writefunc) { 1128 dev_attr->attr.mode |= 0200; 1129 dev_attr->store = writefunc; 1130 } 1131 1132 error_free_full_postfix: 1133 kfree(full_postfix); 1134 1135 return ret; 1136 } 1137 1138 static void __iio_device_attr_deinit(struct device_attribute *dev_attr) 1139 { 1140 kfree(dev_attr->attr.name); 1141 } 1142 1143 int __iio_add_chan_devattr(const char *postfix, 1144 struct iio_chan_spec const *chan, 1145 ssize_t (*readfunc)(struct device *dev, 1146 struct device_attribute *attr, 1147 char *buf), 1148 ssize_t (*writefunc)(struct device *dev, 1149 struct device_attribute *attr, 1150 const char *buf, 1151 size_t len), 1152 u64 mask, 1153 enum iio_shared_by shared_by, 1154 struct device *dev, 1155 struct iio_buffer *buffer, 1156 struct list_head *attr_list) 1157 { 1158 int ret; 1159 struct iio_dev_attr *iio_attr, *t; 1160 1161 iio_attr = kzalloc(sizeof(*iio_attr), GFP_KERNEL); 1162 if (iio_attr == NULL) 1163 return -ENOMEM; 1164 ret = __iio_device_attr_init(&iio_attr->dev_attr, 1165 postfix, chan, 1166 readfunc, writefunc, shared_by); 1167 if (ret) 1168 goto error_iio_dev_attr_free; 1169 iio_attr->c = chan; 1170 iio_attr->address = mask; 1171 iio_attr->buffer = buffer; 1172 list_for_each_entry(t, attr_list, l) 1173 if (strcmp(t->dev_attr.attr.name, 1174 iio_attr->dev_attr.attr.name) == 0) { 1175 if (shared_by == IIO_SEPARATE) 1176 dev_err(dev, "tried to double register : %s\n", 1177 t->dev_attr.attr.name); 1178 ret = -EBUSY; 1179 goto error_device_attr_deinit; 1180 } 1181 list_add(&iio_attr->l, attr_list); 1182 1183 return 0; 1184 1185 error_device_attr_deinit: 1186 __iio_device_attr_deinit(&iio_attr->dev_attr); 1187 error_iio_dev_attr_free: 1188 kfree(iio_attr); 1189 return ret; 1190 } 1191 1192 static int iio_device_add_channel_label(struct iio_dev *indio_dev, 1193 struct iio_chan_spec const *chan) 1194 { 1195 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1196 int ret; 1197 1198 if (!indio_dev->info->read_label && !chan->extend_name) 1199 return 0; 1200 1201 ret = __iio_add_chan_devattr("label", 1202 chan, 1203 &iio_read_channel_label, 1204 NULL, 1205 0, 1206 IIO_SEPARATE, 1207 &indio_dev->dev, 1208 NULL, 1209 &iio_dev_opaque->channel_attr_list); 1210 if (ret < 0) 1211 return ret; 1212 1213 return 1; 1214 } 1215 1216 static int iio_device_add_info_mask_type(struct iio_dev *indio_dev, 1217 struct iio_chan_spec const *chan, 1218 enum iio_shared_by shared_by, 1219 const long *infomask) 1220 { 1221 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1222 int i, ret, attrcount = 0; 1223 1224 for_each_set_bit(i, infomask, sizeof(*infomask)*8) { 1225 if (i >= ARRAY_SIZE(iio_chan_info_postfix)) 1226 return -EINVAL; 1227 ret = __iio_add_chan_devattr(iio_chan_info_postfix[i], 1228 chan, 1229 &iio_read_channel_info, 1230 &iio_write_channel_info, 1231 i, 1232 shared_by, 1233 &indio_dev->dev, 1234 NULL, 1235 &iio_dev_opaque->channel_attr_list); 1236 if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE)) 1237 continue; 1238 else if (ret < 0) 1239 return ret; 1240 attrcount++; 1241 } 1242 1243 return attrcount; 1244 } 1245 1246 static int iio_device_add_info_mask_type_avail(struct iio_dev *indio_dev, 1247 struct iio_chan_spec const *chan, 1248 enum iio_shared_by shared_by, 1249 const long *infomask) 1250 { 1251 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1252 int i, ret, attrcount = 0; 1253 char *avail_postfix; 1254 1255 for_each_set_bit(i, infomask, sizeof(*infomask) * 8) { 1256 if (i >= ARRAY_SIZE(iio_chan_info_postfix)) 1257 return -EINVAL; 1258 avail_postfix = kasprintf(GFP_KERNEL, 1259 "%s_available", 1260 iio_chan_info_postfix[i]); 1261 if (!avail_postfix) 1262 return -ENOMEM; 1263 1264 ret = __iio_add_chan_devattr(avail_postfix, 1265 chan, 1266 &iio_read_channel_info_avail, 1267 NULL, 1268 i, 1269 shared_by, 1270 &indio_dev->dev, 1271 NULL, 1272 &iio_dev_opaque->channel_attr_list); 1273 kfree(avail_postfix); 1274 if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE)) 1275 continue; 1276 else if (ret < 0) 1277 return ret; 1278 attrcount++; 1279 } 1280 1281 return attrcount; 1282 } 1283 1284 static int iio_device_add_channel_sysfs(struct iio_dev *indio_dev, 1285 struct iio_chan_spec const *chan) 1286 { 1287 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1288 int ret, attrcount = 0; 1289 const struct iio_chan_spec_ext_info *ext_info; 1290 1291 if (chan->channel < 0) 1292 return 0; 1293 ret = iio_device_add_info_mask_type(indio_dev, chan, 1294 IIO_SEPARATE, 1295 &chan->info_mask_separate); 1296 if (ret < 0) 1297 return ret; 1298 attrcount += ret; 1299 1300 ret = iio_device_add_info_mask_type_avail(indio_dev, chan, 1301 IIO_SEPARATE, 1302 &chan-> 1303 info_mask_separate_available); 1304 if (ret < 0) 1305 return ret; 1306 attrcount += ret; 1307 1308 ret = iio_device_add_info_mask_type(indio_dev, chan, 1309 IIO_SHARED_BY_TYPE, 1310 &chan->info_mask_shared_by_type); 1311 if (ret < 0) 1312 return ret; 1313 attrcount += ret; 1314 1315 ret = iio_device_add_info_mask_type_avail(indio_dev, chan, 1316 IIO_SHARED_BY_TYPE, 1317 &chan-> 1318 info_mask_shared_by_type_available); 1319 if (ret < 0) 1320 return ret; 1321 attrcount += ret; 1322 1323 ret = iio_device_add_info_mask_type(indio_dev, chan, 1324 IIO_SHARED_BY_DIR, 1325 &chan->info_mask_shared_by_dir); 1326 if (ret < 0) 1327 return ret; 1328 attrcount += ret; 1329 1330 ret = iio_device_add_info_mask_type_avail(indio_dev, chan, 1331 IIO_SHARED_BY_DIR, 1332 &chan->info_mask_shared_by_dir_available); 1333 if (ret < 0) 1334 return ret; 1335 attrcount += ret; 1336 1337 ret = iio_device_add_info_mask_type(indio_dev, chan, 1338 IIO_SHARED_BY_ALL, 1339 &chan->info_mask_shared_by_all); 1340 if (ret < 0) 1341 return ret; 1342 attrcount += ret; 1343 1344 ret = iio_device_add_info_mask_type_avail(indio_dev, chan, 1345 IIO_SHARED_BY_ALL, 1346 &chan->info_mask_shared_by_all_available); 1347 if (ret < 0) 1348 return ret; 1349 attrcount += ret; 1350 1351 ret = iio_device_add_channel_label(indio_dev, chan); 1352 if (ret < 0) 1353 return ret; 1354 attrcount += ret; 1355 1356 if (chan->ext_info) { 1357 unsigned int i = 0; 1358 for (ext_info = chan->ext_info; ext_info->name; ext_info++) { 1359 ret = __iio_add_chan_devattr(ext_info->name, 1360 chan, 1361 ext_info->read ? 1362 &iio_read_channel_ext_info : NULL, 1363 ext_info->write ? 1364 &iio_write_channel_ext_info : NULL, 1365 i, 1366 ext_info->shared, 1367 &indio_dev->dev, 1368 NULL, 1369 &iio_dev_opaque->channel_attr_list); 1370 i++; 1371 if (ret == -EBUSY && ext_info->shared) 1372 continue; 1373 1374 if (ret) 1375 return ret; 1376 1377 attrcount++; 1378 } 1379 } 1380 1381 return attrcount; 1382 } 1383 1384 /** 1385 * iio_free_chan_devattr_list() - Free a list of IIO device attributes 1386 * @attr_list: List of IIO device attributes 1387 * 1388 * This function frees the memory allocated for each of the IIO device 1389 * attributes in the list. 1390 */ 1391 void iio_free_chan_devattr_list(struct list_head *attr_list) 1392 { 1393 struct iio_dev_attr *p, *n; 1394 1395 list_for_each_entry_safe(p, n, attr_list, l) { 1396 kfree_const(p->dev_attr.attr.name); 1397 list_del(&p->l); 1398 kfree(p); 1399 } 1400 } 1401 1402 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 1403 char *buf) 1404 { 1405 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 1406 return sysfs_emit(buf, "%s\n", indio_dev->name); 1407 } 1408 1409 static DEVICE_ATTR_RO(name); 1410 1411 static ssize_t label_show(struct device *dev, struct device_attribute *attr, 1412 char *buf) 1413 { 1414 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 1415 return sysfs_emit(buf, "%s\n", indio_dev->label); 1416 } 1417 1418 static DEVICE_ATTR_RO(label); 1419 1420 static ssize_t current_timestamp_clock_show(struct device *dev, 1421 struct device_attribute *attr, 1422 char *buf) 1423 { 1424 const struct iio_dev *indio_dev = dev_to_iio_dev(dev); 1425 const clockid_t clk = iio_device_get_clock(indio_dev); 1426 const char *name; 1427 ssize_t sz; 1428 1429 switch (clk) { 1430 case CLOCK_REALTIME: 1431 name = "realtime\n"; 1432 sz = sizeof("realtime\n"); 1433 break; 1434 case CLOCK_MONOTONIC: 1435 name = "monotonic\n"; 1436 sz = sizeof("monotonic\n"); 1437 break; 1438 case CLOCK_MONOTONIC_RAW: 1439 name = "monotonic_raw\n"; 1440 sz = sizeof("monotonic_raw\n"); 1441 break; 1442 case CLOCK_REALTIME_COARSE: 1443 name = "realtime_coarse\n"; 1444 sz = sizeof("realtime_coarse\n"); 1445 break; 1446 case CLOCK_MONOTONIC_COARSE: 1447 name = "monotonic_coarse\n"; 1448 sz = sizeof("monotonic_coarse\n"); 1449 break; 1450 case CLOCK_BOOTTIME: 1451 name = "boottime\n"; 1452 sz = sizeof("boottime\n"); 1453 break; 1454 case CLOCK_TAI: 1455 name = "tai\n"; 1456 sz = sizeof("tai\n"); 1457 break; 1458 default: 1459 BUG(); 1460 } 1461 1462 memcpy(buf, name, sz); 1463 return sz; 1464 } 1465 1466 static ssize_t current_timestamp_clock_store(struct device *dev, 1467 struct device_attribute *attr, 1468 const char *buf, size_t len) 1469 { 1470 clockid_t clk; 1471 int ret; 1472 1473 if (sysfs_streq(buf, "realtime")) 1474 clk = CLOCK_REALTIME; 1475 else if (sysfs_streq(buf, "monotonic")) 1476 clk = CLOCK_MONOTONIC; 1477 else if (sysfs_streq(buf, "monotonic_raw")) 1478 clk = CLOCK_MONOTONIC_RAW; 1479 else if (sysfs_streq(buf, "realtime_coarse")) 1480 clk = CLOCK_REALTIME_COARSE; 1481 else if (sysfs_streq(buf, "monotonic_coarse")) 1482 clk = CLOCK_MONOTONIC_COARSE; 1483 else if (sysfs_streq(buf, "boottime")) 1484 clk = CLOCK_BOOTTIME; 1485 else if (sysfs_streq(buf, "tai")) 1486 clk = CLOCK_TAI; 1487 else 1488 return -EINVAL; 1489 1490 ret = iio_device_set_clock(dev_to_iio_dev(dev), clk); 1491 if (ret) 1492 return ret; 1493 1494 return len; 1495 } 1496 1497 int iio_device_register_sysfs_group(struct iio_dev *indio_dev, 1498 const struct attribute_group *group) 1499 { 1500 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1501 const struct attribute_group **new, **old = iio_dev_opaque->groups; 1502 unsigned int cnt = iio_dev_opaque->groupcounter; 1503 1504 new = krealloc(old, sizeof(*new) * (cnt + 2), GFP_KERNEL); 1505 if (!new) 1506 return -ENOMEM; 1507 1508 new[iio_dev_opaque->groupcounter++] = group; 1509 new[iio_dev_opaque->groupcounter] = NULL; 1510 1511 iio_dev_opaque->groups = new; 1512 1513 return 0; 1514 } 1515 1516 static DEVICE_ATTR_RW(current_timestamp_clock); 1517 1518 static int iio_device_register_sysfs(struct iio_dev *indio_dev) 1519 { 1520 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1521 int i, ret = 0, attrcount, attrn, attrcount_orig = 0; 1522 struct iio_dev_attr *p; 1523 struct attribute **attr, *clk = NULL; 1524 1525 /* First count elements in any existing group */ 1526 if (indio_dev->info->attrs) { 1527 attr = indio_dev->info->attrs->attrs; 1528 while (*attr++ != NULL) 1529 attrcount_orig++; 1530 } 1531 attrcount = attrcount_orig; 1532 /* 1533 * New channel registration method - relies on the fact a group does 1534 * not need to be initialized if its name is NULL. 1535 */ 1536 if (indio_dev->channels) 1537 for (i = 0; i < indio_dev->num_channels; i++) { 1538 const struct iio_chan_spec *chan = 1539 &indio_dev->channels[i]; 1540 1541 if (chan->type == IIO_TIMESTAMP) 1542 clk = &dev_attr_current_timestamp_clock.attr; 1543 1544 ret = iio_device_add_channel_sysfs(indio_dev, chan); 1545 if (ret < 0) 1546 goto error_clear_attrs; 1547 attrcount += ret; 1548 } 1549 1550 if (iio_dev_opaque->event_interface) 1551 clk = &dev_attr_current_timestamp_clock.attr; 1552 1553 if (indio_dev->name) 1554 attrcount++; 1555 if (indio_dev->label) 1556 attrcount++; 1557 if (clk) 1558 attrcount++; 1559 1560 iio_dev_opaque->chan_attr_group.attrs = 1561 kcalloc(attrcount + 1, 1562 sizeof(iio_dev_opaque->chan_attr_group.attrs[0]), 1563 GFP_KERNEL); 1564 if (iio_dev_opaque->chan_attr_group.attrs == NULL) { 1565 ret = -ENOMEM; 1566 goto error_clear_attrs; 1567 } 1568 /* Copy across original attributes */ 1569 if (indio_dev->info->attrs) { 1570 memcpy(iio_dev_opaque->chan_attr_group.attrs, 1571 indio_dev->info->attrs->attrs, 1572 sizeof(iio_dev_opaque->chan_attr_group.attrs[0]) 1573 *attrcount_orig); 1574 iio_dev_opaque->chan_attr_group.is_visible = 1575 indio_dev->info->attrs->is_visible; 1576 } 1577 attrn = attrcount_orig; 1578 /* Add all elements from the list. */ 1579 list_for_each_entry(p, &iio_dev_opaque->channel_attr_list, l) 1580 iio_dev_opaque->chan_attr_group.attrs[attrn++] = &p->dev_attr.attr; 1581 if (indio_dev->name) 1582 iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_name.attr; 1583 if (indio_dev->label) 1584 iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_label.attr; 1585 if (clk) 1586 iio_dev_opaque->chan_attr_group.attrs[attrn++] = clk; 1587 1588 ret = iio_device_register_sysfs_group(indio_dev, 1589 &iio_dev_opaque->chan_attr_group); 1590 if (ret) 1591 goto error_clear_attrs; 1592 1593 return 0; 1594 1595 error_clear_attrs: 1596 iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list); 1597 1598 return ret; 1599 } 1600 1601 static void iio_device_unregister_sysfs(struct iio_dev *indio_dev) 1602 { 1603 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1604 1605 iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list); 1606 kfree(iio_dev_opaque->chan_attr_group.attrs); 1607 iio_dev_opaque->chan_attr_group.attrs = NULL; 1608 kfree(iio_dev_opaque->groups); 1609 iio_dev_opaque->groups = NULL; 1610 } 1611 1612 static void iio_dev_release(struct device *device) 1613 { 1614 struct iio_dev *indio_dev = dev_to_iio_dev(device); 1615 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1616 1617 if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES) 1618 iio_device_unregister_trigger_consumer(indio_dev); 1619 iio_device_unregister_eventset(indio_dev); 1620 iio_device_unregister_sysfs(indio_dev); 1621 1622 iio_device_detach_buffers(indio_dev); 1623 1624 ida_free(&iio_ida, iio_dev_opaque->id); 1625 kfree(iio_dev_opaque); 1626 } 1627 1628 const struct device_type iio_device_type = { 1629 .name = "iio_device", 1630 .release = iio_dev_release, 1631 }; 1632 1633 /** 1634 * iio_device_alloc() - allocate an iio_dev from a driver 1635 * @parent: Parent device. 1636 * @sizeof_priv: Space to allocate for private structure. 1637 **/ 1638 struct iio_dev *iio_device_alloc(struct device *parent, int sizeof_priv) 1639 { 1640 struct iio_dev_opaque *iio_dev_opaque; 1641 struct iio_dev *indio_dev; 1642 size_t alloc_size; 1643 1644 alloc_size = sizeof(struct iio_dev_opaque); 1645 if (sizeof_priv) { 1646 alloc_size = ALIGN(alloc_size, IIO_DMA_MINALIGN); 1647 alloc_size += sizeof_priv; 1648 } 1649 1650 iio_dev_opaque = kzalloc(alloc_size, GFP_KERNEL); 1651 if (!iio_dev_opaque) 1652 return NULL; 1653 1654 indio_dev = &iio_dev_opaque->indio_dev; 1655 indio_dev->priv = (char *)iio_dev_opaque + 1656 ALIGN(sizeof(struct iio_dev_opaque), IIO_DMA_MINALIGN); 1657 1658 indio_dev->dev.parent = parent; 1659 indio_dev->dev.type = &iio_device_type; 1660 indio_dev->dev.bus = &iio_bus_type; 1661 device_initialize(&indio_dev->dev); 1662 mutex_init(&indio_dev->mlock); 1663 mutex_init(&iio_dev_opaque->info_exist_lock); 1664 INIT_LIST_HEAD(&iio_dev_opaque->channel_attr_list); 1665 1666 iio_dev_opaque->id = ida_alloc(&iio_ida, GFP_KERNEL); 1667 if (iio_dev_opaque->id < 0) { 1668 /* cannot use a dev_err as the name isn't available */ 1669 pr_err("failed to get device id\n"); 1670 kfree(iio_dev_opaque); 1671 return NULL; 1672 } 1673 1674 if (dev_set_name(&indio_dev->dev, "iio:device%d", iio_dev_opaque->id)) { 1675 ida_free(&iio_ida, iio_dev_opaque->id); 1676 kfree(iio_dev_opaque); 1677 return NULL; 1678 } 1679 1680 INIT_LIST_HEAD(&iio_dev_opaque->buffer_list); 1681 INIT_LIST_HEAD(&iio_dev_opaque->ioctl_handlers); 1682 1683 return indio_dev; 1684 } 1685 EXPORT_SYMBOL(iio_device_alloc); 1686 1687 /** 1688 * iio_device_free() - free an iio_dev from a driver 1689 * @dev: the iio_dev associated with the device 1690 **/ 1691 void iio_device_free(struct iio_dev *dev) 1692 { 1693 if (dev) 1694 put_device(&dev->dev); 1695 } 1696 EXPORT_SYMBOL(iio_device_free); 1697 1698 static void devm_iio_device_release(void *iio_dev) 1699 { 1700 iio_device_free(iio_dev); 1701 } 1702 1703 /** 1704 * devm_iio_device_alloc - Resource-managed iio_device_alloc() 1705 * @parent: Device to allocate iio_dev for, and parent for this IIO device 1706 * @sizeof_priv: Space to allocate for private structure. 1707 * 1708 * Managed iio_device_alloc. iio_dev allocated with this function is 1709 * automatically freed on driver detach. 1710 * 1711 * RETURNS: 1712 * Pointer to allocated iio_dev on success, NULL on failure. 1713 */ 1714 struct iio_dev *devm_iio_device_alloc(struct device *parent, int sizeof_priv) 1715 { 1716 struct iio_dev *iio_dev; 1717 int ret; 1718 1719 iio_dev = iio_device_alloc(parent, sizeof_priv); 1720 if (!iio_dev) 1721 return NULL; 1722 1723 ret = devm_add_action_or_reset(parent, devm_iio_device_release, 1724 iio_dev); 1725 if (ret) 1726 return NULL; 1727 1728 return iio_dev; 1729 } 1730 EXPORT_SYMBOL_GPL(devm_iio_device_alloc); 1731 1732 /** 1733 * iio_chrdev_open() - chrdev file open for buffer access and ioctls 1734 * @inode: Inode structure for identifying the device in the file system 1735 * @filp: File structure for iio device used to keep and later access 1736 * private data 1737 * 1738 * Return: 0 on success or -EBUSY if the device is already opened 1739 **/ 1740 static int iio_chrdev_open(struct inode *inode, struct file *filp) 1741 { 1742 struct iio_dev_opaque *iio_dev_opaque = 1743 container_of(inode->i_cdev, struct iio_dev_opaque, chrdev); 1744 struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev; 1745 struct iio_dev_buffer_pair *ib; 1746 1747 if (test_and_set_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags)) 1748 return -EBUSY; 1749 1750 iio_device_get(indio_dev); 1751 1752 ib = kmalloc(sizeof(*ib), GFP_KERNEL); 1753 if (!ib) { 1754 iio_device_put(indio_dev); 1755 clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags); 1756 return -ENOMEM; 1757 } 1758 1759 ib->indio_dev = indio_dev; 1760 ib->buffer = indio_dev->buffer; 1761 1762 filp->private_data = ib; 1763 1764 return 0; 1765 } 1766 1767 /** 1768 * iio_chrdev_release() - chrdev file close buffer access and ioctls 1769 * @inode: Inode structure pointer for the char device 1770 * @filp: File structure pointer for the char device 1771 * 1772 * Return: 0 for successful release 1773 */ 1774 static int iio_chrdev_release(struct inode *inode, struct file *filp) 1775 { 1776 struct iio_dev_buffer_pair *ib = filp->private_data; 1777 struct iio_dev_opaque *iio_dev_opaque = 1778 container_of(inode->i_cdev, struct iio_dev_opaque, chrdev); 1779 struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev; 1780 kfree(ib); 1781 clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags); 1782 iio_device_put(indio_dev); 1783 1784 return 0; 1785 } 1786 1787 void iio_device_ioctl_handler_register(struct iio_dev *indio_dev, 1788 struct iio_ioctl_handler *h) 1789 { 1790 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1791 1792 list_add_tail(&h->entry, &iio_dev_opaque->ioctl_handlers); 1793 } 1794 1795 void iio_device_ioctl_handler_unregister(struct iio_ioctl_handler *h) 1796 { 1797 list_del(&h->entry); 1798 } 1799 1800 static long iio_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 1801 { 1802 struct iio_dev_buffer_pair *ib = filp->private_data; 1803 struct iio_dev *indio_dev = ib->indio_dev; 1804 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1805 struct iio_ioctl_handler *h; 1806 int ret = -ENODEV; 1807 1808 mutex_lock(&iio_dev_opaque->info_exist_lock); 1809 1810 /** 1811 * The NULL check here is required to prevent crashing when a device 1812 * is being removed while userspace would still have open file handles 1813 * to try to access this device. 1814 */ 1815 if (!indio_dev->info) 1816 goto out_unlock; 1817 1818 list_for_each_entry(h, &iio_dev_opaque->ioctl_handlers, entry) { 1819 ret = h->ioctl(indio_dev, filp, cmd, arg); 1820 if (ret != IIO_IOCTL_UNHANDLED) 1821 break; 1822 } 1823 1824 if (ret == IIO_IOCTL_UNHANDLED) 1825 ret = -ENODEV; 1826 1827 out_unlock: 1828 mutex_unlock(&iio_dev_opaque->info_exist_lock); 1829 1830 return ret; 1831 } 1832 1833 static const struct file_operations iio_buffer_fileops = { 1834 .owner = THIS_MODULE, 1835 .llseek = noop_llseek, 1836 .read = iio_buffer_read_outer_addr, 1837 .write = iio_buffer_write_outer_addr, 1838 .poll = iio_buffer_poll_addr, 1839 .unlocked_ioctl = iio_ioctl, 1840 .compat_ioctl = compat_ptr_ioctl, 1841 .open = iio_chrdev_open, 1842 .release = iio_chrdev_release, 1843 }; 1844 1845 static const struct file_operations iio_event_fileops = { 1846 .owner = THIS_MODULE, 1847 .llseek = noop_llseek, 1848 .unlocked_ioctl = iio_ioctl, 1849 .compat_ioctl = compat_ptr_ioctl, 1850 .open = iio_chrdev_open, 1851 .release = iio_chrdev_release, 1852 }; 1853 1854 static int iio_check_unique_scan_index(struct iio_dev *indio_dev) 1855 { 1856 int i, j; 1857 const struct iio_chan_spec *channels = indio_dev->channels; 1858 1859 if (!(indio_dev->modes & INDIO_ALL_BUFFER_MODES)) 1860 return 0; 1861 1862 for (i = 0; i < indio_dev->num_channels - 1; i++) { 1863 if (channels[i].scan_index < 0) 1864 continue; 1865 for (j = i + 1; j < indio_dev->num_channels; j++) 1866 if (channels[i].scan_index == channels[j].scan_index) { 1867 dev_err(&indio_dev->dev, 1868 "Duplicate scan index %d\n", 1869 channels[i].scan_index); 1870 return -EINVAL; 1871 } 1872 } 1873 1874 return 0; 1875 } 1876 1877 static int iio_check_extended_name(const struct iio_dev *indio_dev) 1878 { 1879 unsigned int i; 1880 1881 if (!indio_dev->info->read_label) 1882 return 0; 1883 1884 for (i = 0; i < indio_dev->num_channels; i++) { 1885 if (indio_dev->channels[i].extend_name) { 1886 dev_err(&indio_dev->dev, 1887 "Cannot use labels and extend_name at the same time\n"); 1888 return -EINVAL; 1889 } 1890 } 1891 1892 return 0; 1893 } 1894 1895 static const struct iio_buffer_setup_ops noop_ring_setup_ops; 1896 1897 int __iio_device_register(struct iio_dev *indio_dev, struct module *this_mod) 1898 { 1899 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1900 struct fwnode_handle *fwnode; 1901 int ret; 1902 1903 if (!indio_dev->info) 1904 return -EINVAL; 1905 1906 iio_dev_opaque->driver_module = this_mod; 1907 1908 /* If the calling driver did not initialize firmware node, do it here */ 1909 if (dev_fwnode(&indio_dev->dev)) 1910 fwnode = dev_fwnode(&indio_dev->dev); 1911 else 1912 fwnode = dev_fwnode(indio_dev->dev.parent); 1913 device_set_node(&indio_dev->dev, fwnode); 1914 1915 fwnode_property_read_string(fwnode, "label", &indio_dev->label); 1916 1917 ret = iio_check_unique_scan_index(indio_dev); 1918 if (ret < 0) 1919 return ret; 1920 1921 ret = iio_check_extended_name(indio_dev); 1922 if (ret < 0) 1923 return ret; 1924 1925 iio_device_register_debugfs(indio_dev); 1926 1927 ret = iio_buffers_alloc_sysfs_and_mask(indio_dev); 1928 if (ret) { 1929 dev_err(indio_dev->dev.parent, 1930 "Failed to create buffer sysfs interfaces\n"); 1931 goto error_unreg_debugfs; 1932 } 1933 1934 ret = iio_device_register_sysfs(indio_dev); 1935 if (ret) { 1936 dev_err(indio_dev->dev.parent, 1937 "Failed to register sysfs interfaces\n"); 1938 goto error_buffer_free_sysfs; 1939 } 1940 ret = iio_device_register_eventset(indio_dev); 1941 if (ret) { 1942 dev_err(indio_dev->dev.parent, 1943 "Failed to register event set\n"); 1944 goto error_free_sysfs; 1945 } 1946 if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES) 1947 iio_device_register_trigger_consumer(indio_dev); 1948 1949 if ((indio_dev->modes & INDIO_ALL_BUFFER_MODES) && 1950 indio_dev->setup_ops == NULL) 1951 indio_dev->setup_ops = &noop_ring_setup_ops; 1952 1953 if (iio_dev_opaque->attached_buffers_cnt) 1954 cdev_init(&iio_dev_opaque->chrdev, &iio_buffer_fileops); 1955 else if (iio_dev_opaque->event_interface) 1956 cdev_init(&iio_dev_opaque->chrdev, &iio_event_fileops); 1957 1958 if (iio_dev_opaque->attached_buffers_cnt || iio_dev_opaque->event_interface) { 1959 indio_dev->dev.devt = MKDEV(MAJOR(iio_devt), iio_dev_opaque->id); 1960 iio_dev_opaque->chrdev.owner = this_mod; 1961 } 1962 1963 /* assign device groups now; they should be all registered now */ 1964 indio_dev->dev.groups = iio_dev_opaque->groups; 1965 1966 ret = cdev_device_add(&iio_dev_opaque->chrdev, &indio_dev->dev); 1967 if (ret < 0) 1968 goto error_unreg_eventset; 1969 1970 return 0; 1971 1972 error_unreg_eventset: 1973 iio_device_unregister_eventset(indio_dev); 1974 error_free_sysfs: 1975 iio_device_unregister_sysfs(indio_dev); 1976 error_buffer_free_sysfs: 1977 iio_buffers_free_sysfs_and_mask(indio_dev); 1978 error_unreg_debugfs: 1979 iio_device_unregister_debugfs(indio_dev); 1980 return ret; 1981 } 1982 EXPORT_SYMBOL(__iio_device_register); 1983 1984 /** 1985 * iio_device_unregister() - unregister a device from the IIO subsystem 1986 * @indio_dev: Device structure representing the device. 1987 **/ 1988 void iio_device_unregister(struct iio_dev *indio_dev) 1989 { 1990 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1991 1992 cdev_device_del(&iio_dev_opaque->chrdev, &indio_dev->dev); 1993 1994 mutex_lock(&iio_dev_opaque->info_exist_lock); 1995 1996 iio_device_unregister_debugfs(indio_dev); 1997 1998 iio_disable_all_buffers(indio_dev); 1999 2000 indio_dev->info = NULL; 2001 2002 iio_device_wakeup_eventset(indio_dev); 2003 iio_buffer_wakeup_poll(indio_dev); 2004 2005 mutex_unlock(&iio_dev_opaque->info_exist_lock); 2006 2007 iio_buffers_free_sysfs_and_mask(indio_dev); 2008 } 2009 EXPORT_SYMBOL(iio_device_unregister); 2010 2011 static void devm_iio_device_unreg(void *indio_dev) 2012 { 2013 iio_device_unregister(indio_dev); 2014 } 2015 2016 int __devm_iio_device_register(struct device *dev, struct iio_dev *indio_dev, 2017 struct module *this_mod) 2018 { 2019 int ret; 2020 2021 ret = __iio_device_register(indio_dev, this_mod); 2022 if (ret) 2023 return ret; 2024 2025 return devm_add_action_or_reset(dev, devm_iio_device_unreg, indio_dev); 2026 } 2027 EXPORT_SYMBOL_GPL(__devm_iio_device_register); 2028 2029 /** 2030 * iio_device_claim_direct_mode - Keep device in direct mode 2031 * @indio_dev: the iio_dev associated with the device 2032 * 2033 * If the device is in direct mode it is guaranteed to stay 2034 * that way until iio_device_release_direct_mode() is called. 2035 * 2036 * Use with iio_device_release_direct_mode() 2037 * 2038 * Returns: 0 on success, -EBUSY on failure 2039 */ 2040 int iio_device_claim_direct_mode(struct iio_dev *indio_dev) 2041 { 2042 mutex_lock(&indio_dev->mlock); 2043 2044 if (iio_buffer_enabled(indio_dev)) { 2045 mutex_unlock(&indio_dev->mlock); 2046 return -EBUSY; 2047 } 2048 return 0; 2049 } 2050 EXPORT_SYMBOL_GPL(iio_device_claim_direct_mode); 2051 2052 /** 2053 * iio_device_release_direct_mode - releases claim on direct mode 2054 * @indio_dev: the iio_dev associated with the device 2055 * 2056 * Release the claim. Device is no longer guaranteed to stay 2057 * in direct mode. 2058 * 2059 * Use with iio_device_claim_direct_mode() 2060 */ 2061 void iio_device_release_direct_mode(struct iio_dev *indio_dev) 2062 { 2063 mutex_unlock(&indio_dev->mlock); 2064 } 2065 EXPORT_SYMBOL_GPL(iio_device_release_direct_mode); 2066 2067 /** 2068 * iio_device_get_current_mode() - helper function providing read-only access to 2069 * the opaque @currentmode variable 2070 * @indio_dev: IIO device structure for device 2071 */ 2072 int iio_device_get_current_mode(struct iio_dev *indio_dev) 2073 { 2074 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 2075 2076 return iio_dev_opaque->currentmode; 2077 } 2078 EXPORT_SYMBOL_GPL(iio_device_get_current_mode); 2079 2080 subsys_initcall(iio_init); 2081 module_exit(iio_exit); 2082 2083 MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>"); 2084 MODULE_DESCRIPTION("Industrial I/O core"); 2085 MODULE_LICENSE("GPL"); 2086