1 // SPDX-License-Identifier: GPL-2.0-only
2 /* The industrial I/O core
3  *
4  * Copyright (c) 2008 Jonathan Cameron
5  *
6  * Based on elements of hwmon and input subsystems.
7  */
8 
9 #define pr_fmt(fmt) "iio-core: " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/idr.h>
14 #include <linux/kdev_t.h>
15 #include <linux/err.h>
16 #include <linux/device.h>
17 #include <linux/fs.h>
18 #include <linux/poll.h>
19 #include <linux/property.h>
20 #include <linux/sched.h>
21 #include <linux/wait.h>
22 #include <linux/cdev.h>
23 #include <linux/slab.h>
24 #include <linux/anon_inodes.h>
25 #include <linux/debugfs.h>
26 #include <linux/mutex.h>
27 #include <linux/iio/iio.h>
28 #include <linux/iio/iio-opaque.h>
29 #include "iio_core.h"
30 #include "iio_core_trigger.h"
31 #include <linux/iio/sysfs.h>
32 #include <linux/iio/events.h>
33 #include <linux/iio/buffer.h>
34 #include <linux/iio/buffer_impl.h>
35 
36 /* IDA to assign each registered device a unique id */
37 static DEFINE_IDA(iio_ida);
38 
39 static dev_t iio_devt;
40 
41 #define IIO_DEV_MAX 256
42 struct bus_type iio_bus_type = {
43 	.name = "iio",
44 };
45 EXPORT_SYMBOL(iio_bus_type);
46 
47 static struct dentry *iio_debugfs_dentry;
48 
49 static const char * const iio_direction[] = {
50 	[0] = "in",
51 	[1] = "out",
52 };
53 
54 static const char * const iio_chan_type_name_spec[] = {
55 	[IIO_VOLTAGE] = "voltage",
56 	[IIO_CURRENT] = "current",
57 	[IIO_POWER] = "power",
58 	[IIO_ACCEL] = "accel",
59 	[IIO_ANGL_VEL] = "anglvel",
60 	[IIO_MAGN] = "magn",
61 	[IIO_LIGHT] = "illuminance",
62 	[IIO_INTENSITY] = "intensity",
63 	[IIO_PROXIMITY] = "proximity",
64 	[IIO_TEMP] = "temp",
65 	[IIO_INCLI] = "incli",
66 	[IIO_ROT] = "rot",
67 	[IIO_ANGL] = "angl",
68 	[IIO_TIMESTAMP] = "timestamp",
69 	[IIO_CAPACITANCE] = "capacitance",
70 	[IIO_ALTVOLTAGE] = "altvoltage",
71 	[IIO_CCT] = "cct",
72 	[IIO_PRESSURE] = "pressure",
73 	[IIO_HUMIDITYRELATIVE] = "humidityrelative",
74 	[IIO_ACTIVITY] = "activity",
75 	[IIO_STEPS] = "steps",
76 	[IIO_ENERGY] = "energy",
77 	[IIO_DISTANCE] = "distance",
78 	[IIO_VELOCITY] = "velocity",
79 	[IIO_CONCENTRATION] = "concentration",
80 	[IIO_RESISTANCE] = "resistance",
81 	[IIO_PH] = "ph",
82 	[IIO_UVINDEX] = "uvindex",
83 	[IIO_ELECTRICALCONDUCTIVITY] = "electricalconductivity",
84 	[IIO_COUNT] = "count",
85 	[IIO_INDEX] = "index",
86 	[IIO_GRAVITY]  = "gravity",
87 	[IIO_POSITIONRELATIVE]  = "positionrelative",
88 	[IIO_PHASE] = "phase",
89 	[IIO_MASSCONCENTRATION] = "massconcentration",
90 };
91 
92 static const char * const iio_modifier_names[] = {
93 	[IIO_MOD_X] = "x",
94 	[IIO_MOD_Y] = "y",
95 	[IIO_MOD_Z] = "z",
96 	[IIO_MOD_X_AND_Y] = "x&y",
97 	[IIO_MOD_X_AND_Z] = "x&z",
98 	[IIO_MOD_Y_AND_Z] = "y&z",
99 	[IIO_MOD_X_AND_Y_AND_Z] = "x&y&z",
100 	[IIO_MOD_X_OR_Y] = "x|y",
101 	[IIO_MOD_X_OR_Z] = "x|z",
102 	[IIO_MOD_Y_OR_Z] = "y|z",
103 	[IIO_MOD_X_OR_Y_OR_Z] = "x|y|z",
104 	[IIO_MOD_ROOT_SUM_SQUARED_X_Y] = "sqrt(x^2+y^2)",
105 	[IIO_MOD_SUM_SQUARED_X_Y_Z] = "x^2+y^2+z^2",
106 	[IIO_MOD_LIGHT_BOTH] = "both",
107 	[IIO_MOD_LIGHT_IR] = "ir",
108 	[IIO_MOD_LIGHT_CLEAR] = "clear",
109 	[IIO_MOD_LIGHT_RED] = "red",
110 	[IIO_MOD_LIGHT_GREEN] = "green",
111 	[IIO_MOD_LIGHT_BLUE] = "blue",
112 	[IIO_MOD_LIGHT_UV] = "uv",
113 	[IIO_MOD_LIGHT_DUV] = "duv",
114 	[IIO_MOD_QUATERNION] = "quaternion",
115 	[IIO_MOD_TEMP_AMBIENT] = "ambient",
116 	[IIO_MOD_TEMP_OBJECT] = "object",
117 	[IIO_MOD_NORTH_MAGN] = "from_north_magnetic",
118 	[IIO_MOD_NORTH_TRUE] = "from_north_true",
119 	[IIO_MOD_NORTH_MAGN_TILT_COMP] = "from_north_magnetic_tilt_comp",
120 	[IIO_MOD_NORTH_TRUE_TILT_COMP] = "from_north_true_tilt_comp",
121 	[IIO_MOD_RUNNING] = "running",
122 	[IIO_MOD_JOGGING] = "jogging",
123 	[IIO_MOD_WALKING] = "walking",
124 	[IIO_MOD_STILL] = "still",
125 	[IIO_MOD_ROOT_SUM_SQUARED_X_Y_Z] = "sqrt(x^2+y^2+z^2)",
126 	[IIO_MOD_I] = "i",
127 	[IIO_MOD_Q] = "q",
128 	[IIO_MOD_CO2] = "co2",
129 	[IIO_MOD_VOC] = "voc",
130 	[IIO_MOD_PM1] = "pm1",
131 	[IIO_MOD_PM2P5] = "pm2p5",
132 	[IIO_MOD_PM4] = "pm4",
133 	[IIO_MOD_PM10] = "pm10",
134 	[IIO_MOD_ETHANOL] = "ethanol",
135 	[IIO_MOD_H2] = "h2",
136 	[IIO_MOD_O2] = "o2",
137 };
138 
139 /* relies on pairs of these shared then separate */
140 static const char * const iio_chan_info_postfix[] = {
141 	[IIO_CHAN_INFO_RAW] = "raw",
142 	[IIO_CHAN_INFO_PROCESSED] = "input",
143 	[IIO_CHAN_INFO_SCALE] = "scale",
144 	[IIO_CHAN_INFO_OFFSET] = "offset",
145 	[IIO_CHAN_INFO_CALIBSCALE] = "calibscale",
146 	[IIO_CHAN_INFO_CALIBBIAS] = "calibbias",
147 	[IIO_CHAN_INFO_PEAK] = "peak_raw",
148 	[IIO_CHAN_INFO_PEAK_SCALE] = "peak_scale",
149 	[IIO_CHAN_INFO_QUADRATURE_CORRECTION_RAW] = "quadrature_correction_raw",
150 	[IIO_CHAN_INFO_AVERAGE_RAW] = "mean_raw",
151 	[IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY]
152 	= "filter_low_pass_3db_frequency",
153 	[IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY]
154 	= "filter_high_pass_3db_frequency",
155 	[IIO_CHAN_INFO_SAMP_FREQ] = "sampling_frequency",
156 	[IIO_CHAN_INFO_FREQUENCY] = "frequency",
157 	[IIO_CHAN_INFO_PHASE] = "phase",
158 	[IIO_CHAN_INFO_HARDWAREGAIN] = "hardwaregain",
159 	[IIO_CHAN_INFO_HYSTERESIS] = "hysteresis",
160 	[IIO_CHAN_INFO_HYSTERESIS_RELATIVE] = "hysteresis_relative",
161 	[IIO_CHAN_INFO_INT_TIME] = "integration_time",
162 	[IIO_CHAN_INFO_ENABLE] = "en",
163 	[IIO_CHAN_INFO_CALIBHEIGHT] = "calibheight",
164 	[IIO_CHAN_INFO_CALIBWEIGHT] = "calibweight",
165 	[IIO_CHAN_INFO_DEBOUNCE_COUNT] = "debounce_count",
166 	[IIO_CHAN_INFO_DEBOUNCE_TIME] = "debounce_time",
167 	[IIO_CHAN_INFO_CALIBEMISSIVITY] = "calibemissivity",
168 	[IIO_CHAN_INFO_OVERSAMPLING_RATIO] = "oversampling_ratio",
169 	[IIO_CHAN_INFO_THERMOCOUPLE_TYPE] = "thermocouple_type",
170 	[IIO_CHAN_INFO_CALIBAMBIENT] = "calibambient",
171 };
172 /**
173  * iio_device_id() - query the unique ID for the device
174  * @indio_dev:		Device structure whose ID is being queried
175  *
176  * The IIO device ID is a unique index used for example for the naming
177  * of the character device /dev/iio\:device[ID]
178  */
179 int iio_device_id(struct iio_dev *indio_dev)
180 {
181 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
182 
183 	return iio_dev_opaque->id;
184 }
185 EXPORT_SYMBOL_GPL(iio_device_id);
186 
187 /**
188  * iio_sysfs_match_string_with_gaps - matches given string in an array with gaps
189  * @array: array of strings
190  * @n: number of strings in the array
191  * @str: string to match with
192  *
193  * Returns index of @str in the @array or -EINVAL, similar to match_string().
194  * Uses sysfs_streq instead of strcmp for matching.
195  *
196  * This routine will look for a string in an array of strings.
197  * The search will continue until the element is found or the n-th element
198  * is reached, regardless of any NULL elements in the array.
199  */
200 static int iio_sysfs_match_string_with_gaps(const char * const *array, size_t n,
201 					    const char *str)
202 {
203 	const char *item;
204 	int index;
205 
206 	for (index = 0; index < n; index++) {
207 		item = array[index];
208 		if (!item)
209 			continue;
210 		if (sysfs_streq(item, str))
211 			return index;
212 	}
213 
214 	return -EINVAL;
215 }
216 
217 #if defined(CONFIG_DEBUG_FS)
218 /*
219  * There's also a CONFIG_DEBUG_FS guard in include/linux/iio/iio.h for
220  * iio_get_debugfs_dentry() to make it inline if CONFIG_DEBUG_FS is undefined
221  */
222 struct dentry *iio_get_debugfs_dentry(struct iio_dev *indio_dev)
223 {
224 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
225 	return iio_dev_opaque->debugfs_dentry;
226 }
227 EXPORT_SYMBOL_GPL(iio_get_debugfs_dentry);
228 #endif
229 
230 /**
231  * iio_find_channel_from_si() - get channel from its scan index
232  * @indio_dev:		device
233  * @si:			scan index to match
234  */
235 const struct iio_chan_spec
236 *iio_find_channel_from_si(struct iio_dev *indio_dev, int si)
237 {
238 	int i;
239 
240 	for (i = 0; i < indio_dev->num_channels; i++)
241 		if (indio_dev->channels[i].scan_index == si)
242 			return &indio_dev->channels[i];
243 	return NULL;
244 }
245 
246 /* This turns up an awful lot */
247 ssize_t iio_read_const_attr(struct device *dev,
248 			    struct device_attribute *attr,
249 			    char *buf)
250 {
251 	return sysfs_emit(buf, "%s\n", to_iio_const_attr(attr)->string);
252 }
253 EXPORT_SYMBOL(iio_read_const_attr);
254 
255 /**
256  * iio_device_set_clock() - Set current timestamping clock for the device
257  * @indio_dev: IIO device structure containing the device
258  * @clock_id: timestamping clock posix identifier to set.
259  */
260 int iio_device_set_clock(struct iio_dev *indio_dev, clockid_t clock_id)
261 {
262 	int ret;
263 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
264 	const struct iio_event_interface *ev_int = iio_dev_opaque->event_interface;
265 
266 	ret = mutex_lock_interruptible(&indio_dev->mlock);
267 	if (ret)
268 		return ret;
269 	if ((ev_int && iio_event_enabled(ev_int)) ||
270 	    iio_buffer_enabled(indio_dev)) {
271 		mutex_unlock(&indio_dev->mlock);
272 		return -EBUSY;
273 	}
274 	iio_dev_opaque->clock_id = clock_id;
275 	mutex_unlock(&indio_dev->mlock);
276 
277 	return 0;
278 }
279 EXPORT_SYMBOL(iio_device_set_clock);
280 
281 /**
282  * iio_device_get_clock() - Retrieve current timestamping clock for the device
283  * @indio_dev: IIO device structure containing the device
284  */
285 clockid_t iio_device_get_clock(const struct iio_dev *indio_dev)
286 {
287 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
288 
289 	return iio_dev_opaque->clock_id;
290 }
291 EXPORT_SYMBOL(iio_device_get_clock);
292 
293 /**
294  * iio_get_time_ns() - utility function to get a time stamp for events etc
295  * @indio_dev: device
296  */
297 s64 iio_get_time_ns(const struct iio_dev *indio_dev)
298 {
299 	struct timespec64 tp;
300 
301 	switch (iio_device_get_clock(indio_dev)) {
302 	case CLOCK_REALTIME:
303 		return ktime_get_real_ns();
304 	case CLOCK_MONOTONIC:
305 		return ktime_get_ns();
306 	case CLOCK_MONOTONIC_RAW:
307 		return ktime_get_raw_ns();
308 	case CLOCK_REALTIME_COARSE:
309 		return ktime_to_ns(ktime_get_coarse_real());
310 	case CLOCK_MONOTONIC_COARSE:
311 		ktime_get_coarse_ts64(&tp);
312 		return timespec64_to_ns(&tp);
313 	case CLOCK_BOOTTIME:
314 		return ktime_get_boottime_ns();
315 	case CLOCK_TAI:
316 		return ktime_get_clocktai_ns();
317 	default:
318 		BUG();
319 	}
320 }
321 EXPORT_SYMBOL(iio_get_time_ns);
322 
323 /**
324  * iio_get_time_res() - utility function to get time stamp clock resolution in
325  *                      nano seconds.
326  * @indio_dev: device
327  */
328 unsigned int iio_get_time_res(const struct iio_dev *indio_dev)
329 {
330 	switch (iio_device_get_clock(indio_dev)) {
331 	case CLOCK_REALTIME:
332 	case CLOCK_MONOTONIC:
333 	case CLOCK_MONOTONIC_RAW:
334 	case CLOCK_BOOTTIME:
335 	case CLOCK_TAI:
336 		return hrtimer_resolution;
337 	case CLOCK_REALTIME_COARSE:
338 	case CLOCK_MONOTONIC_COARSE:
339 		return LOW_RES_NSEC;
340 	default:
341 		BUG();
342 	}
343 }
344 EXPORT_SYMBOL(iio_get_time_res);
345 
346 static int __init iio_init(void)
347 {
348 	int ret;
349 
350 	/* Register sysfs bus */
351 	ret  = bus_register(&iio_bus_type);
352 	if (ret < 0) {
353 		pr_err("could not register bus type\n");
354 		goto error_nothing;
355 	}
356 
357 	ret = alloc_chrdev_region(&iio_devt, 0, IIO_DEV_MAX, "iio");
358 	if (ret < 0) {
359 		pr_err("failed to allocate char dev region\n");
360 		goto error_unregister_bus_type;
361 	}
362 
363 	iio_debugfs_dentry = debugfs_create_dir("iio", NULL);
364 
365 	return 0;
366 
367 error_unregister_bus_type:
368 	bus_unregister(&iio_bus_type);
369 error_nothing:
370 	return ret;
371 }
372 
373 static void __exit iio_exit(void)
374 {
375 	if (iio_devt)
376 		unregister_chrdev_region(iio_devt, IIO_DEV_MAX);
377 	bus_unregister(&iio_bus_type);
378 	debugfs_remove(iio_debugfs_dentry);
379 }
380 
381 #if defined(CONFIG_DEBUG_FS)
382 static ssize_t iio_debugfs_read_reg(struct file *file, char __user *userbuf,
383 			      size_t count, loff_t *ppos)
384 {
385 	struct iio_dev *indio_dev = file->private_data;
386 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
387 	unsigned val = 0;
388 	int ret;
389 
390 	if (*ppos > 0)
391 		return simple_read_from_buffer(userbuf, count, ppos,
392 					       iio_dev_opaque->read_buf,
393 					       iio_dev_opaque->read_buf_len);
394 
395 	ret = indio_dev->info->debugfs_reg_access(indio_dev,
396 						  iio_dev_opaque->cached_reg_addr,
397 						  0, &val);
398 	if (ret) {
399 		dev_err(indio_dev->dev.parent, "%s: read failed\n", __func__);
400 		return ret;
401 	}
402 
403 	iio_dev_opaque->read_buf_len = snprintf(iio_dev_opaque->read_buf,
404 					      sizeof(iio_dev_opaque->read_buf),
405 					      "0x%X\n", val);
406 
407 	return simple_read_from_buffer(userbuf, count, ppos,
408 				       iio_dev_opaque->read_buf,
409 				       iio_dev_opaque->read_buf_len);
410 }
411 
412 static ssize_t iio_debugfs_write_reg(struct file *file,
413 		     const char __user *userbuf, size_t count, loff_t *ppos)
414 {
415 	struct iio_dev *indio_dev = file->private_data;
416 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
417 	unsigned reg, val;
418 	char buf[80];
419 	int ret;
420 
421 	count = min_t(size_t, count, (sizeof(buf)-1));
422 	if (copy_from_user(buf, userbuf, count))
423 		return -EFAULT;
424 
425 	buf[count] = 0;
426 
427 	ret = sscanf(buf, "%i %i", &reg, &val);
428 
429 	switch (ret) {
430 	case 1:
431 		iio_dev_opaque->cached_reg_addr = reg;
432 		break;
433 	case 2:
434 		iio_dev_opaque->cached_reg_addr = reg;
435 		ret = indio_dev->info->debugfs_reg_access(indio_dev, reg,
436 							  val, NULL);
437 		if (ret) {
438 			dev_err(indio_dev->dev.parent, "%s: write failed\n",
439 				__func__);
440 			return ret;
441 		}
442 		break;
443 	default:
444 		return -EINVAL;
445 	}
446 
447 	return count;
448 }
449 
450 static const struct file_operations iio_debugfs_reg_fops = {
451 	.open = simple_open,
452 	.read = iio_debugfs_read_reg,
453 	.write = iio_debugfs_write_reg,
454 };
455 
456 static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
457 {
458 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
459 	debugfs_remove_recursive(iio_dev_opaque->debugfs_dentry);
460 }
461 
462 static void iio_device_register_debugfs(struct iio_dev *indio_dev)
463 {
464 	struct iio_dev_opaque *iio_dev_opaque;
465 
466 	if (indio_dev->info->debugfs_reg_access == NULL)
467 		return;
468 
469 	if (!iio_debugfs_dentry)
470 		return;
471 
472 	iio_dev_opaque = to_iio_dev_opaque(indio_dev);
473 
474 	iio_dev_opaque->debugfs_dentry =
475 		debugfs_create_dir(dev_name(&indio_dev->dev),
476 				   iio_debugfs_dentry);
477 
478 	debugfs_create_file("direct_reg_access", 0644,
479 			    iio_dev_opaque->debugfs_dentry, indio_dev,
480 			    &iio_debugfs_reg_fops);
481 }
482 #else
483 static void iio_device_register_debugfs(struct iio_dev *indio_dev)
484 {
485 }
486 
487 static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
488 {
489 }
490 #endif /* CONFIG_DEBUG_FS */
491 
492 static ssize_t iio_read_channel_ext_info(struct device *dev,
493 				     struct device_attribute *attr,
494 				     char *buf)
495 {
496 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
497 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
498 	const struct iio_chan_spec_ext_info *ext_info;
499 
500 	ext_info = &this_attr->c->ext_info[this_attr->address];
501 
502 	return ext_info->read(indio_dev, ext_info->private, this_attr->c, buf);
503 }
504 
505 static ssize_t iio_write_channel_ext_info(struct device *dev,
506 				     struct device_attribute *attr,
507 				     const char *buf,
508 					 size_t len)
509 {
510 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
511 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
512 	const struct iio_chan_spec_ext_info *ext_info;
513 
514 	ext_info = &this_attr->c->ext_info[this_attr->address];
515 
516 	return ext_info->write(indio_dev, ext_info->private,
517 			       this_attr->c, buf, len);
518 }
519 
520 ssize_t iio_enum_available_read(struct iio_dev *indio_dev,
521 	uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
522 {
523 	const struct iio_enum *e = (const struct iio_enum *)priv;
524 	unsigned int i;
525 	size_t len = 0;
526 
527 	if (!e->num_items)
528 		return 0;
529 
530 	for (i = 0; i < e->num_items; ++i) {
531 		if (!e->items[i])
532 			continue;
533 		len += sysfs_emit_at(buf, len, "%s ", e->items[i]);
534 	}
535 
536 	/* replace last space with a newline */
537 	buf[len - 1] = '\n';
538 
539 	return len;
540 }
541 EXPORT_SYMBOL_GPL(iio_enum_available_read);
542 
543 ssize_t iio_enum_read(struct iio_dev *indio_dev,
544 	uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
545 {
546 	const struct iio_enum *e = (const struct iio_enum *)priv;
547 	int i;
548 
549 	if (!e->get)
550 		return -EINVAL;
551 
552 	i = e->get(indio_dev, chan);
553 	if (i < 0)
554 		return i;
555 	else if (i >= e->num_items || !e->items[i])
556 		return -EINVAL;
557 
558 	return sysfs_emit(buf, "%s\n", e->items[i]);
559 }
560 EXPORT_SYMBOL_GPL(iio_enum_read);
561 
562 ssize_t iio_enum_write(struct iio_dev *indio_dev,
563 	uintptr_t priv, const struct iio_chan_spec *chan, const char *buf,
564 	size_t len)
565 {
566 	const struct iio_enum *e = (const struct iio_enum *)priv;
567 	int ret;
568 
569 	if (!e->set)
570 		return -EINVAL;
571 
572 	ret = iio_sysfs_match_string_with_gaps(e->items, e->num_items, buf);
573 	if (ret < 0)
574 		return ret;
575 
576 	ret = e->set(indio_dev, chan, ret);
577 	return ret ? ret : len;
578 }
579 EXPORT_SYMBOL_GPL(iio_enum_write);
580 
581 static const struct iio_mount_matrix iio_mount_idmatrix = {
582 	.rotation = {
583 		"1", "0", "0",
584 		"0", "1", "0",
585 		"0", "0", "1"
586 	}
587 };
588 
589 static int iio_setup_mount_idmatrix(const struct device *dev,
590 				    struct iio_mount_matrix *matrix)
591 {
592 	*matrix = iio_mount_idmatrix;
593 	dev_info(dev, "mounting matrix not found: using identity...\n");
594 	return 0;
595 }
596 
597 ssize_t iio_show_mount_matrix(struct iio_dev *indio_dev, uintptr_t priv,
598 			      const struct iio_chan_spec *chan, char *buf)
599 {
600 	const struct iio_mount_matrix *mtx = ((iio_get_mount_matrix_t *)
601 					      priv)(indio_dev, chan);
602 
603 	if (IS_ERR(mtx))
604 		return PTR_ERR(mtx);
605 
606 	if (!mtx)
607 		mtx = &iio_mount_idmatrix;
608 
609 	return sysfs_emit(buf, "%s, %s, %s; %s, %s, %s; %s, %s, %s\n",
610 			  mtx->rotation[0], mtx->rotation[1], mtx->rotation[2],
611 			  mtx->rotation[3], mtx->rotation[4], mtx->rotation[5],
612 			  mtx->rotation[6], mtx->rotation[7], mtx->rotation[8]);
613 }
614 EXPORT_SYMBOL_GPL(iio_show_mount_matrix);
615 
616 /**
617  * iio_read_mount_matrix() - retrieve iio device mounting matrix from
618  *                           device "mount-matrix" property
619  * @dev:	device the mounting matrix property is assigned to
620  * @matrix:	where to store retrieved matrix
621  *
622  * If device is assigned no mounting matrix property, a default 3x3 identity
623  * matrix will be filled in.
624  *
625  * Return: 0 if success, or a negative error code on failure.
626  */
627 int iio_read_mount_matrix(struct device *dev, struct iio_mount_matrix *matrix)
628 {
629 	size_t len = ARRAY_SIZE(iio_mount_idmatrix.rotation);
630 	int err;
631 
632 	err = device_property_read_string_array(dev, "mount-matrix", matrix->rotation, len);
633 	if (err == len)
634 		return 0;
635 
636 	if (err >= 0)
637 		/* Invalid number of matrix entries. */
638 		return -EINVAL;
639 
640 	if (err != -EINVAL)
641 		/* Invalid matrix declaration format. */
642 		return err;
643 
644 	/* Matrix was not declared at all: fallback to identity. */
645 	return iio_setup_mount_idmatrix(dev, matrix);
646 }
647 EXPORT_SYMBOL(iio_read_mount_matrix);
648 
649 static ssize_t __iio_format_value(char *buf, size_t offset, unsigned int type,
650 				  int size, const int *vals)
651 {
652 	int tmp0, tmp1;
653 	s64 tmp2;
654 	bool scale_db = false;
655 
656 	switch (type) {
657 	case IIO_VAL_INT:
658 		return sysfs_emit_at(buf, offset, "%d", vals[0]);
659 	case IIO_VAL_INT_PLUS_MICRO_DB:
660 		scale_db = true;
661 		fallthrough;
662 	case IIO_VAL_INT_PLUS_MICRO:
663 		if (vals[1] < 0)
664 			return sysfs_emit_at(buf, offset, "-%d.%06u%s",
665 					     abs(vals[0]), -vals[1],
666 					     scale_db ? " dB" : "");
667 		else
668 			return sysfs_emit_at(buf, offset, "%d.%06u%s", vals[0],
669 					     vals[1], scale_db ? " dB" : "");
670 	case IIO_VAL_INT_PLUS_NANO:
671 		if (vals[1] < 0)
672 			return sysfs_emit_at(buf, offset, "-%d.%09u",
673 					     abs(vals[0]), -vals[1]);
674 		else
675 			return sysfs_emit_at(buf, offset, "%d.%09u", vals[0],
676 					     vals[1]);
677 	case IIO_VAL_FRACTIONAL:
678 		tmp2 = div_s64((s64)vals[0] * 1000000000LL, vals[1]);
679 		tmp1 = vals[1];
680 		tmp0 = (int)div_s64_rem(tmp2, 1000000000, &tmp1);
681 		if ((tmp2 < 0) && (tmp0 == 0))
682 			return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1));
683 		else
684 			return sysfs_emit_at(buf, offset, "%d.%09u", tmp0,
685 					     abs(tmp1));
686 	case IIO_VAL_FRACTIONAL_LOG2:
687 		tmp2 = shift_right((s64)vals[0] * 1000000000LL, vals[1]);
688 		tmp0 = (int)div_s64_rem(tmp2, 1000000000LL, &tmp1);
689 		if (tmp0 == 0 && tmp2 < 0)
690 			return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1));
691 		else
692 			return sysfs_emit_at(buf, offset, "%d.%09u", tmp0,
693 					     abs(tmp1));
694 	case IIO_VAL_INT_MULTIPLE:
695 	{
696 		int i;
697 		int l = 0;
698 
699 		for (i = 0; i < size; ++i)
700 			l += sysfs_emit_at(buf, offset + l, "%d ", vals[i]);
701 		return l;
702 	}
703 	case IIO_VAL_CHAR:
704 		return sysfs_emit_at(buf, offset, "%c", (char)vals[0]);
705 	default:
706 		return 0;
707 	}
708 }
709 
710 /**
711  * iio_format_value() - Formats a IIO value into its string representation
712  * @buf:	The buffer to which the formatted value gets written
713  *		which is assumed to be big enough (i.e. PAGE_SIZE).
714  * @type:	One of the IIO_VAL_* constants. This decides how the val
715  *		and val2 parameters are formatted.
716  * @size:	Number of IIO value entries contained in vals
717  * @vals:	Pointer to the values, exact meaning depends on the
718  *		type parameter.
719  *
720  * Return: 0 by default, a negative number on failure or the
721  *	   total number of characters written for a type that belongs
722  *	   to the IIO_VAL_* constant.
723  */
724 ssize_t iio_format_value(char *buf, unsigned int type, int size, int *vals)
725 {
726 	ssize_t len;
727 
728 	len = __iio_format_value(buf, 0, type, size, vals);
729 	if (len >= PAGE_SIZE - 1)
730 		return -EFBIG;
731 
732 	return len + sysfs_emit_at(buf, len, "\n");
733 }
734 EXPORT_SYMBOL_GPL(iio_format_value);
735 
736 static ssize_t iio_read_channel_label(struct device *dev,
737 				      struct device_attribute *attr,
738 				      char *buf)
739 {
740 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
741 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
742 
743 	if (!indio_dev->info->read_label)
744 		return -EINVAL;
745 
746 	return indio_dev->info->read_label(indio_dev, this_attr->c, buf);
747 }
748 
749 static ssize_t iio_read_channel_info(struct device *dev,
750 				     struct device_attribute *attr,
751 				     char *buf)
752 {
753 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
754 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
755 	int vals[INDIO_MAX_RAW_ELEMENTS];
756 	int ret;
757 	int val_len = 2;
758 
759 	if (indio_dev->info->read_raw_multi)
760 		ret = indio_dev->info->read_raw_multi(indio_dev, this_attr->c,
761 							INDIO_MAX_RAW_ELEMENTS,
762 							vals, &val_len,
763 							this_attr->address);
764 	else
765 		ret = indio_dev->info->read_raw(indio_dev, this_attr->c,
766 				    &vals[0], &vals[1], this_attr->address);
767 
768 	if (ret < 0)
769 		return ret;
770 
771 	return iio_format_value(buf, ret, val_len, vals);
772 }
773 
774 static ssize_t iio_format_list(char *buf, const int *vals, int type, int length,
775 			       const char *prefix, const char *suffix)
776 {
777 	ssize_t len;
778 	int stride;
779 	int i;
780 
781 	switch (type) {
782 	case IIO_VAL_INT:
783 		stride = 1;
784 		break;
785 	default:
786 		stride = 2;
787 		break;
788 	}
789 
790 	len = sysfs_emit(buf, prefix);
791 
792 	for (i = 0; i <= length - stride; i += stride) {
793 		if (i != 0) {
794 			len += sysfs_emit_at(buf, len, " ");
795 			if (len >= PAGE_SIZE)
796 				return -EFBIG;
797 		}
798 
799 		len += __iio_format_value(buf, len, type, stride, &vals[i]);
800 		if (len >= PAGE_SIZE)
801 			return -EFBIG;
802 	}
803 
804 	len += sysfs_emit_at(buf, len, "%s\n", suffix);
805 
806 	return len;
807 }
808 
809 static ssize_t iio_format_avail_list(char *buf, const int *vals,
810 				     int type, int length)
811 {
812 
813 	return iio_format_list(buf, vals, type, length, "", "");
814 }
815 
816 static ssize_t iio_format_avail_range(char *buf, const int *vals, int type)
817 {
818 	return iio_format_list(buf, vals, type, 3, "[", "]");
819 }
820 
821 static ssize_t iio_read_channel_info_avail(struct device *dev,
822 					   struct device_attribute *attr,
823 					   char *buf)
824 {
825 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
826 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
827 	const int *vals;
828 	int ret;
829 	int length;
830 	int type;
831 
832 	ret = indio_dev->info->read_avail(indio_dev, this_attr->c,
833 					  &vals, &type, &length,
834 					  this_attr->address);
835 
836 	if (ret < 0)
837 		return ret;
838 	switch (ret) {
839 	case IIO_AVAIL_LIST:
840 		return iio_format_avail_list(buf, vals, type, length);
841 	case IIO_AVAIL_RANGE:
842 		return iio_format_avail_range(buf, vals, type);
843 	default:
844 		return -EINVAL;
845 	}
846 }
847 
848 /**
849  * __iio_str_to_fixpoint() - Parse a fixed-point number from a string
850  * @str: The string to parse
851  * @fract_mult: Multiplier for the first decimal place, should be a power of 10
852  * @integer: The integer part of the number
853  * @fract: The fractional part of the number
854  * @scale_db: True if this should parse as dB
855  *
856  * Returns 0 on success, or a negative error code if the string could not be
857  * parsed.
858  */
859 static int __iio_str_to_fixpoint(const char *str, int fract_mult,
860 				 int *integer, int *fract, bool scale_db)
861 {
862 	int i = 0, f = 0;
863 	bool integer_part = true, negative = false;
864 
865 	if (fract_mult == 0) {
866 		*fract = 0;
867 
868 		return kstrtoint(str, 0, integer);
869 	}
870 
871 	if (str[0] == '-') {
872 		negative = true;
873 		str++;
874 	} else if (str[0] == '+') {
875 		str++;
876 	}
877 
878 	while (*str) {
879 		if ('0' <= *str && *str <= '9') {
880 			if (integer_part) {
881 				i = i * 10 + *str - '0';
882 			} else {
883 				f += fract_mult * (*str - '0');
884 				fract_mult /= 10;
885 			}
886 		} else if (*str == '\n') {
887 			if (*(str + 1) == '\0')
888 				break;
889 			else
890 				return -EINVAL;
891 		} else if (!strncmp(str, " dB", sizeof(" dB") - 1) && scale_db) {
892 			/* Ignore the dB suffix */
893 			str += sizeof(" dB") - 1;
894 			continue;
895 		} else if (!strncmp(str, "dB", sizeof("dB") - 1) && scale_db) {
896 			/* Ignore the dB suffix */
897 			str += sizeof("dB") - 1;
898 			continue;
899 		} else if (*str == '.' && integer_part) {
900 			integer_part = false;
901 		} else {
902 			return -EINVAL;
903 		}
904 		str++;
905 	}
906 
907 	if (negative) {
908 		if (i)
909 			i = -i;
910 		else
911 			f = -f;
912 	}
913 
914 	*integer = i;
915 	*fract = f;
916 
917 	return 0;
918 }
919 
920 /**
921  * iio_str_to_fixpoint() - Parse a fixed-point number from a string
922  * @str: The string to parse
923  * @fract_mult: Multiplier for the first decimal place, should be a power of 10
924  * @integer: The integer part of the number
925  * @fract: The fractional part of the number
926  *
927  * Returns 0 on success, or a negative error code if the string could not be
928  * parsed.
929  */
930 int iio_str_to_fixpoint(const char *str, int fract_mult,
931 			int *integer, int *fract)
932 {
933 	return __iio_str_to_fixpoint(str, fract_mult, integer, fract, false);
934 }
935 EXPORT_SYMBOL_GPL(iio_str_to_fixpoint);
936 
937 static ssize_t iio_write_channel_info(struct device *dev,
938 				      struct device_attribute *attr,
939 				      const char *buf,
940 				      size_t len)
941 {
942 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
943 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
944 	int ret, fract_mult = 100000;
945 	int integer, fract = 0;
946 	bool is_char = false;
947 	bool scale_db = false;
948 
949 	/* Assumes decimal - precision based on number of digits */
950 	if (!indio_dev->info->write_raw)
951 		return -EINVAL;
952 
953 	if (indio_dev->info->write_raw_get_fmt)
954 		switch (indio_dev->info->write_raw_get_fmt(indio_dev,
955 			this_attr->c, this_attr->address)) {
956 		case IIO_VAL_INT:
957 			fract_mult = 0;
958 			break;
959 		case IIO_VAL_INT_PLUS_MICRO_DB:
960 			scale_db = true;
961 			fallthrough;
962 		case IIO_VAL_INT_PLUS_MICRO:
963 			fract_mult = 100000;
964 			break;
965 		case IIO_VAL_INT_PLUS_NANO:
966 			fract_mult = 100000000;
967 			break;
968 		case IIO_VAL_CHAR:
969 			is_char = true;
970 			break;
971 		default:
972 			return -EINVAL;
973 		}
974 
975 	if (is_char) {
976 		char ch;
977 
978 		if (sscanf(buf, "%c", &ch) != 1)
979 			return -EINVAL;
980 		integer = ch;
981 	} else {
982 		ret = __iio_str_to_fixpoint(buf, fract_mult, &integer, &fract,
983 					    scale_db);
984 		if (ret)
985 			return ret;
986 	}
987 
988 	ret = indio_dev->info->write_raw(indio_dev, this_attr->c,
989 					 integer, fract, this_attr->address);
990 	if (ret)
991 		return ret;
992 
993 	return len;
994 }
995 
996 static
997 int __iio_device_attr_init(struct device_attribute *dev_attr,
998 			   const char *postfix,
999 			   struct iio_chan_spec const *chan,
1000 			   ssize_t (*readfunc)(struct device *dev,
1001 					       struct device_attribute *attr,
1002 					       char *buf),
1003 			   ssize_t (*writefunc)(struct device *dev,
1004 						struct device_attribute *attr,
1005 						const char *buf,
1006 						size_t len),
1007 			   enum iio_shared_by shared_by)
1008 {
1009 	int ret = 0;
1010 	char *name = NULL;
1011 	char *full_postfix;
1012 	sysfs_attr_init(&dev_attr->attr);
1013 
1014 	/* Build up postfix of <extend_name>_<modifier>_postfix */
1015 	if (chan->modified && (shared_by == IIO_SEPARATE)) {
1016 		if (chan->extend_name)
1017 			full_postfix = kasprintf(GFP_KERNEL, "%s_%s_%s",
1018 						 iio_modifier_names[chan
1019 								    ->channel2],
1020 						 chan->extend_name,
1021 						 postfix);
1022 		else
1023 			full_postfix = kasprintf(GFP_KERNEL, "%s_%s",
1024 						 iio_modifier_names[chan
1025 								    ->channel2],
1026 						 postfix);
1027 	} else {
1028 		if (chan->extend_name == NULL || shared_by != IIO_SEPARATE)
1029 			full_postfix = kstrdup(postfix, GFP_KERNEL);
1030 		else
1031 			full_postfix = kasprintf(GFP_KERNEL,
1032 						 "%s_%s",
1033 						 chan->extend_name,
1034 						 postfix);
1035 	}
1036 	if (full_postfix == NULL)
1037 		return -ENOMEM;
1038 
1039 	if (chan->differential) { /* Differential can not have modifier */
1040 		switch (shared_by) {
1041 		case IIO_SHARED_BY_ALL:
1042 			name = kasprintf(GFP_KERNEL, "%s", full_postfix);
1043 			break;
1044 		case IIO_SHARED_BY_DIR:
1045 			name = kasprintf(GFP_KERNEL, "%s_%s",
1046 						iio_direction[chan->output],
1047 						full_postfix);
1048 			break;
1049 		case IIO_SHARED_BY_TYPE:
1050 			name = kasprintf(GFP_KERNEL, "%s_%s-%s_%s",
1051 					    iio_direction[chan->output],
1052 					    iio_chan_type_name_spec[chan->type],
1053 					    iio_chan_type_name_spec[chan->type],
1054 					    full_postfix);
1055 			break;
1056 		case IIO_SEPARATE:
1057 			if (!chan->indexed) {
1058 				WARN(1, "Differential channels must be indexed\n");
1059 				ret = -EINVAL;
1060 				goto error_free_full_postfix;
1061 			}
1062 			name = kasprintf(GFP_KERNEL,
1063 					    "%s_%s%d-%s%d_%s",
1064 					    iio_direction[chan->output],
1065 					    iio_chan_type_name_spec[chan->type],
1066 					    chan->channel,
1067 					    iio_chan_type_name_spec[chan->type],
1068 					    chan->channel2,
1069 					    full_postfix);
1070 			break;
1071 		}
1072 	} else { /* Single ended */
1073 		switch (shared_by) {
1074 		case IIO_SHARED_BY_ALL:
1075 			name = kasprintf(GFP_KERNEL, "%s", full_postfix);
1076 			break;
1077 		case IIO_SHARED_BY_DIR:
1078 			name = kasprintf(GFP_KERNEL, "%s_%s",
1079 						iio_direction[chan->output],
1080 						full_postfix);
1081 			break;
1082 		case IIO_SHARED_BY_TYPE:
1083 			name = kasprintf(GFP_KERNEL, "%s_%s_%s",
1084 					    iio_direction[chan->output],
1085 					    iio_chan_type_name_spec[chan->type],
1086 					    full_postfix);
1087 			break;
1088 
1089 		case IIO_SEPARATE:
1090 			if (chan->indexed)
1091 				name = kasprintf(GFP_KERNEL, "%s_%s%d_%s",
1092 						    iio_direction[chan->output],
1093 						    iio_chan_type_name_spec[chan->type],
1094 						    chan->channel,
1095 						    full_postfix);
1096 			else
1097 				name = kasprintf(GFP_KERNEL, "%s_%s_%s",
1098 						    iio_direction[chan->output],
1099 						    iio_chan_type_name_spec[chan->type],
1100 						    full_postfix);
1101 			break;
1102 		}
1103 	}
1104 	if (name == NULL) {
1105 		ret = -ENOMEM;
1106 		goto error_free_full_postfix;
1107 	}
1108 	dev_attr->attr.name = name;
1109 
1110 	if (readfunc) {
1111 		dev_attr->attr.mode |= S_IRUGO;
1112 		dev_attr->show = readfunc;
1113 	}
1114 
1115 	if (writefunc) {
1116 		dev_attr->attr.mode |= S_IWUSR;
1117 		dev_attr->store = writefunc;
1118 	}
1119 
1120 error_free_full_postfix:
1121 	kfree(full_postfix);
1122 
1123 	return ret;
1124 }
1125 
1126 static void __iio_device_attr_deinit(struct device_attribute *dev_attr)
1127 {
1128 	kfree(dev_attr->attr.name);
1129 }
1130 
1131 int __iio_add_chan_devattr(const char *postfix,
1132 			   struct iio_chan_spec const *chan,
1133 			   ssize_t (*readfunc)(struct device *dev,
1134 					       struct device_attribute *attr,
1135 					       char *buf),
1136 			   ssize_t (*writefunc)(struct device *dev,
1137 						struct device_attribute *attr,
1138 						const char *buf,
1139 						size_t len),
1140 			   u64 mask,
1141 			   enum iio_shared_by shared_by,
1142 			   struct device *dev,
1143 			   struct iio_buffer *buffer,
1144 			   struct list_head *attr_list)
1145 {
1146 	int ret;
1147 	struct iio_dev_attr *iio_attr, *t;
1148 
1149 	iio_attr = kzalloc(sizeof(*iio_attr), GFP_KERNEL);
1150 	if (iio_attr == NULL)
1151 		return -ENOMEM;
1152 	ret = __iio_device_attr_init(&iio_attr->dev_attr,
1153 				     postfix, chan,
1154 				     readfunc, writefunc, shared_by);
1155 	if (ret)
1156 		goto error_iio_dev_attr_free;
1157 	iio_attr->c = chan;
1158 	iio_attr->address = mask;
1159 	iio_attr->buffer = buffer;
1160 	list_for_each_entry(t, attr_list, l)
1161 		if (strcmp(t->dev_attr.attr.name,
1162 			   iio_attr->dev_attr.attr.name) == 0) {
1163 			if (shared_by == IIO_SEPARATE)
1164 				dev_err(dev, "tried to double register : %s\n",
1165 					t->dev_attr.attr.name);
1166 			ret = -EBUSY;
1167 			goto error_device_attr_deinit;
1168 		}
1169 	list_add(&iio_attr->l, attr_list);
1170 
1171 	return 0;
1172 
1173 error_device_attr_deinit:
1174 	__iio_device_attr_deinit(&iio_attr->dev_attr);
1175 error_iio_dev_attr_free:
1176 	kfree(iio_attr);
1177 	return ret;
1178 }
1179 
1180 static int iio_device_add_channel_label(struct iio_dev *indio_dev,
1181 					 struct iio_chan_spec const *chan)
1182 {
1183 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1184 	int ret;
1185 
1186 	if (!indio_dev->info->read_label)
1187 		return 0;
1188 
1189 	ret = __iio_add_chan_devattr("label",
1190 				     chan,
1191 				     &iio_read_channel_label,
1192 				     NULL,
1193 				     0,
1194 				     IIO_SEPARATE,
1195 				     &indio_dev->dev,
1196 				     NULL,
1197 				     &iio_dev_opaque->channel_attr_list);
1198 	if (ret < 0)
1199 		return ret;
1200 
1201 	return 1;
1202 }
1203 
1204 static int iio_device_add_info_mask_type(struct iio_dev *indio_dev,
1205 					 struct iio_chan_spec const *chan,
1206 					 enum iio_shared_by shared_by,
1207 					 const long *infomask)
1208 {
1209 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1210 	int i, ret, attrcount = 0;
1211 
1212 	for_each_set_bit(i, infomask, sizeof(*infomask)*8) {
1213 		if (i >= ARRAY_SIZE(iio_chan_info_postfix))
1214 			return -EINVAL;
1215 		ret = __iio_add_chan_devattr(iio_chan_info_postfix[i],
1216 					     chan,
1217 					     &iio_read_channel_info,
1218 					     &iio_write_channel_info,
1219 					     i,
1220 					     shared_by,
1221 					     &indio_dev->dev,
1222 					     NULL,
1223 					     &iio_dev_opaque->channel_attr_list);
1224 		if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
1225 			continue;
1226 		else if (ret < 0)
1227 			return ret;
1228 		attrcount++;
1229 	}
1230 
1231 	return attrcount;
1232 }
1233 
1234 static int iio_device_add_info_mask_type_avail(struct iio_dev *indio_dev,
1235 					       struct iio_chan_spec const *chan,
1236 					       enum iio_shared_by shared_by,
1237 					       const long *infomask)
1238 {
1239 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1240 	int i, ret, attrcount = 0;
1241 	char *avail_postfix;
1242 
1243 	for_each_set_bit(i, infomask, sizeof(*infomask) * 8) {
1244 		if (i >= ARRAY_SIZE(iio_chan_info_postfix))
1245 			return -EINVAL;
1246 		avail_postfix = kasprintf(GFP_KERNEL,
1247 					  "%s_available",
1248 					  iio_chan_info_postfix[i]);
1249 		if (!avail_postfix)
1250 			return -ENOMEM;
1251 
1252 		ret = __iio_add_chan_devattr(avail_postfix,
1253 					     chan,
1254 					     &iio_read_channel_info_avail,
1255 					     NULL,
1256 					     i,
1257 					     shared_by,
1258 					     &indio_dev->dev,
1259 					     NULL,
1260 					     &iio_dev_opaque->channel_attr_list);
1261 		kfree(avail_postfix);
1262 		if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
1263 			continue;
1264 		else if (ret < 0)
1265 			return ret;
1266 		attrcount++;
1267 	}
1268 
1269 	return attrcount;
1270 }
1271 
1272 static int iio_device_add_channel_sysfs(struct iio_dev *indio_dev,
1273 					struct iio_chan_spec const *chan)
1274 {
1275 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1276 	int ret, attrcount = 0;
1277 	const struct iio_chan_spec_ext_info *ext_info;
1278 
1279 	if (chan->channel < 0)
1280 		return 0;
1281 	ret = iio_device_add_info_mask_type(indio_dev, chan,
1282 					    IIO_SEPARATE,
1283 					    &chan->info_mask_separate);
1284 	if (ret < 0)
1285 		return ret;
1286 	attrcount += ret;
1287 
1288 	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1289 						  IIO_SEPARATE,
1290 						  &chan->
1291 						  info_mask_separate_available);
1292 	if (ret < 0)
1293 		return ret;
1294 	attrcount += ret;
1295 
1296 	ret = iio_device_add_info_mask_type(indio_dev, chan,
1297 					    IIO_SHARED_BY_TYPE,
1298 					    &chan->info_mask_shared_by_type);
1299 	if (ret < 0)
1300 		return ret;
1301 	attrcount += ret;
1302 
1303 	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1304 						  IIO_SHARED_BY_TYPE,
1305 						  &chan->
1306 						  info_mask_shared_by_type_available);
1307 	if (ret < 0)
1308 		return ret;
1309 	attrcount += ret;
1310 
1311 	ret = iio_device_add_info_mask_type(indio_dev, chan,
1312 					    IIO_SHARED_BY_DIR,
1313 					    &chan->info_mask_shared_by_dir);
1314 	if (ret < 0)
1315 		return ret;
1316 	attrcount += ret;
1317 
1318 	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1319 						  IIO_SHARED_BY_DIR,
1320 						  &chan->info_mask_shared_by_dir_available);
1321 	if (ret < 0)
1322 		return ret;
1323 	attrcount += ret;
1324 
1325 	ret = iio_device_add_info_mask_type(indio_dev, chan,
1326 					    IIO_SHARED_BY_ALL,
1327 					    &chan->info_mask_shared_by_all);
1328 	if (ret < 0)
1329 		return ret;
1330 	attrcount += ret;
1331 
1332 	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1333 						  IIO_SHARED_BY_ALL,
1334 						  &chan->info_mask_shared_by_all_available);
1335 	if (ret < 0)
1336 		return ret;
1337 	attrcount += ret;
1338 
1339 	ret = iio_device_add_channel_label(indio_dev, chan);
1340 	if (ret < 0)
1341 		return ret;
1342 	attrcount += ret;
1343 
1344 	if (chan->ext_info) {
1345 		unsigned int i = 0;
1346 		for (ext_info = chan->ext_info; ext_info->name; ext_info++) {
1347 			ret = __iio_add_chan_devattr(ext_info->name,
1348 					chan,
1349 					ext_info->read ?
1350 					    &iio_read_channel_ext_info : NULL,
1351 					ext_info->write ?
1352 					    &iio_write_channel_ext_info : NULL,
1353 					i,
1354 					ext_info->shared,
1355 					&indio_dev->dev,
1356 					NULL,
1357 					&iio_dev_opaque->channel_attr_list);
1358 			i++;
1359 			if (ret == -EBUSY && ext_info->shared)
1360 				continue;
1361 
1362 			if (ret)
1363 				return ret;
1364 
1365 			attrcount++;
1366 		}
1367 	}
1368 
1369 	return attrcount;
1370 }
1371 
1372 /**
1373  * iio_free_chan_devattr_list() - Free a list of IIO device attributes
1374  * @attr_list: List of IIO device attributes
1375  *
1376  * This function frees the memory allocated for each of the IIO device
1377  * attributes in the list.
1378  */
1379 void iio_free_chan_devattr_list(struct list_head *attr_list)
1380 {
1381 	struct iio_dev_attr *p, *n;
1382 
1383 	list_for_each_entry_safe(p, n, attr_list, l) {
1384 		kfree_const(p->dev_attr.attr.name);
1385 		list_del(&p->l);
1386 		kfree(p);
1387 	}
1388 }
1389 
1390 static ssize_t iio_show_dev_name(struct device *dev,
1391 				 struct device_attribute *attr,
1392 				 char *buf)
1393 {
1394 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1395 	return sysfs_emit(buf, "%s\n", indio_dev->name);
1396 }
1397 
1398 static DEVICE_ATTR(name, S_IRUGO, iio_show_dev_name, NULL);
1399 
1400 static ssize_t iio_show_dev_label(struct device *dev,
1401 				 struct device_attribute *attr,
1402 				 char *buf)
1403 {
1404 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1405 	return sysfs_emit(buf, "%s\n", indio_dev->label);
1406 }
1407 
1408 static DEVICE_ATTR(label, S_IRUGO, iio_show_dev_label, NULL);
1409 
1410 static ssize_t iio_show_timestamp_clock(struct device *dev,
1411 					struct device_attribute *attr,
1412 					char *buf)
1413 {
1414 	const struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1415 	const clockid_t clk = iio_device_get_clock(indio_dev);
1416 	const char *name;
1417 	ssize_t sz;
1418 
1419 	switch (clk) {
1420 	case CLOCK_REALTIME:
1421 		name = "realtime\n";
1422 		sz = sizeof("realtime\n");
1423 		break;
1424 	case CLOCK_MONOTONIC:
1425 		name = "monotonic\n";
1426 		sz = sizeof("monotonic\n");
1427 		break;
1428 	case CLOCK_MONOTONIC_RAW:
1429 		name = "monotonic_raw\n";
1430 		sz = sizeof("monotonic_raw\n");
1431 		break;
1432 	case CLOCK_REALTIME_COARSE:
1433 		name = "realtime_coarse\n";
1434 		sz = sizeof("realtime_coarse\n");
1435 		break;
1436 	case CLOCK_MONOTONIC_COARSE:
1437 		name = "monotonic_coarse\n";
1438 		sz = sizeof("monotonic_coarse\n");
1439 		break;
1440 	case CLOCK_BOOTTIME:
1441 		name = "boottime\n";
1442 		sz = sizeof("boottime\n");
1443 		break;
1444 	case CLOCK_TAI:
1445 		name = "tai\n";
1446 		sz = sizeof("tai\n");
1447 		break;
1448 	default:
1449 		BUG();
1450 	}
1451 
1452 	memcpy(buf, name, sz);
1453 	return sz;
1454 }
1455 
1456 static ssize_t iio_store_timestamp_clock(struct device *dev,
1457 					 struct device_attribute *attr,
1458 					 const char *buf, size_t len)
1459 {
1460 	clockid_t clk;
1461 	int ret;
1462 
1463 	if (sysfs_streq(buf, "realtime"))
1464 		clk = CLOCK_REALTIME;
1465 	else if (sysfs_streq(buf, "monotonic"))
1466 		clk = CLOCK_MONOTONIC;
1467 	else if (sysfs_streq(buf, "monotonic_raw"))
1468 		clk = CLOCK_MONOTONIC_RAW;
1469 	else if (sysfs_streq(buf, "realtime_coarse"))
1470 		clk = CLOCK_REALTIME_COARSE;
1471 	else if (sysfs_streq(buf, "monotonic_coarse"))
1472 		clk = CLOCK_MONOTONIC_COARSE;
1473 	else if (sysfs_streq(buf, "boottime"))
1474 		clk = CLOCK_BOOTTIME;
1475 	else if (sysfs_streq(buf, "tai"))
1476 		clk = CLOCK_TAI;
1477 	else
1478 		return -EINVAL;
1479 
1480 	ret = iio_device_set_clock(dev_to_iio_dev(dev), clk);
1481 	if (ret)
1482 		return ret;
1483 
1484 	return len;
1485 }
1486 
1487 int iio_device_register_sysfs_group(struct iio_dev *indio_dev,
1488 				    const struct attribute_group *group)
1489 {
1490 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1491 	const struct attribute_group **new, **old = iio_dev_opaque->groups;
1492 	unsigned int cnt = iio_dev_opaque->groupcounter;
1493 
1494 	new = krealloc(old, sizeof(*new) * (cnt + 2), GFP_KERNEL);
1495 	if (!new)
1496 		return -ENOMEM;
1497 
1498 	new[iio_dev_opaque->groupcounter++] = group;
1499 	new[iio_dev_opaque->groupcounter] = NULL;
1500 
1501 	iio_dev_opaque->groups = new;
1502 
1503 	return 0;
1504 }
1505 
1506 static DEVICE_ATTR(current_timestamp_clock, S_IRUGO | S_IWUSR,
1507 		   iio_show_timestamp_clock, iio_store_timestamp_clock);
1508 
1509 static int iio_device_register_sysfs(struct iio_dev *indio_dev)
1510 {
1511 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1512 	int i, ret = 0, attrcount, attrn, attrcount_orig = 0;
1513 	struct iio_dev_attr *p;
1514 	struct attribute **attr, *clk = NULL;
1515 
1516 	/* First count elements in any existing group */
1517 	if (indio_dev->info->attrs) {
1518 		attr = indio_dev->info->attrs->attrs;
1519 		while (*attr++ != NULL)
1520 			attrcount_orig++;
1521 	}
1522 	attrcount = attrcount_orig;
1523 	/*
1524 	 * New channel registration method - relies on the fact a group does
1525 	 * not need to be initialized if its name is NULL.
1526 	 */
1527 	if (indio_dev->channels)
1528 		for (i = 0; i < indio_dev->num_channels; i++) {
1529 			const struct iio_chan_spec *chan =
1530 				&indio_dev->channels[i];
1531 
1532 			if (chan->type == IIO_TIMESTAMP)
1533 				clk = &dev_attr_current_timestamp_clock.attr;
1534 
1535 			ret = iio_device_add_channel_sysfs(indio_dev, chan);
1536 			if (ret < 0)
1537 				goto error_clear_attrs;
1538 			attrcount += ret;
1539 		}
1540 
1541 	if (iio_dev_opaque->event_interface)
1542 		clk = &dev_attr_current_timestamp_clock.attr;
1543 
1544 	if (indio_dev->name)
1545 		attrcount++;
1546 	if (indio_dev->label)
1547 		attrcount++;
1548 	if (clk)
1549 		attrcount++;
1550 
1551 	iio_dev_opaque->chan_attr_group.attrs =
1552 		kcalloc(attrcount + 1,
1553 			sizeof(iio_dev_opaque->chan_attr_group.attrs[0]),
1554 			GFP_KERNEL);
1555 	if (iio_dev_opaque->chan_attr_group.attrs == NULL) {
1556 		ret = -ENOMEM;
1557 		goto error_clear_attrs;
1558 	}
1559 	/* Copy across original attributes */
1560 	if (indio_dev->info->attrs) {
1561 		memcpy(iio_dev_opaque->chan_attr_group.attrs,
1562 		       indio_dev->info->attrs->attrs,
1563 		       sizeof(iio_dev_opaque->chan_attr_group.attrs[0])
1564 		       *attrcount_orig);
1565 		iio_dev_opaque->chan_attr_group.is_visible =
1566 			indio_dev->info->attrs->is_visible;
1567 	}
1568 	attrn = attrcount_orig;
1569 	/* Add all elements from the list. */
1570 	list_for_each_entry(p, &iio_dev_opaque->channel_attr_list, l)
1571 		iio_dev_opaque->chan_attr_group.attrs[attrn++] = &p->dev_attr.attr;
1572 	if (indio_dev->name)
1573 		iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_name.attr;
1574 	if (indio_dev->label)
1575 		iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_label.attr;
1576 	if (clk)
1577 		iio_dev_opaque->chan_attr_group.attrs[attrn++] = clk;
1578 
1579 	ret = iio_device_register_sysfs_group(indio_dev,
1580 					      &iio_dev_opaque->chan_attr_group);
1581 	if (ret)
1582 		goto error_clear_attrs;
1583 
1584 	return 0;
1585 
1586 error_clear_attrs:
1587 	iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
1588 
1589 	return ret;
1590 }
1591 
1592 static void iio_device_unregister_sysfs(struct iio_dev *indio_dev)
1593 {
1594 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1595 
1596 	iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
1597 	kfree(iio_dev_opaque->chan_attr_group.attrs);
1598 	iio_dev_opaque->chan_attr_group.attrs = NULL;
1599 	kfree(iio_dev_opaque->groups);
1600 }
1601 
1602 static void iio_dev_release(struct device *device)
1603 {
1604 	struct iio_dev *indio_dev = dev_to_iio_dev(device);
1605 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1606 
1607 	if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
1608 		iio_device_unregister_trigger_consumer(indio_dev);
1609 	iio_device_unregister_eventset(indio_dev);
1610 	iio_device_unregister_sysfs(indio_dev);
1611 
1612 	iio_device_detach_buffers(indio_dev);
1613 
1614 	ida_simple_remove(&iio_ida, iio_dev_opaque->id);
1615 	kfree(iio_dev_opaque);
1616 }
1617 
1618 struct device_type iio_device_type = {
1619 	.name = "iio_device",
1620 	.release = iio_dev_release,
1621 };
1622 
1623 /**
1624  * iio_device_alloc() - allocate an iio_dev from a driver
1625  * @parent:		Parent device.
1626  * @sizeof_priv:	Space to allocate for private structure.
1627  **/
1628 struct iio_dev *iio_device_alloc(struct device *parent, int sizeof_priv)
1629 {
1630 	struct iio_dev_opaque *iio_dev_opaque;
1631 	struct iio_dev *indio_dev;
1632 	size_t alloc_size;
1633 
1634 	alloc_size = sizeof(struct iio_dev_opaque);
1635 	if (sizeof_priv) {
1636 		alloc_size = ALIGN(alloc_size, IIO_ALIGN);
1637 		alloc_size += sizeof_priv;
1638 	}
1639 
1640 	iio_dev_opaque = kzalloc(alloc_size, GFP_KERNEL);
1641 	if (!iio_dev_opaque)
1642 		return NULL;
1643 
1644 	indio_dev = &iio_dev_opaque->indio_dev;
1645 	indio_dev->priv = (char *)iio_dev_opaque +
1646 		ALIGN(sizeof(struct iio_dev_opaque), IIO_ALIGN);
1647 
1648 	indio_dev->dev.parent = parent;
1649 	indio_dev->dev.type = &iio_device_type;
1650 	indio_dev->dev.bus = &iio_bus_type;
1651 	device_initialize(&indio_dev->dev);
1652 	iio_device_set_drvdata(indio_dev, (void *)indio_dev);
1653 	mutex_init(&indio_dev->mlock);
1654 	mutex_init(&iio_dev_opaque->info_exist_lock);
1655 	INIT_LIST_HEAD(&iio_dev_opaque->channel_attr_list);
1656 
1657 	iio_dev_opaque->id = ida_simple_get(&iio_ida, 0, 0, GFP_KERNEL);
1658 	if (iio_dev_opaque->id < 0) {
1659 		/* cannot use a dev_err as the name isn't available */
1660 		pr_err("failed to get device id\n");
1661 		kfree(iio_dev_opaque);
1662 		return NULL;
1663 	}
1664 	dev_set_name(&indio_dev->dev, "iio:device%d", iio_dev_opaque->id);
1665 	INIT_LIST_HEAD(&iio_dev_opaque->buffer_list);
1666 	INIT_LIST_HEAD(&iio_dev_opaque->ioctl_handlers);
1667 
1668 	return indio_dev;
1669 }
1670 EXPORT_SYMBOL(iio_device_alloc);
1671 
1672 /**
1673  * iio_device_free() - free an iio_dev from a driver
1674  * @dev:		the iio_dev associated with the device
1675  **/
1676 void iio_device_free(struct iio_dev *dev)
1677 {
1678 	if (dev)
1679 		put_device(&dev->dev);
1680 }
1681 EXPORT_SYMBOL(iio_device_free);
1682 
1683 static void devm_iio_device_release(void *iio_dev)
1684 {
1685 	iio_device_free(iio_dev);
1686 }
1687 
1688 /**
1689  * devm_iio_device_alloc - Resource-managed iio_device_alloc()
1690  * @parent:		Device to allocate iio_dev for, and parent for this IIO device
1691  * @sizeof_priv:	Space to allocate for private structure.
1692  *
1693  * Managed iio_device_alloc. iio_dev allocated with this function is
1694  * automatically freed on driver detach.
1695  *
1696  * RETURNS:
1697  * Pointer to allocated iio_dev on success, NULL on failure.
1698  */
1699 struct iio_dev *devm_iio_device_alloc(struct device *parent, int sizeof_priv)
1700 {
1701 	struct iio_dev *iio_dev;
1702 	int ret;
1703 
1704 	iio_dev = iio_device_alloc(parent, sizeof_priv);
1705 	if (!iio_dev)
1706 		return NULL;
1707 
1708 	ret = devm_add_action_or_reset(parent, devm_iio_device_release,
1709 				       iio_dev);
1710 	if (ret)
1711 		return NULL;
1712 
1713 	return iio_dev;
1714 }
1715 EXPORT_SYMBOL_GPL(devm_iio_device_alloc);
1716 
1717 /**
1718  * iio_chrdev_open() - chrdev file open for buffer access and ioctls
1719  * @inode:	Inode structure for identifying the device in the file system
1720  * @filp:	File structure for iio device used to keep and later access
1721  *		private data
1722  *
1723  * Return: 0 on success or -EBUSY if the device is already opened
1724  **/
1725 static int iio_chrdev_open(struct inode *inode, struct file *filp)
1726 {
1727 	struct iio_dev_opaque *iio_dev_opaque =
1728 		container_of(inode->i_cdev, struct iio_dev_opaque, chrdev);
1729 	struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev;
1730 	struct iio_dev_buffer_pair *ib;
1731 
1732 	if (test_and_set_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags))
1733 		return -EBUSY;
1734 
1735 	iio_device_get(indio_dev);
1736 
1737 	ib = kmalloc(sizeof(*ib), GFP_KERNEL);
1738 	if (!ib) {
1739 		iio_device_put(indio_dev);
1740 		clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags);
1741 		return -ENOMEM;
1742 	}
1743 
1744 	ib->indio_dev = indio_dev;
1745 	ib->buffer = indio_dev->buffer;
1746 
1747 	filp->private_data = ib;
1748 
1749 	return 0;
1750 }
1751 
1752 /**
1753  * iio_chrdev_release() - chrdev file close buffer access and ioctls
1754  * @inode:	Inode structure pointer for the char device
1755  * @filp:	File structure pointer for the char device
1756  *
1757  * Return: 0 for successful release
1758  */
1759 static int iio_chrdev_release(struct inode *inode, struct file *filp)
1760 {
1761 	struct iio_dev_buffer_pair *ib = filp->private_data;
1762 	struct iio_dev_opaque *iio_dev_opaque =
1763 		container_of(inode->i_cdev, struct iio_dev_opaque, chrdev);
1764 	struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev;
1765 	kfree(ib);
1766 	clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags);
1767 	iio_device_put(indio_dev);
1768 
1769 	return 0;
1770 }
1771 
1772 void iio_device_ioctl_handler_register(struct iio_dev *indio_dev,
1773 				       struct iio_ioctl_handler *h)
1774 {
1775 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1776 
1777 	list_add_tail(&h->entry, &iio_dev_opaque->ioctl_handlers);
1778 }
1779 
1780 void iio_device_ioctl_handler_unregister(struct iio_ioctl_handler *h)
1781 {
1782 	list_del(&h->entry);
1783 }
1784 
1785 static long iio_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1786 {
1787 	struct iio_dev_buffer_pair *ib = filp->private_data;
1788 	struct iio_dev *indio_dev = ib->indio_dev;
1789 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1790 	struct iio_ioctl_handler *h;
1791 	int ret = -ENODEV;
1792 
1793 	mutex_lock(&iio_dev_opaque->info_exist_lock);
1794 
1795 	/**
1796 	 * The NULL check here is required to prevent crashing when a device
1797 	 * is being removed while userspace would still have open file handles
1798 	 * to try to access this device.
1799 	 */
1800 	if (!indio_dev->info)
1801 		goto out_unlock;
1802 
1803 	list_for_each_entry(h, &iio_dev_opaque->ioctl_handlers, entry) {
1804 		ret = h->ioctl(indio_dev, filp, cmd, arg);
1805 		if (ret != IIO_IOCTL_UNHANDLED)
1806 			break;
1807 	}
1808 
1809 	if (ret == IIO_IOCTL_UNHANDLED)
1810 		ret = -ENODEV;
1811 
1812 out_unlock:
1813 	mutex_unlock(&iio_dev_opaque->info_exist_lock);
1814 
1815 	return ret;
1816 }
1817 
1818 static const struct file_operations iio_buffer_fileops = {
1819 	.owner = THIS_MODULE,
1820 	.llseek = noop_llseek,
1821 	.read = iio_buffer_read_outer_addr,
1822 	.poll = iio_buffer_poll_addr,
1823 	.unlocked_ioctl = iio_ioctl,
1824 	.compat_ioctl = compat_ptr_ioctl,
1825 	.open = iio_chrdev_open,
1826 	.release = iio_chrdev_release,
1827 };
1828 
1829 static const struct file_operations iio_event_fileops = {
1830 	.owner = THIS_MODULE,
1831 	.llseek = noop_llseek,
1832 	.unlocked_ioctl = iio_ioctl,
1833 	.compat_ioctl = compat_ptr_ioctl,
1834 	.open = iio_chrdev_open,
1835 	.release = iio_chrdev_release,
1836 };
1837 
1838 static int iio_check_unique_scan_index(struct iio_dev *indio_dev)
1839 {
1840 	int i, j;
1841 	const struct iio_chan_spec *channels = indio_dev->channels;
1842 
1843 	if (!(indio_dev->modes & INDIO_ALL_BUFFER_MODES))
1844 		return 0;
1845 
1846 	for (i = 0; i < indio_dev->num_channels - 1; i++) {
1847 		if (channels[i].scan_index < 0)
1848 			continue;
1849 		for (j = i + 1; j < indio_dev->num_channels; j++)
1850 			if (channels[i].scan_index == channels[j].scan_index) {
1851 				dev_err(&indio_dev->dev,
1852 					"Duplicate scan index %d\n",
1853 					channels[i].scan_index);
1854 				return -EINVAL;
1855 			}
1856 	}
1857 
1858 	return 0;
1859 }
1860 
1861 static const struct iio_buffer_setup_ops noop_ring_setup_ops;
1862 
1863 int __iio_device_register(struct iio_dev *indio_dev, struct module *this_mod)
1864 {
1865 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1866 	const char *label;
1867 	int ret;
1868 
1869 	if (!indio_dev->info)
1870 		return -EINVAL;
1871 
1872 	iio_dev_opaque->driver_module = this_mod;
1873 	/* If the calling driver did not initialize of_node, do it here */
1874 	if (!indio_dev->dev.of_node && indio_dev->dev.parent)
1875 		indio_dev->dev.of_node = indio_dev->dev.parent->of_node;
1876 
1877 	label = of_get_property(indio_dev->dev.of_node, "label", NULL);
1878 	if (label)
1879 		indio_dev->label = label;
1880 
1881 	ret = iio_check_unique_scan_index(indio_dev);
1882 	if (ret < 0)
1883 		return ret;
1884 
1885 	iio_device_register_debugfs(indio_dev);
1886 
1887 	ret = iio_buffers_alloc_sysfs_and_mask(indio_dev);
1888 	if (ret) {
1889 		dev_err(indio_dev->dev.parent,
1890 			"Failed to create buffer sysfs interfaces\n");
1891 		goto error_unreg_debugfs;
1892 	}
1893 
1894 	ret = iio_device_register_sysfs(indio_dev);
1895 	if (ret) {
1896 		dev_err(indio_dev->dev.parent,
1897 			"Failed to register sysfs interfaces\n");
1898 		goto error_buffer_free_sysfs;
1899 	}
1900 	ret = iio_device_register_eventset(indio_dev);
1901 	if (ret) {
1902 		dev_err(indio_dev->dev.parent,
1903 			"Failed to register event set\n");
1904 		goto error_free_sysfs;
1905 	}
1906 	if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
1907 		iio_device_register_trigger_consumer(indio_dev);
1908 
1909 	if ((indio_dev->modes & INDIO_ALL_BUFFER_MODES) &&
1910 		indio_dev->setup_ops == NULL)
1911 		indio_dev->setup_ops = &noop_ring_setup_ops;
1912 
1913 	if (iio_dev_opaque->attached_buffers_cnt)
1914 		cdev_init(&iio_dev_opaque->chrdev, &iio_buffer_fileops);
1915 	else if (iio_dev_opaque->event_interface)
1916 		cdev_init(&iio_dev_opaque->chrdev, &iio_event_fileops);
1917 
1918 	if (iio_dev_opaque->attached_buffers_cnt || iio_dev_opaque->event_interface) {
1919 		indio_dev->dev.devt = MKDEV(MAJOR(iio_devt), iio_dev_opaque->id);
1920 		iio_dev_opaque->chrdev.owner = this_mod;
1921 	}
1922 
1923 	/* assign device groups now; they should be all registered now */
1924 	indio_dev->dev.groups = iio_dev_opaque->groups;
1925 
1926 	ret = cdev_device_add(&iio_dev_opaque->chrdev, &indio_dev->dev);
1927 	if (ret < 0)
1928 		goto error_unreg_eventset;
1929 
1930 	return 0;
1931 
1932 error_unreg_eventset:
1933 	iio_device_unregister_eventset(indio_dev);
1934 error_free_sysfs:
1935 	iio_device_unregister_sysfs(indio_dev);
1936 error_buffer_free_sysfs:
1937 	iio_buffers_free_sysfs_and_mask(indio_dev);
1938 error_unreg_debugfs:
1939 	iio_device_unregister_debugfs(indio_dev);
1940 	return ret;
1941 }
1942 EXPORT_SYMBOL(__iio_device_register);
1943 
1944 /**
1945  * iio_device_unregister() - unregister a device from the IIO subsystem
1946  * @indio_dev:		Device structure representing the device.
1947  **/
1948 void iio_device_unregister(struct iio_dev *indio_dev)
1949 {
1950 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1951 
1952 	cdev_device_del(&iio_dev_opaque->chrdev, &indio_dev->dev);
1953 
1954 	mutex_lock(&iio_dev_opaque->info_exist_lock);
1955 
1956 	iio_device_unregister_debugfs(indio_dev);
1957 
1958 	iio_disable_all_buffers(indio_dev);
1959 
1960 	indio_dev->info = NULL;
1961 
1962 	iio_device_wakeup_eventset(indio_dev);
1963 	iio_buffer_wakeup_poll(indio_dev);
1964 
1965 	mutex_unlock(&iio_dev_opaque->info_exist_lock);
1966 
1967 	iio_buffers_free_sysfs_and_mask(indio_dev);
1968 }
1969 EXPORT_SYMBOL(iio_device_unregister);
1970 
1971 static void devm_iio_device_unreg(void *indio_dev)
1972 {
1973 	iio_device_unregister(indio_dev);
1974 }
1975 
1976 int __devm_iio_device_register(struct device *dev, struct iio_dev *indio_dev,
1977 			       struct module *this_mod)
1978 {
1979 	int ret;
1980 
1981 	ret = __iio_device_register(indio_dev, this_mod);
1982 	if (ret)
1983 		return ret;
1984 
1985 	return devm_add_action_or_reset(dev, devm_iio_device_unreg, indio_dev);
1986 }
1987 EXPORT_SYMBOL_GPL(__devm_iio_device_register);
1988 
1989 /**
1990  * iio_device_claim_direct_mode - Keep device in direct mode
1991  * @indio_dev:	the iio_dev associated with the device
1992  *
1993  * If the device is in direct mode it is guaranteed to stay
1994  * that way until iio_device_release_direct_mode() is called.
1995  *
1996  * Use with iio_device_release_direct_mode()
1997  *
1998  * Returns: 0 on success, -EBUSY on failure
1999  */
2000 int iio_device_claim_direct_mode(struct iio_dev *indio_dev)
2001 {
2002 	mutex_lock(&indio_dev->mlock);
2003 
2004 	if (iio_buffer_enabled(indio_dev)) {
2005 		mutex_unlock(&indio_dev->mlock);
2006 		return -EBUSY;
2007 	}
2008 	return 0;
2009 }
2010 EXPORT_SYMBOL_GPL(iio_device_claim_direct_mode);
2011 
2012 /**
2013  * iio_device_release_direct_mode - releases claim on direct mode
2014  * @indio_dev:	the iio_dev associated with the device
2015  *
2016  * Release the claim. Device is no longer guaranteed to stay
2017  * in direct mode.
2018  *
2019  * Use with iio_device_claim_direct_mode()
2020  */
2021 void iio_device_release_direct_mode(struct iio_dev *indio_dev)
2022 {
2023 	mutex_unlock(&indio_dev->mlock);
2024 }
2025 EXPORT_SYMBOL_GPL(iio_device_release_direct_mode);
2026 
2027 subsys_initcall(iio_init);
2028 module_exit(iio_exit);
2029 
2030 MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
2031 MODULE_DESCRIPTION("Industrial I/O core");
2032 MODULE_LICENSE("GPL");
2033