1 // SPDX-License-Identifier: GPL-2.0-only
2 /* The industrial I/O core
3  *
4  * Copyright (c) 2008 Jonathan Cameron
5  *
6  * Based on elements of hwmon and input subsystems.
7  */
8 
9 #define pr_fmt(fmt) "iio-core: " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/idr.h>
14 #include <linux/kdev_t.h>
15 #include <linux/err.h>
16 #include <linux/device.h>
17 #include <linux/fs.h>
18 #include <linux/poll.h>
19 #include <linux/property.h>
20 #include <linux/sched.h>
21 #include <linux/wait.h>
22 #include <linux/cdev.h>
23 #include <linux/slab.h>
24 #include <linux/anon_inodes.h>
25 #include <linux/debugfs.h>
26 #include <linux/mutex.h>
27 #include <linux/iio/iio.h>
28 #include <linux/iio/iio-opaque.h>
29 #include "iio_core.h"
30 #include "iio_core_trigger.h"
31 #include <linux/iio/sysfs.h>
32 #include <linux/iio/events.h>
33 #include <linux/iio/buffer.h>
34 #include <linux/iio/buffer_impl.h>
35 
36 /* IDA to assign each registered device a unique id */
37 static DEFINE_IDA(iio_ida);
38 
39 static dev_t iio_devt;
40 
41 #define IIO_DEV_MAX 256
42 struct bus_type iio_bus_type = {
43 	.name = "iio",
44 };
45 EXPORT_SYMBOL(iio_bus_type);
46 
47 static struct dentry *iio_debugfs_dentry;
48 
49 static const char * const iio_direction[] = {
50 	[0] = "in",
51 	[1] = "out",
52 };
53 
54 static const char * const iio_chan_type_name_spec[] = {
55 	[IIO_VOLTAGE] = "voltage",
56 	[IIO_CURRENT] = "current",
57 	[IIO_POWER] = "power",
58 	[IIO_ACCEL] = "accel",
59 	[IIO_ANGL_VEL] = "anglvel",
60 	[IIO_MAGN] = "magn",
61 	[IIO_LIGHT] = "illuminance",
62 	[IIO_INTENSITY] = "intensity",
63 	[IIO_PROXIMITY] = "proximity",
64 	[IIO_TEMP] = "temp",
65 	[IIO_INCLI] = "incli",
66 	[IIO_ROT] = "rot",
67 	[IIO_ANGL] = "angl",
68 	[IIO_TIMESTAMP] = "timestamp",
69 	[IIO_CAPACITANCE] = "capacitance",
70 	[IIO_ALTVOLTAGE] = "altvoltage",
71 	[IIO_CCT] = "cct",
72 	[IIO_PRESSURE] = "pressure",
73 	[IIO_HUMIDITYRELATIVE] = "humidityrelative",
74 	[IIO_ACTIVITY] = "activity",
75 	[IIO_STEPS] = "steps",
76 	[IIO_ENERGY] = "energy",
77 	[IIO_DISTANCE] = "distance",
78 	[IIO_VELOCITY] = "velocity",
79 	[IIO_CONCENTRATION] = "concentration",
80 	[IIO_RESISTANCE] = "resistance",
81 	[IIO_PH] = "ph",
82 	[IIO_UVINDEX] = "uvindex",
83 	[IIO_ELECTRICALCONDUCTIVITY] = "electricalconductivity",
84 	[IIO_COUNT] = "count",
85 	[IIO_INDEX] = "index",
86 	[IIO_GRAVITY]  = "gravity",
87 	[IIO_POSITIONRELATIVE]  = "positionrelative",
88 	[IIO_PHASE] = "phase",
89 	[IIO_MASSCONCENTRATION] = "massconcentration",
90 };
91 
92 static const char * const iio_modifier_names[] = {
93 	[IIO_MOD_X] = "x",
94 	[IIO_MOD_Y] = "y",
95 	[IIO_MOD_Z] = "z",
96 	[IIO_MOD_X_AND_Y] = "x&y",
97 	[IIO_MOD_X_AND_Z] = "x&z",
98 	[IIO_MOD_Y_AND_Z] = "y&z",
99 	[IIO_MOD_X_AND_Y_AND_Z] = "x&y&z",
100 	[IIO_MOD_X_OR_Y] = "x|y",
101 	[IIO_MOD_X_OR_Z] = "x|z",
102 	[IIO_MOD_Y_OR_Z] = "y|z",
103 	[IIO_MOD_X_OR_Y_OR_Z] = "x|y|z",
104 	[IIO_MOD_ROOT_SUM_SQUARED_X_Y] = "sqrt(x^2+y^2)",
105 	[IIO_MOD_SUM_SQUARED_X_Y_Z] = "x^2+y^2+z^2",
106 	[IIO_MOD_LIGHT_BOTH] = "both",
107 	[IIO_MOD_LIGHT_IR] = "ir",
108 	[IIO_MOD_LIGHT_CLEAR] = "clear",
109 	[IIO_MOD_LIGHT_RED] = "red",
110 	[IIO_MOD_LIGHT_GREEN] = "green",
111 	[IIO_MOD_LIGHT_BLUE] = "blue",
112 	[IIO_MOD_LIGHT_UV] = "uv",
113 	[IIO_MOD_LIGHT_DUV] = "duv",
114 	[IIO_MOD_QUATERNION] = "quaternion",
115 	[IIO_MOD_TEMP_AMBIENT] = "ambient",
116 	[IIO_MOD_TEMP_OBJECT] = "object",
117 	[IIO_MOD_NORTH_MAGN] = "from_north_magnetic",
118 	[IIO_MOD_NORTH_TRUE] = "from_north_true",
119 	[IIO_MOD_NORTH_MAGN_TILT_COMP] = "from_north_magnetic_tilt_comp",
120 	[IIO_MOD_NORTH_TRUE_TILT_COMP] = "from_north_true_tilt_comp",
121 	[IIO_MOD_RUNNING] = "running",
122 	[IIO_MOD_JOGGING] = "jogging",
123 	[IIO_MOD_WALKING] = "walking",
124 	[IIO_MOD_STILL] = "still",
125 	[IIO_MOD_ROOT_SUM_SQUARED_X_Y_Z] = "sqrt(x^2+y^2+z^2)",
126 	[IIO_MOD_I] = "i",
127 	[IIO_MOD_Q] = "q",
128 	[IIO_MOD_CO2] = "co2",
129 	[IIO_MOD_VOC] = "voc",
130 	[IIO_MOD_PM1] = "pm1",
131 	[IIO_MOD_PM2P5] = "pm2p5",
132 	[IIO_MOD_PM4] = "pm4",
133 	[IIO_MOD_PM10] = "pm10",
134 	[IIO_MOD_ETHANOL] = "ethanol",
135 	[IIO_MOD_H2] = "h2",
136 	[IIO_MOD_O2] = "o2",
137 };
138 
139 /* relies on pairs of these shared then separate */
140 static const char * const iio_chan_info_postfix[] = {
141 	[IIO_CHAN_INFO_RAW] = "raw",
142 	[IIO_CHAN_INFO_PROCESSED] = "input",
143 	[IIO_CHAN_INFO_SCALE] = "scale",
144 	[IIO_CHAN_INFO_OFFSET] = "offset",
145 	[IIO_CHAN_INFO_CALIBSCALE] = "calibscale",
146 	[IIO_CHAN_INFO_CALIBBIAS] = "calibbias",
147 	[IIO_CHAN_INFO_PEAK] = "peak_raw",
148 	[IIO_CHAN_INFO_PEAK_SCALE] = "peak_scale",
149 	[IIO_CHAN_INFO_QUADRATURE_CORRECTION_RAW] = "quadrature_correction_raw",
150 	[IIO_CHAN_INFO_AVERAGE_RAW] = "mean_raw",
151 	[IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY]
152 	= "filter_low_pass_3db_frequency",
153 	[IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY]
154 	= "filter_high_pass_3db_frequency",
155 	[IIO_CHAN_INFO_SAMP_FREQ] = "sampling_frequency",
156 	[IIO_CHAN_INFO_FREQUENCY] = "frequency",
157 	[IIO_CHAN_INFO_PHASE] = "phase",
158 	[IIO_CHAN_INFO_HARDWAREGAIN] = "hardwaregain",
159 	[IIO_CHAN_INFO_HYSTERESIS] = "hysteresis",
160 	[IIO_CHAN_INFO_INT_TIME] = "integration_time",
161 	[IIO_CHAN_INFO_ENABLE] = "en",
162 	[IIO_CHAN_INFO_CALIBHEIGHT] = "calibheight",
163 	[IIO_CHAN_INFO_CALIBWEIGHT] = "calibweight",
164 	[IIO_CHAN_INFO_DEBOUNCE_COUNT] = "debounce_count",
165 	[IIO_CHAN_INFO_DEBOUNCE_TIME] = "debounce_time",
166 	[IIO_CHAN_INFO_CALIBEMISSIVITY] = "calibemissivity",
167 	[IIO_CHAN_INFO_OVERSAMPLING_RATIO] = "oversampling_ratio",
168 	[IIO_CHAN_INFO_THERMOCOUPLE_TYPE] = "thermocouple_type",
169 	[IIO_CHAN_INFO_CALIBAMBIENT] = "calibambient",
170 };
171 
172 /**
173  * iio_sysfs_match_string_with_gaps - matches given string in an array with gaps
174  * @array: array of strings
175  * @n: number of strings in the array
176  * @str: string to match with
177  *
178  * Returns index of @str in the @array or -EINVAL, similar to match_string().
179  * Uses sysfs_streq instead of strcmp for matching.
180  *
181  * This routine will look for a string in an array of strings.
182  * The search will continue until the element is found or the n-th element
183  * is reached, regardless of any NULL elements in the array.
184  */
185 static int iio_sysfs_match_string_with_gaps(const char * const *array, size_t n,
186 					    const char *str)
187 {
188 	const char *item;
189 	int index;
190 
191 	for (index = 0; index < n; index++) {
192 		item = array[index];
193 		if (!item)
194 			continue;
195 		if (sysfs_streq(item, str))
196 			return index;
197 	}
198 
199 	return -EINVAL;
200 }
201 
202 #if defined(CONFIG_DEBUG_FS)
203 /*
204  * There's also a CONFIG_DEBUG_FS guard in include/linux/iio/iio.h for
205  * iio_get_debugfs_dentry() to make it inline if CONFIG_DEBUG_FS is undefined
206  */
207 struct dentry *iio_get_debugfs_dentry(struct iio_dev *indio_dev)
208 {
209 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
210 	return iio_dev_opaque->debugfs_dentry;
211 }
212 EXPORT_SYMBOL_GPL(iio_get_debugfs_dentry);
213 #endif
214 
215 /**
216  * iio_find_channel_from_si() - get channel from its scan index
217  * @indio_dev:		device
218  * @si:			scan index to match
219  */
220 const struct iio_chan_spec
221 *iio_find_channel_from_si(struct iio_dev *indio_dev, int si)
222 {
223 	int i;
224 
225 	for (i = 0; i < indio_dev->num_channels; i++)
226 		if (indio_dev->channels[i].scan_index == si)
227 			return &indio_dev->channels[i];
228 	return NULL;
229 }
230 
231 /* This turns up an awful lot */
232 ssize_t iio_read_const_attr(struct device *dev,
233 			    struct device_attribute *attr,
234 			    char *buf)
235 {
236 	return sprintf(buf, "%s\n", to_iio_const_attr(attr)->string);
237 }
238 EXPORT_SYMBOL(iio_read_const_attr);
239 
240 /**
241  * iio_device_set_clock() - Set current timestamping clock for the device
242  * @indio_dev: IIO device structure containing the device
243  * @clock_id: timestamping clock posix identifier to set.
244  */
245 int iio_device_set_clock(struct iio_dev *indio_dev, clockid_t clock_id)
246 {
247 	int ret;
248 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
249 	const struct iio_event_interface *ev_int = iio_dev_opaque->event_interface;
250 
251 	ret = mutex_lock_interruptible(&indio_dev->mlock);
252 	if (ret)
253 		return ret;
254 	if ((ev_int && iio_event_enabled(ev_int)) ||
255 	    iio_buffer_enabled(indio_dev)) {
256 		mutex_unlock(&indio_dev->mlock);
257 		return -EBUSY;
258 	}
259 	indio_dev->clock_id = clock_id;
260 	mutex_unlock(&indio_dev->mlock);
261 
262 	return 0;
263 }
264 EXPORT_SYMBOL(iio_device_set_clock);
265 
266 /**
267  * iio_get_time_ns() - utility function to get a time stamp for events etc
268  * @indio_dev: device
269  */
270 s64 iio_get_time_ns(const struct iio_dev *indio_dev)
271 {
272 	struct timespec64 tp;
273 
274 	switch (iio_device_get_clock(indio_dev)) {
275 	case CLOCK_REALTIME:
276 		return ktime_get_real_ns();
277 	case CLOCK_MONOTONIC:
278 		return ktime_get_ns();
279 	case CLOCK_MONOTONIC_RAW:
280 		return ktime_get_raw_ns();
281 	case CLOCK_REALTIME_COARSE:
282 		return ktime_to_ns(ktime_get_coarse_real());
283 	case CLOCK_MONOTONIC_COARSE:
284 		ktime_get_coarse_ts64(&tp);
285 		return timespec64_to_ns(&tp);
286 	case CLOCK_BOOTTIME:
287 		return ktime_get_boottime_ns();
288 	case CLOCK_TAI:
289 		return ktime_get_clocktai_ns();
290 	default:
291 		BUG();
292 	}
293 }
294 EXPORT_SYMBOL(iio_get_time_ns);
295 
296 /**
297  * iio_get_time_res() - utility function to get time stamp clock resolution in
298  *                      nano seconds.
299  * @indio_dev: device
300  */
301 unsigned int iio_get_time_res(const struct iio_dev *indio_dev)
302 {
303 	switch (iio_device_get_clock(indio_dev)) {
304 	case CLOCK_REALTIME:
305 	case CLOCK_MONOTONIC:
306 	case CLOCK_MONOTONIC_RAW:
307 	case CLOCK_BOOTTIME:
308 	case CLOCK_TAI:
309 		return hrtimer_resolution;
310 	case CLOCK_REALTIME_COARSE:
311 	case CLOCK_MONOTONIC_COARSE:
312 		return LOW_RES_NSEC;
313 	default:
314 		BUG();
315 	}
316 }
317 EXPORT_SYMBOL(iio_get_time_res);
318 
319 static int __init iio_init(void)
320 {
321 	int ret;
322 
323 	/* Register sysfs bus */
324 	ret  = bus_register(&iio_bus_type);
325 	if (ret < 0) {
326 		pr_err("could not register bus type\n");
327 		goto error_nothing;
328 	}
329 
330 	ret = alloc_chrdev_region(&iio_devt, 0, IIO_DEV_MAX, "iio");
331 	if (ret < 0) {
332 		pr_err("failed to allocate char dev region\n");
333 		goto error_unregister_bus_type;
334 	}
335 
336 	iio_debugfs_dentry = debugfs_create_dir("iio", NULL);
337 
338 	return 0;
339 
340 error_unregister_bus_type:
341 	bus_unregister(&iio_bus_type);
342 error_nothing:
343 	return ret;
344 }
345 
346 static void __exit iio_exit(void)
347 {
348 	if (iio_devt)
349 		unregister_chrdev_region(iio_devt, IIO_DEV_MAX);
350 	bus_unregister(&iio_bus_type);
351 	debugfs_remove(iio_debugfs_dentry);
352 }
353 
354 #if defined(CONFIG_DEBUG_FS)
355 static ssize_t iio_debugfs_read_reg(struct file *file, char __user *userbuf,
356 			      size_t count, loff_t *ppos)
357 {
358 	struct iio_dev *indio_dev = file->private_data;
359 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
360 	unsigned val = 0;
361 	int ret;
362 
363 	if (*ppos > 0)
364 		return simple_read_from_buffer(userbuf, count, ppos,
365 					       iio_dev_opaque->read_buf,
366 					       iio_dev_opaque->read_buf_len);
367 
368 	ret = indio_dev->info->debugfs_reg_access(indio_dev,
369 						  iio_dev_opaque->cached_reg_addr,
370 						  0, &val);
371 	if (ret) {
372 		dev_err(indio_dev->dev.parent, "%s: read failed\n", __func__);
373 		return ret;
374 	}
375 
376 	iio_dev_opaque->read_buf_len = snprintf(iio_dev_opaque->read_buf,
377 					      sizeof(iio_dev_opaque->read_buf),
378 					      "0x%X\n", val);
379 
380 	return simple_read_from_buffer(userbuf, count, ppos,
381 				       iio_dev_opaque->read_buf,
382 				       iio_dev_opaque->read_buf_len);
383 }
384 
385 static ssize_t iio_debugfs_write_reg(struct file *file,
386 		     const char __user *userbuf, size_t count, loff_t *ppos)
387 {
388 	struct iio_dev *indio_dev = file->private_data;
389 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
390 	unsigned reg, val;
391 	char buf[80];
392 	int ret;
393 
394 	count = min_t(size_t, count, (sizeof(buf)-1));
395 	if (copy_from_user(buf, userbuf, count))
396 		return -EFAULT;
397 
398 	buf[count] = 0;
399 
400 	ret = sscanf(buf, "%i %i", &reg, &val);
401 
402 	switch (ret) {
403 	case 1:
404 		iio_dev_opaque->cached_reg_addr = reg;
405 		break;
406 	case 2:
407 		iio_dev_opaque->cached_reg_addr = reg;
408 		ret = indio_dev->info->debugfs_reg_access(indio_dev, reg,
409 							  val, NULL);
410 		if (ret) {
411 			dev_err(indio_dev->dev.parent, "%s: write failed\n",
412 				__func__);
413 			return ret;
414 		}
415 		break;
416 	default:
417 		return -EINVAL;
418 	}
419 
420 	return count;
421 }
422 
423 static const struct file_operations iio_debugfs_reg_fops = {
424 	.open = simple_open,
425 	.read = iio_debugfs_read_reg,
426 	.write = iio_debugfs_write_reg,
427 };
428 
429 static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
430 {
431 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
432 	debugfs_remove_recursive(iio_dev_opaque->debugfs_dentry);
433 }
434 
435 static void iio_device_register_debugfs(struct iio_dev *indio_dev)
436 {
437 	struct iio_dev_opaque *iio_dev_opaque;
438 
439 	if (indio_dev->info->debugfs_reg_access == NULL)
440 		return;
441 
442 	if (!iio_debugfs_dentry)
443 		return;
444 
445 	iio_dev_opaque = to_iio_dev_opaque(indio_dev);
446 
447 	iio_dev_opaque->debugfs_dentry =
448 		debugfs_create_dir(dev_name(&indio_dev->dev),
449 				   iio_debugfs_dentry);
450 
451 	debugfs_create_file("direct_reg_access", 0644,
452 			    iio_dev_opaque->debugfs_dentry, indio_dev,
453 			    &iio_debugfs_reg_fops);
454 }
455 #else
456 static void iio_device_register_debugfs(struct iio_dev *indio_dev)
457 {
458 }
459 
460 static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
461 {
462 }
463 #endif /* CONFIG_DEBUG_FS */
464 
465 static ssize_t iio_read_channel_ext_info(struct device *dev,
466 				     struct device_attribute *attr,
467 				     char *buf)
468 {
469 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
470 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
471 	const struct iio_chan_spec_ext_info *ext_info;
472 
473 	ext_info = &this_attr->c->ext_info[this_attr->address];
474 
475 	return ext_info->read(indio_dev, ext_info->private, this_attr->c, buf);
476 }
477 
478 static ssize_t iio_write_channel_ext_info(struct device *dev,
479 				     struct device_attribute *attr,
480 				     const char *buf,
481 					 size_t len)
482 {
483 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
484 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
485 	const struct iio_chan_spec_ext_info *ext_info;
486 
487 	ext_info = &this_attr->c->ext_info[this_attr->address];
488 
489 	return ext_info->write(indio_dev, ext_info->private,
490 			       this_attr->c, buf, len);
491 }
492 
493 ssize_t iio_enum_available_read(struct iio_dev *indio_dev,
494 	uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
495 {
496 	const struct iio_enum *e = (const struct iio_enum *)priv;
497 	unsigned int i;
498 	size_t len = 0;
499 
500 	if (!e->num_items)
501 		return 0;
502 
503 	for (i = 0; i < e->num_items; ++i) {
504 		if (!e->items[i])
505 			continue;
506 		len += scnprintf(buf + len, PAGE_SIZE - len, "%s ", e->items[i]);
507 	}
508 
509 	/* replace last space with a newline */
510 	buf[len - 1] = '\n';
511 
512 	return len;
513 }
514 EXPORT_SYMBOL_GPL(iio_enum_available_read);
515 
516 ssize_t iio_enum_read(struct iio_dev *indio_dev,
517 	uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
518 {
519 	const struct iio_enum *e = (const struct iio_enum *)priv;
520 	int i;
521 
522 	if (!e->get)
523 		return -EINVAL;
524 
525 	i = e->get(indio_dev, chan);
526 	if (i < 0)
527 		return i;
528 	else if (i >= e->num_items || !e->items[i])
529 		return -EINVAL;
530 
531 	return snprintf(buf, PAGE_SIZE, "%s\n", e->items[i]);
532 }
533 EXPORT_SYMBOL_GPL(iio_enum_read);
534 
535 ssize_t iio_enum_write(struct iio_dev *indio_dev,
536 	uintptr_t priv, const struct iio_chan_spec *chan, const char *buf,
537 	size_t len)
538 {
539 	const struct iio_enum *e = (const struct iio_enum *)priv;
540 	int ret;
541 
542 	if (!e->set)
543 		return -EINVAL;
544 
545 	ret = iio_sysfs_match_string_with_gaps(e->items, e->num_items, buf);
546 	if (ret < 0)
547 		return ret;
548 
549 	ret = e->set(indio_dev, chan, ret);
550 	return ret ? ret : len;
551 }
552 EXPORT_SYMBOL_GPL(iio_enum_write);
553 
554 static const struct iio_mount_matrix iio_mount_idmatrix = {
555 	.rotation = {
556 		"1", "0", "0",
557 		"0", "1", "0",
558 		"0", "0", "1"
559 	}
560 };
561 
562 static int iio_setup_mount_idmatrix(const struct device *dev,
563 				    struct iio_mount_matrix *matrix)
564 {
565 	*matrix = iio_mount_idmatrix;
566 	dev_info(dev, "mounting matrix not found: using identity...\n");
567 	return 0;
568 }
569 
570 ssize_t iio_show_mount_matrix(struct iio_dev *indio_dev, uintptr_t priv,
571 			      const struct iio_chan_spec *chan, char *buf)
572 {
573 	const struct iio_mount_matrix *mtx = ((iio_get_mount_matrix_t *)
574 					      priv)(indio_dev, chan);
575 
576 	if (IS_ERR(mtx))
577 		return PTR_ERR(mtx);
578 
579 	if (!mtx)
580 		mtx = &iio_mount_idmatrix;
581 
582 	return snprintf(buf, PAGE_SIZE, "%s, %s, %s; %s, %s, %s; %s, %s, %s\n",
583 			mtx->rotation[0], mtx->rotation[1], mtx->rotation[2],
584 			mtx->rotation[3], mtx->rotation[4], mtx->rotation[5],
585 			mtx->rotation[6], mtx->rotation[7], mtx->rotation[8]);
586 }
587 EXPORT_SYMBOL_GPL(iio_show_mount_matrix);
588 
589 /**
590  * iio_read_mount_matrix() - retrieve iio device mounting matrix from
591  *                           device "mount-matrix" property
592  * @dev:	device the mounting matrix property is assigned to
593  * @propname:	device specific mounting matrix property name
594  * @matrix:	where to store retrieved matrix
595  *
596  * If device is assigned no mounting matrix property, a default 3x3 identity
597  * matrix will be filled in.
598  *
599  * Return: 0 if success, or a negative error code on failure.
600  */
601 int iio_read_mount_matrix(struct device *dev, const char *propname,
602 			  struct iio_mount_matrix *matrix)
603 {
604 	size_t len = ARRAY_SIZE(iio_mount_idmatrix.rotation);
605 	int err;
606 
607 	err = device_property_read_string_array(dev, propname,
608 						matrix->rotation, len);
609 	if (err == len)
610 		return 0;
611 
612 	if (err >= 0)
613 		/* Invalid number of matrix entries. */
614 		return -EINVAL;
615 
616 	if (err != -EINVAL)
617 		/* Invalid matrix declaration format. */
618 		return err;
619 
620 	/* Matrix was not declared at all: fallback to identity. */
621 	return iio_setup_mount_idmatrix(dev, matrix);
622 }
623 EXPORT_SYMBOL(iio_read_mount_matrix);
624 
625 static ssize_t __iio_format_value(char *buf, size_t len, unsigned int type,
626 				  int size, const int *vals)
627 {
628 	int tmp0, tmp1;
629 	s64 tmp2;
630 	bool scale_db = false;
631 
632 	switch (type) {
633 	case IIO_VAL_INT:
634 		return scnprintf(buf, len, "%d", vals[0]);
635 	case IIO_VAL_INT_PLUS_MICRO_DB:
636 		scale_db = true;
637 		fallthrough;
638 	case IIO_VAL_INT_PLUS_MICRO:
639 		if (vals[1] < 0)
640 			return scnprintf(buf, len, "-%d.%06u%s", abs(vals[0]),
641 					-vals[1], scale_db ? " dB" : "");
642 		else
643 			return scnprintf(buf, len, "%d.%06u%s", vals[0], vals[1],
644 					scale_db ? " dB" : "");
645 	case IIO_VAL_INT_PLUS_NANO:
646 		if (vals[1] < 0)
647 			return scnprintf(buf, len, "-%d.%09u", abs(vals[0]),
648 					-vals[1]);
649 		else
650 			return scnprintf(buf, len, "%d.%09u", vals[0], vals[1]);
651 	case IIO_VAL_FRACTIONAL:
652 		tmp2 = div_s64((s64)vals[0] * 1000000000LL, vals[1]);
653 		tmp1 = vals[1];
654 		tmp0 = (int)div_s64_rem(tmp2, 1000000000, &tmp1);
655 		if ((tmp2 < 0) && (tmp0 == 0))
656 			return snprintf(buf, len, "-0.%09u", abs(tmp1));
657 		else
658 			return snprintf(buf, len, "%d.%09u", tmp0, abs(tmp1));
659 	case IIO_VAL_FRACTIONAL_LOG2:
660 		tmp2 = shift_right((s64)vals[0] * 1000000000LL, vals[1]);
661 		tmp0 = (int)div_s64_rem(tmp2, 1000000000LL, &tmp1);
662 		if (tmp0 == 0 && tmp2 < 0)
663 			return snprintf(buf, len, "-0.%09u", abs(tmp1));
664 		else
665 			return scnprintf(buf, len, "%d.%09u", tmp0, abs(tmp1));
666 	case IIO_VAL_INT_MULTIPLE:
667 	{
668 		int i;
669 		int l = 0;
670 
671 		for (i = 0; i < size; ++i) {
672 			l += scnprintf(&buf[l], len - l, "%d ", vals[i]);
673 			if (l >= len)
674 				break;
675 		}
676 		return l;
677 	}
678 	case IIO_VAL_CHAR:
679 		return scnprintf(buf, len, "%c", (char)vals[0]);
680 	default:
681 		return 0;
682 	}
683 }
684 
685 /**
686  * iio_format_value() - Formats a IIO value into its string representation
687  * @buf:	The buffer to which the formatted value gets written
688  *		which is assumed to be big enough (i.e. PAGE_SIZE).
689  * @type:	One of the IIO_VAL_* constants. This decides how the val
690  *		and val2 parameters are formatted.
691  * @size:	Number of IIO value entries contained in vals
692  * @vals:	Pointer to the values, exact meaning depends on the
693  *		type parameter.
694  *
695  * Return: 0 by default, a negative number on failure or the
696  *	   total number of characters written for a type that belongs
697  *	   to the IIO_VAL_* constant.
698  */
699 ssize_t iio_format_value(char *buf, unsigned int type, int size, int *vals)
700 {
701 	ssize_t len;
702 
703 	len = __iio_format_value(buf, PAGE_SIZE, type, size, vals);
704 	if (len >= PAGE_SIZE - 1)
705 		return -EFBIG;
706 
707 	return len + sprintf(buf + len, "\n");
708 }
709 EXPORT_SYMBOL_GPL(iio_format_value);
710 
711 static ssize_t iio_read_channel_label(struct device *dev,
712 				      struct device_attribute *attr,
713 				      char *buf)
714 {
715 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
716 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
717 
718 	if (!indio_dev->info->read_label)
719 		return -EINVAL;
720 
721 	return indio_dev->info->read_label(indio_dev, this_attr->c, buf);
722 }
723 
724 static ssize_t iio_read_channel_info(struct device *dev,
725 				     struct device_attribute *attr,
726 				     char *buf)
727 {
728 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
729 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
730 	int vals[INDIO_MAX_RAW_ELEMENTS];
731 	int ret;
732 	int val_len = 2;
733 
734 	if (indio_dev->info->read_raw_multi)
735 		ret = indio_dev->info->read_raw_multi(indio_dev, this_attr->c,
736 							INDIO_MAX_RAW_ELEMENTS,
737 							vals, &val_len,
738 							this_attr->address);
739 	else
740 		ret = indio_dev->info->read_raw(indio_dev, this_attr->c,
741 				    &vals[0], &vals[1], this_attr->address);
742 
743 	if (ret < 0)
744 		return ret;
745 
746 	return iio_format_value(buf, ret, val_len, vals);
747 }
748 
749 static ssize_t iio_format_list(char *buf, const int *vals, int type, int length,
750 			       const char *prefix, const char *suffix)
751 {
752 	ssize_t len;
753 	int stride;
754 	int i;
755 
756 	switch (type) {
757 	case IIO_VAL_INT:
758 		stride = 1;
759 		break;
760 	default:
761 		stride = 2;
762 		break;
763 	}
764 
765 	len = scnprintf(buf, PAGE_SIZE, prefix);
766 
767 	for (i = 0; i <= length - stride; i += stride) {
768 		if (i != 0) {
769 			len += scnprintf(buf + len, PAGE_SIZE - len, " ");
770 			if (len >= PAGE_SIZE)
771 				return -EFBIG;
772 		}
773 
774 		len += __iio_format_value(buf + len, PAGE_SIZE - len, type,
775 					  stride, &vals[i]);
776 		if (len >= PAGE_SIZE)
777 			return -EFBIG;
778 	}
779 
780 	len += scnprintf(buf + len, PAGE_SIZE - len, "%s\n", suffix);
781 
782 	return len;
783 }
784 
785 static ssize_t iio_format_avail_list(char *buf, const int *vals,
786 				     int type, int length)
787 {
788 
789 	return iio_format_list(buf, vals, type, length, "", "");
790 }
791 
792 static ssize_t iio_format_avail_range(char *buf, const int *vals, int type)
793 {
794 	return iio_format_list(buf, vals, type, 3, "[", "]");
795 }
796 
797 static ssize_t iio_read_channel_info_avail(struct device *dev,
798 					   struct device_attribute *attr,
799 					   char *buf)
800 {
801 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
802 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
803 	const int *vals;
804 	int ret;
805 	int length;
806 	int type;
807 
808 	ret = indio_dev->info->read_avail(indio_dev, this_attr->c,
809 					  &vals, &type, &length,
810 					  this_attr->address);
811 
812 	if (ret < 0)
813 		return ret;
814 	switch (ret) {
815 	case IIO_AVAIL_LIST:
816 		return iio_format_avail_list(buf, vals, type, length);
817 	case IIO_AVAIL_RANGE:
818 		return iio_format_avail_range(buf, vals, type);
819 	default:
820 		return -EINVAL;
821 	}
822 }
823 
824 /**
825  * __iio_str_to_fixpoint() - Parse a fixed-point number from a string
826  * @str: The string to parse
827  * @fract_mult: Multiplier for the first decimal place, should be a power of 10
828  * @integer: The integer part of the number
829  * @fract: The fractional part of the number
830  * @scale_db: True if this should parse as dB
831  *
832  * Returns 0 on success, or a negative error code if the string could not be
833  * parsed.
834  */
835 static int __iio_str_to_fixpoint(const char *str, int fract_mult,
836 				 int *integer, int *fract, bool scale_db)
837 {
838 	int i = 0, f = 0;
839 	bool integer_part = true, negative = false;
840 
841 	if (fract_mult == 0) {
842 		*fract = 0;
843 
844 		return kstrtoint(str, 0, integer);
845 	}
846 
847 	if (str[0] == '-') {
848 		negative = true;
849 		str++;
850 	} else if (str[0] == '+') {
851 		str++;
852 	}
853 
854 	while (*str) {
855 		if ('0' <= *str && *str <= '9') {
856 			if (integer_part) {
857 				i = i * 10 + *str - '0';
858 			} else {
859 				f += fract_mult * (*str - '0');
860 				fract_mult /= 10;
861 			}
862 		} else if (*str == '\n') {
863 			if (*(str + 1) == '\0')
864 				break;
865 			else
866 				return -EINVAL;
867 		} else if (!strncmp(str, " dB", sizeof(" dB") - 1) && scale_db) {
868 			/* Ignore the dB suffix */
869 			str += sizeof(" dB") - 1;
870 			continue;
871 		} else if (!strncmp(str, "dB", sizeof("dB") - 1) && scale_db) {
872 			/* Ignore the dB suffix */
873 			str += sizeof("dB") - 1;
874 			continue;
875 		} else if (*str == '.' && integer_part) {
876 			integer_part = false;
877 		} else {
878 			return -EINVAL;
879 		}
880 		str++;
881 	}
882 
883 	if (negative) {
884 		if (i)
885 			i = -i;
886 		else
887 			f = -f;
888 	}
889 
890 	*integer = i;
891 	*fract = f;
892 
893 	return 0;
894 }
895 
896 /**
897  * iio_str_to_fixpoint() - Parse a fixed-point number from a string
898  * @str: The string to parse
899  * @fract_mult: Multiplier for the first decimal place, should be a power of 10
900  * @integer: The integer part of the number
901  * @fract: The fractional part of the number
902  *
903  * Returns 0 on success, or a negative error code if the string could not be
904  * parsed.
905  */
906 int iio_str_to_fixpoint(const char *str, int fract_mult,
907 			int *integer, int *fract)
908 {
909 	return __iio_str_to_fixpoint(str, fract_mult, integer, fract, false);
910 }
911 EXPORT_SYMBOL_GPL(iio_str_to_fixpoint);
912 
913 static ssize_t iio_write_channel_info(struct device *dev,
914 				      struct device_attribute *attr,
915 				      const char *buf,
916 				      size_t len)
917 {
918 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
919 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
920 	int ret, fract_mult = 100000;
921 	int integer, fract = 0;
922 	bool is_char = false;
923 	bool scale_db = false;
924 
925 	/* Assumes decimal - precision based on number of digits */
926 	if (!indio_dev->info->write_raw)
927 		return -EINVAL;
928 
929 	if (indio_dev->info->write_raw_get_fmt)
930 		switch (indio_dev->info->write_raw_get_fmt(indio_dev,
931 			this_attr->c, this_attr->address)) {
932 		case IIO_VAL_INT:
933 			fract_mult = 0;
934 			break;
935 		case IIO_VAL_INT_PLUS_MICRO_DB:
936 			scale_db = true;
937 			fallthrough;
938 		case IIO_VAL_INT_PLUS_MICRO:
939 			fract_mult = 100000;
940 			break;
941 		case IIO_VAL_INT_PLUS_NANO:
942 			fract_mult = 100000000;
943 			break;
944 		case IIO_VAL_CHAR:
945 			is_char = true;
946 			break;
947 		default:
948 			return -EINVAL;
949 		}
950 
951 	if (is_char) {
952 		char ch;
953 
954 		if (sscanf(buf, "%c", &ch) != 1)
955 			return -EINVAL;
956 		integer = ch;
957 	} else {
958 		ret = __iio_str_to_fixpoint(buf, fract_mult, &integer, &fract,
959 					    scale_db);
960 		if (ret)
961 			return ret;
962 	}
963 
964 	ret = indio_dev->info->write_raw(indio_dev, this_attr->c,
965 					 integer, fract, this_attr->address);
966 	if (ret)
967 		return ret;
968 
969 	return len;
970 }
971 
972 static
973 int __iio_device_attr_init(struct device_attribute *dev_attr,
974 			   const char *postfix,
975 			   struct iio_chan_spec const *chan,
976 			   ssize_t (*readfunc)(struct device *dev,
977 					       struct device_attribute *attr,
978 					       char *buf),
979 			   ssize_t (*writefunc)(struct device *dev,
980 						struct device_attribute *attr,
981 						const char *buf,
982 						size_t len),
983 			   enum iio_shared_by shared_by)
984 {
985 	int ret = 0;
986 	char *name = NULL;
987 	char *full_postfix;
988 	sysfs_attr_init(&dev_attr->attr);
989 
990 	/* Build up postfix of <extend_name>_<modifier>_postfix */
991 	if (chan->modified && (shared_by == IIO_SEPARATE)) {
992 		if (chan->extend_name)
993 			full_postfix = kasprintf(GFP_KERNEL, "%s_%s_%s",
994 						 iio_modifier_names[chan
995 								    ->channel2],
996 						 chan->extend_name,
997 						 postfix);
998 		else
999 			full_postfix = kasprintf(GFP_KERNEL, "%s_%s",
1000 						 iio_modifier_names[chan
1001 								    ->channel2],
1002 						 postfix);
1003 	} else {
1004 		if (chan->extend_name == NULL || shared_by != IIO_SEPARATE)
1005 			full_postfix = kstrdup(postfix, GFP_KERNEL);
1006 		else
1007 			full_postfix = kasprintf(GFP_KERNEL,
1008 						 "%s_%s",
1009 						 chan->extend_name,
1010 						 postfix);
1011 	}
1012 	if (full_postfix == NULL)
1013 		return -ENOMEM;
1014 
1015 	if (chan->differential) { /* Differential can not have modifier */
1016 		switch (shared_by) {
1017 		case IIO_SHARED_BY_ALL:
1018 			name = kasprintf(GFP_KERNEL, "%s", full_postfix);
1019 			break;
1020 		case IIO_SHARED_BY_DIR:
1021 			name = kasprintf(GFP_KERNEL, "%s_%s",
1022 						iio_direction[chan->output],
1023 						full_postfix);
1024 			break;
1025 		case IIO_SHARED_BY_TYPE:
1026 			name = kasprintf(GFP_KERNEL, "%s_%s-%s_%s",
1027 					    iio_direction[chan->output],
1028 					    iio_chan_type_name_spec[chan->type],
1029 					    iio_chan_type_name_spec[chan->type],
1030 					    full_postfix);
1031 			break;
1032 		case IIO_SEPARATE:
1033 			if (!chan->indexed) {
1034 				WARN(1, "Differential channels must be indexed\n");
1035 				ret = -EINVAL;
1036 				goto error_free_full_postfix;
1037 			}
1038 			name = kasprintf(GFP_KERNEL,
1039 					    "%s_%s%d-%s%d_%s",
1040 					    iio_direction[chan->output],
1041 					    iio_chan_type_name_spec[chan->type],
1042 					    chan->channel,
1043 					    iio_chan_type_name_spec[chan->type],
1044 					    chan->channel2,
1045 					    full_postfix);
1046 			break;
1047 		}
1048 	} else { /* Single ended */
1049 		switch (shared_by) {
1050 		case IIO_SHARED_BY_ALL:
1051 			name = kasprintf(GFP_KERNEL, "%s", full_postfix);
1052 			break;
1053 		case IIO_SHARED_BY_DIR:
1054 			name = kasprintf(GFP_KERNEL, "%s_%s",
1055 						iio_direction[chan->output],
1056 						full_postfix);
1057 			break;
1058 		case IIO_SHARED_BY_TYPE:
1059 			name = kasprintf(GFP_KERNEL, "%s_%s_%s",
1060 					    iio_direction[chan->output],
1061 					    iio_chan_type_name_spec[chan->type],
1062 					    full_postfix);
1063 			break;
1064 
1065 		case IIO_SEPARATE:
1066 			if (chan->indexed)
1067 				name = kasprintf(GFP_KERNEL, "%s_%s%d_%s",
1068 						    iio_direction[chan->output],
1069 						    iio_chan_type_name_spec[chan->type],
1070 						    chan->channel,
1071 						    full_postfix);
1072 			else
1073 				name = kasprintf(GFP_KERNEL, "%s_%s_%s",
1074 						    iio_direction[chan->output],
1075 						    iio_chan_type_name_spec[chan->type],
1076 						    full_postfix);
1077 			break;
1078 		}
1079 	}
1080 	if (name == NULL) {
1081 		ret = -ENOMEM;
1082 		goto error_free_full_postfix;
1083 	}
1084 	dev_attr->attr.name = name;
1085 
1086 	if (readfunc) {
1087 		dev_attr->attr.mode |= S_IRUGO;
1088 		dev_attr->show = readfunc;
1089 	}
1090 
1091 	if (writefunc) {
1092 		dev_attr->attr.mode |= S_IWUSR;
1093 		dev_attr->store = writefunc;
1094 	}
1095 
1096 error_free_full_postfix:
1097 	kfree(full_postfix);
1098 
1099 	return ret;
1100 }
1101 
1102 static void __iio_device_attr_deinit(struct device_attribute *dev_attr)
1103 {
1104 	kfree(dev_attr->attr.name);
1105 }
1106 
1107 int __iio_add_chan_devattr(const char *postfix,
1108 			   struct iio_chan_spec const *chan,
1109 			   ssize_t (*readfunc)(struct device *dev,
1110 					       struct device_attribute *attr,
1111 					       char *buf),
1112 			   ssize_t (*writefunc)(struct device *dev,
1113 						struct device_attribute *attr,
1114 						const char *buf,
1115 						size_t len),
1116 			   u64 mask,
1117 			   enum iio_shared_by shared_by,
1118 			   struct device *dev,
1119 			   struct list_head *attr_list)
1120 {
1121 	int ret;
1122 	struct iio_dev_attr *iio_attr, *t;
1123 
1124 	iio_attr = kzalloc(sizeof(*iio_attr), GFP_KERNEL);
1125 	if (iio_attr == NULL)
1126 		return -ENOMEM;
1127 	ret = __iio_device_attr_init(&iio_attr->dev_attr,
1128 				     postfix, chan,
1129 				     readfunc, writefunc, shared_by);
1130 	if (ret)
1131 		goto error_iio_dev_attr_free;
1132 	iio_attr->c = chan;
1133 	iio_attr->address = mask;
1134 	list_for_each_entry(t, attr_list, l)
1135 		if (strcmp(t->dev_attr.attr.name,
1136 			   iio_attr->dev_attr.attr.name) == 0) {
1137 			if (shared_by == IIO_SEPARATE)
1138 				dev_err(dev, "tried to double register : %s\n",
1139 					t->dev_attr.attr.name);
1140 			ret = -EBUSY;
1141 			goto error_device_attr_deinit;
1142 		}
1143 	list_add(&iio_attr->l, attr_list);
1144 
1145 	return 0;
1146 
1147 error_device_attr_deinit:
1148 	__iio_device_attr_deinit(&iio_attr->dev_attr);
1149 error_iio_dev_attr_free:
1150 	kfree(iio_attr);
1151 	return ret;
1152 }
1153 
1154 static int iio_device_add_channel_label(struct iio_dev *indio_dev,
1155 					 struct iio_chan_spec const *chan)
1156 {
1157 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1158 	int ret;
1159 
1160 	if (!indio_dev->info->read_label)
1161 		return 0;
1162 
1163 	ret = __iio_add_chan_devattr("label",
1164 				     chan,
1165 				     &iio_read_channel_label,
1166 				     NULL,
1167 				     0,
1168 				     IIO_SEPARATE,
1169 				     &indio_dev->dev,
1170 				     &iio_dev_opaque->channel_attr_list);
1171 	if (ret < 0)
1172 		return ret;
1173 
1174 	return 1;
1175 }
1176 
1177 static int iio_device_add_info_mask_type(struct iio_dev *indio_dev,
1178 					 struct iio_chan_spec const *chan,
1179 					 enum iio_shared_by shared_by,
1180 					 const long *infomask)
1181 {
1182 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1183 	int i, ret, attrcount = 0;
1184 
1185 	for_each_set_bit(i, infomask, sizeof(*infomask)*8) {
1186 		if (i >= ARRAY_SIZE(iio_chan_info_postfix))
1187 			return -EINVAL;
1188 		ret = __iio_add_chan_devattr(iio_chan_info_postfix[i],
1189 					     chan,
1190 					     &iio_read_channel_info,
1191 					     &iio_write_channel_info,
1192 					     i,
1193 					     shared_by,
1194 					     &indio_dev->dev,
1195 					     &iio_dev_opaque->channel_attr_list);
1196 		if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
1197 			continue;
1198 		else if (ret < 0)
1199 			return ret;
1200 		attrcount++;
1201 	}
1202 
1203 	return attrcount;
1204 }
1205 
1206 static int iio_device_add_info_mask_type_avail(struct iio_dev *indio_dev,
1207 					       struct iio_chan_spec const *chan,
1208 					       enum iio_shared_by shared_by,
1209 					       const long *infomask)
1210 {
1211 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1212 	int i, ret, attrcount = 0;
1213 	char *avail_postfix;
1214 
1215 	for_each_set_bit(i, infomask, sizeof(*infomask) * 8) {
1216 		if (i >= ARRAY_SIZE(iio_chan_info_postfix))
1217 			return -EINVAL;
1218 		avail_postfix = kasprintf(GFP_KERNEL,
1219 					  "%s_available",
1220 					  iio_chan_info_postfix[i]);
1221 		if (!avail_postfix)
1222 			return -ENOMEM;
1223 
1224 		ret = __iio_add_chan_devattr(avail_postfix,
1225 					     chan,
1226 					     &iio_read_channel_info_avail,
1227 					     NULL,
1228 					     i,
1229 					     shared_by,
1230 					     &indio_dev->dev,
1231 					     &iio_dev_opaque->channel_attr_list);
1232 		kfree(avail_postfix);
1233 		if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
1234 			continue;
1235 		else if (ret < 0)
1236 			return ret;
1237 		attrcount++;
1238 	}
1239 
1240 	return attrcount;
1241 }
1242 
1243 static int iio_device_add_channel_sysfs(struct iio_dev *indio_dev,
1244 					struct iio_chan_spec const *chan)
1245 {
1246 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1247 	int ret, attrcount = 0;
1248 	const struct iio_chan_spec_ext_info *ext_info;
1249 
1250 	if (chan->channel < 0)
1251 		return 0;
1252 	ret = iio_device_add_info_mask_type(indio_dev, chan,
1253 					    IIO_SEPARATE,
1254 					    &chan->info_mask_separate);
1255 	if (ret < 0)
1256 		return ret;
1257 	attrcount += ret;
1258 
1259 	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1260 						  IIO_SEPARATE,
1261 						  &chan->
1262 						  info_mask_separate_available);
1263 	if (ret < 0)
1264 		return ret;
1265 	attrcount += ret;
1266 
1267 	ret = iio_device_add_info_mask_type(indio_dev, chan,
1268 					    IIO_SHARED_BY_TYPE,
1269 					    &chan->info_mask_shared_by_type);
1270 	if (ret < 0)
1271 		return ret;
1272 	attrcount += ret;
1273 
1274 	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1275 						  IIO_SHARED_BY_TYPE,
1276 						  &chan->
1277 						  info_mask_shared_by_type_available);
1278 	if (ret < 0)
1279 		return ret;
1280 	attrcount += ret;
1281 
1282 	ret = iio_device_add_info_mask_type(indio_dev, chan,
1283 					    IIO_SHARED_BY_DIR,
1284 					    &chan->info_mask_shared_by_dir);
1285 	if (ret < 0)
1286 		return ret;
1287 	attrcount += ret;
1288 
1289 	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1290 						  IIO_SHARED_BY_DIR,
1291 						  &chan->info_mask_shared_by_dir_available);
1292 	if (ret < 0)
1293 		return ret;
1294 	attrcount += ret;
1295 
1296 	ret = iio_device_add_info_mask_type(indio_dev, chan,
1297 					    IIO_SHARED_BY_ALL,
1298 					    &chan->info_mask_shared_by_all);
1299 	if (ret < 0)
1300 		return ret;
1301 	attrcount += ret;
1302 
1303 	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1304 						  IIO_SHARED_BY_ALL,
1305 						  &chan->info_mask_shared_by_all_available);
1306 	if (ret < 0)
1307 		return ret;
1308 	attrcount += ret;
1309 
1310 	ret = iio_device_add_channel_label(indio_dev, chan);
1311 	if (ret < 0)
1312 		return ret;
1313 	attrcount += ret;
1314 
1315 	if (chan->ext_info) {
1316 		unsigned int i = 0;
1317 		for (ext_info = chan->ext_info; ext_info->name; ext_info++) {
1318 			ret = __iio_add_chan_devattr(ext_info->name,
1319 					chan,
1320 					ext_info->read ?
1321 					    &iio_read_channel_ext_info : NULL,
1322 					ext_info->write ?
1323 					    &iio_write_channel_ext_info : NULL,
1324 					i,
1325 					ext_info->shared,
1326 					&indio_dev->dev,
1327 					&iio_dev_opaque->channel_attr_list);
1328 			i++;
1329 			if (ret == -EBUSY && ext_info->shared)
1330 				continue;
1331 
1332 			if (ret)
1333 				return ret;
1334 
1335 			attrcount++;
1336 		}
1337 	}
1338 
1339 	return attrcount;
1340 }
1341 
1342 /**
1343  * iio_free_chan_devattr_list() - Free a list of IIO device attributes
1344  * @attr_list: List of IIO device attributes
1345  *
1346  * This function frees the memory allocated for each of the IIO device
1347  * attributes in the list.
1348  */
1349 void iio_free_chan_devattr_list(struct list_head *attr_list)
1350 {
1351 	struct iio_dev_attr *p, *n;
1352 
1353 	list_for_each_entry_safe(p, n, attr_list, l) {
1354 		kfree(p->dev_attr.attr.name);
1355 		list_del(&p->l);
1356 		kfree(p);
1357 	}
1358 }
1359 
1360 static ssize_t iio_show_dev_name(struct device *dev,
1361 				 struct device_attribute *attr,
1362 				 char *buf)
1363 {
1364 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1365 	return snprintf(buf, PAGE_SIZE, "%s\n", indio_dev->name);
1366 }
1367 
1368 static DEVICE_ATTR(name, S_IRUGO, iio_show_dev_name, NULL);
1369 
1370 static ssize_t iio_show_dev_label(struct device *dev,
1371 				 struct device_attribute *attr,
1372 				 char *buf)
1373 {
1374 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1375 	return snprintf(buf, PAGE_SIZE, "%s\n", indio_dev->label);
1376 }
1377 
1378 static DEVICE_ATTR(label, S_IRUGO, iio_show_dev_label, NULL);
1379 
1380 static ssize_t iio_show_timestamp_clock(struct device *dev,
1381 					struct device_attribute *attr,
1382 					char *buf)
1383 {
1384 	const struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1385 	const clockid_t clk = iio_device_get_clock(indio_dev);
1386 	const char *name;
1387 	ssize_t sz;
1388 
1389 	switch (clk) {
1390 	case CLOCK_REALTIME:
1391 		name = "realtime\n";
1392 		sz = sizeof("realtime\n");
1393 		break;
1394 	case CLOCK_MONOTONIC:
1395 		name = "monotonic\n";
1396 		sz = sizeof("monotonic\n");
1397 		break;
1398 	case CLOCK_MONOTONIC_RAW:
1399 		name = "monotonic_raw\n";
1400 		sz = sizeof("monotonic_raw\n");
1401 		break;
1402 	case CLOCK_REALTIME_COARSE:
1403 		name = "realtime_coarse\n";
1404 		sz = sizeof("realtime_coarse\n");
1405 		break;
1406 	case CLOCK_MONOTONIC_COARSE:
1407 		name = "monotonic_coarse\n";
1408 		sz = sizeof("monotonic_coarse\n");
1409 		break;
1410 	case CLOCK_BOOTTIME:
1411 		name = "boottime\n";
1412 		sz = sizeof("boottime\n");
1413 		break;
1414 	case CLOCK_TAI:
1415 		name = "tai\n";
1416 		sz = sizeof("tai\n");
1417 		break;
1418 	default:
1419 		BUG();
1420 	}
1421 
1422 	memcpy(buf, name, sz);
1423 	return sz;
1424 }
1425 
1426 static ssize_t iio_store_timestamp_clock(struct device *dev,
1427 					 struct device_attribute *attr,
1428 					 const char *buf, size_t len)
1429 {
1430 	clockid_t clk;
1431 	int ret;
1432 
1433 	if (sysfs_streq(buf, "realtime"))
1434 		clk = CLOCK_REALTIME;
1435 	else if (sysfs_streq(buf, "monotonic"))
1436 		clk = CLOCK_MONOTONIC;
1437 	else if (sysfs_streq(buf, "monotonic_raw"))
1438 		clk = CLOCK_MONOTONIC_RAW;
1439 	else if (sysfs_streq(buf, "realtime_coarse"))
1440 		clk = CLOCK_REALTIME_COARSE;
1441 	else if (sysfs_streq(buf, "monotonic_coarse"))
1442 		clk = CLOCK_MONOTONIC_COARSE;
1443 	else if (sysfs_streq(buf, "boottime"))
1444 		clk = CLOCK_BOOTTIME;
1445 	else if (sysfs_streq(buf, "tai"))
1446 		clk = CLOCK_TAI;
1447 	else
1448 		return -EINVAL;
1449 
1450 	ret = iio_device_set_clock(dev_to_iio_dev(dev), clk);
1451 	if (ret)
1452 		return ret;
1453 
1454 	return len;
1455 }
1456 
1457 static DEVICE_ATTR(current_timestamp_clock, S_IRUGO | S_IWUSR,
1458 		   iio_show_timestamp_clock, iio_store_timestamp_clock);
1459 
1460 static int iio_device_register_sysfs(struct iio_dev *indio_dev)
1461 {
1462 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1463 	int i, ret = 0, attrcount, attrn, attrcount_orig = 0;
1464 	struct iio_dev_attr *p;
1465 	struct attribute **attr, *clk = NULL;
1466 
1467 	/* First count elements in any existing group */
1468 	if (indio_dev->info->attrs) {
1469 		attr = indio_dev->info->attrs->attrs;
1470 		while (*attr++ != NULL)
1471 			attrcount_orig++;
1472 	}
1473 	attrcount = attrcount_orig;
1474 	/*
1475 	 * New channel registration method - relies on the fact a group does
1476 	 * not need to be initialized if its name is NULL.
1477 	 */
1478 	if (indio_dev->channels)
1479 		for (i = 0; i < indio_dev->num_channels; i++) {
1480 			const struct iio_chan_spec *chan =
1481 				&indio_dev->channels[i];
1482 
1483 			if (chan->type == IIO_TIMESTAMP)
1484 				clk = &dev_attr_current_timestamp_clock.attr;
1485 
1486 			ret = iio_device_add_channel_sysfs(indio_dev, chan);
1487 			if (ret < 0)
1488 				goto error_clear_attrs;
1489 			attrcount += ret;
1490 		}
1491 
1492 	if (iio_dev_opaque->event_interface)
1493 		clk = &dev_attr_current_timestamp_clock.attr;
1494 
1495 	if (indio_dev->name)
1496 		attrcount++;
1497 	if (indio_dev->label)
1498 		attrcount++;
1499 	if (clk)
1500 		attrcount++;
1501 
1502 	iio_dev_opaque->chan_attr_group.attrs =
1503 		kcalloc(attrcount + 1,
1504 			sizeof(iio_dev_opaque->chan_attr_group.attrs[0]),
1505 			GFP_KERNEL);
1506 	if (iio_dev_opaque->chan_attr_group.attrs == NULL) {
1507 		ret = -ENOMEM;
1508 		goto error_clear_attrs;
1509 	}
1510 	/* Copy across original attributes */
1511 	if (indio_dev->info->attrs) {
1512 		memcpy(iio_dev_opaque->chan_attr_group.attrs,
1513 		       indio_dev->info->attrs->attrs,
1514 		       sizeof(iio_dev_opaque->chan_attr_group.attrs[0])
1515 		       *attrcount_orig);
1516 		iio_dev_opaque->chan_attr_group.is_visible =
1517 			indio_dev->info->attrs->is_visible;
1518 	}
1519 	attrn = attrcount_orig;
1520 	/* Add all elements from the list. */
1521 	list_for_each_entry(p, &iio_dev_opaque->channel_attr_list, l)
1522 		iio_dev_opaque->chan_attr_group.attrs[attrn++] = &p->dev_attr.attr;
1523 	if (indio_dev->name)
1524 		iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_name.attr;
1525 	if (indio_dev->label)
1526 		iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_label.attr;
1527 	if (clk)
1528 		iio_dev_opaque->chan_attr_group.attrs[attrn++] = clk;
1529 
1530 	indio_dev->groups[indio_dev->groupcounter++] =
1531 		&iio_dev_opaque->chan_attr_group;
1532 
1533 	return 0;
1534 
1535 error_clear_attrs:
1536 	iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
1537 
1538 	return ret;
1539 }
1540 
1541 static void iio_device_unregister_sysfs(struct iio_dev *indio_dev)
1542 {
1543 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1544 
1545 	iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
1546 	kfree(iio_dev_opaque->chan_attr_group.attrs);
1547 	iio_dev_opaque->chan_attr_group.attrs = NULL;
1548 }
1549 
1550 static void iio_dev_release(struct device *device)
1551 {
1552 	struct iio_dev *indio_dev = dev_to_iio_dev(device);
1553 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1554 
1555 	if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
1556 		iio_device_unregister_trigger_consumer(indio_dev);
1557 	iio_device_unregister_eventset(indio_dev);
1558 	iio_device_unregister_sysfs(indio_dev);
1559 
1560 	iio_buffer_put(indio_dev->buffer);
1561 
1562 	ida_simple_remove(&iio_ida, indio_dev->id);
1563 	kfree(iio_dev_opaque);
1564 }
1565 
1566 struct device_type iio_device_type = {
1567 	.name = "iio_device",
1568 	.release = iio_dev_release,
1569 };
1570 
1571 /**
1572  * iio_device_alloc() - allocate an iio_dev from a driver
1573  * @parent:		Parent device.
1574  * @sizeof_priv:	Space to allocate for private structure.
1575  **/
1576 struct iio_dev *iio_device_alloc(struct device *parent, int sizeof_priv)
1577 {
1578 	struct iio_dev_opaque *iio_dev_opaque;
1579 	struct iio_dev *dev;
1580 	size_t alloc_size;
1581 
1582 	alloc_size = sizeof(struct iio_dev_opaque);
1583 	if (sizeof_priv) {
1584 		alloc_size = ALIGN(alloc_size, IIO_ALIGN);
1585 		alloc_size += sizeof_priv;
1586 	}
1587 
1588 	iio_dev_opaque = kzalloc(alloc_size, GFP_KERNEL);
1589 	if (!iio_dev_opaque)
1590 		return NULL;
1591 
1592 	dev = &iio_dev_opaque->indio_dev;
1593 	dev->priv = (char *)iio_dev_opaque +
1594 		ALIGN(sizeof(struct iio_dev_opaque), IIO_ALIGN);
1595 
1596 	dev->dev.parent = parent;
1597 	dev->dev.groups = dev->groups;
1598 	dev->dev.type = &iio_device_type;
1599 	dev->dev.bus = &iio_bus_type;
1600 	device_initialize(&dev->dev);
1601 	dev_set_drvdata(&dev->dev, (void *)dev);
1602 	mutex_init(&dev->mlock);
1603 	mutex_init(&dev->info_exist_lock);
1604 	INIT_LIST_HEAD(&iio_dev_opaque->channel_attr_list);
1605 
1606 	dev->id = ida_simple_get(&iio_ida, 0, 0, GFP_KERNEL);
1607 	if (dev->id < 0) {
1608 		/* cannot use a dev_err as the name isn't available */
1609 		pr_err("failed to get device id\n");
1610 		kfree(iio_dev_opaque);
1611 		return NULL;
1612 	}
1613 	dev_set_name(&dev->dev, "iio:device%d", dev->id);
1614 	INIT_LIST_HEAD(&iio_dev_opaque->buffer_list);
1615 	INIT_LIST_HEAD(&iio_dev_opaque->ioctl_handlers);
1616 
1617 	return dev;
1618 }
1619 EXPORT_SYMBOL(iio_device_alloc);
1620 
1621 /**
1622  * iio_device_free() - free an iio_dev from a driver
1623  * @dev:		the iio_dev associated with the device
1624  **/
1625 void iio_device_free(struct iio_dev *dev)
1626 {
1627 	if (dev)
1628 		put_device(&dev->dev);
1629 }
1630 EXPORT_SYMBOL(iio_device_free);
1631 
1632 static void devm_iio_device_release(struct device *dev, void *res)
1633 {
1634 	iio_device_free(*(struct iio_dev **)res);
1635 }
1636 
1637 /**
1638  * devm_iio_device_alloc - Resource-managed iio_device_alloc()
1639  * @parent:		Device to allocate iio_dev for, and parent for this IIO device
1640  * @sizeof_priv:	Space to allocate for private structure.
1641  *
1642  * Managed iio_device_alloc. iio_dev allocated with this function is
1643  * automatically freed on driver detach.
1644  *
1645  * RETURNS:
1646  * Pointer to allocated iio_dev on success, NULL on failure.
1647  */
1648 struct iio_dev *devm_iio_device_alloc(struct device *parent, int sizeof_priv)
1649 {
1650 	struct iio_dev **ptr, *iio_dev;
1651 
1652 	ptr = devres_alloc(devm_iio_device_release, sizeof(*ptr),
1653 			   GFP_KERNEL);
1654 	if (!ptr)
1655 		return NULL;
1656 
1657 	iio_dev = iio_device_alloc(parent, sizeof_priv);
1658 	if (iio_dev) {
1659 		*ptr = iio_dev;
1660 		devres_add(parent, ptr);
1661 	} else {
1662 		devres_free(ptr);
1663 	}
1664 
1665 	return iio_dev;
1666 }
1667 EXPORT_SYMBOL_GPL(devm_iio_device_alloc);
1668 
1669 /**
1670  * iio_chrdev_open() - chrdev file open for buffer access and ioctls
1671  * @inode:	Inode structure for identifying the device in the file system
1672  * @filp:	File structure for iio device used to keep and later access
1673  *		private data
1674  *
1675  * Return: 0 on success or -EBUSY if the device is already opened
1676  **/
1677 static int iio_chrdev_open(struct inode *inode, struct file *filp)
1678 {
1679 	struct iio_dev *indio_dev = container_of(inode->i_cdev,
1680 						struct iio_dev, chrdev);
1681 
1682 	if (test_and_set_bit(IIO_BUSY_BIT_POS, &indio_dev->flags))
1683 		return -EBUSY;
1684 
1685 	iio_device_get(indio_dev);
1686 
1687 	filp->private_data = indio_dev;
1688 
1689 	return 0;
1690 }
1691 
1692 /**
1693  * iio_chrdev_release() - chrdev file close buffer access and ioctls
1694  * @inode:	Inode structure pointer for the char device
1695  * @filp:	File structure pointer for the char device
1696  *
1697  * Return: 0 for successful release
1698  */
1699 static int iio_chrdev_release(struct inode *inode, struct file *filp)
1700 {
1701 	struct iio_dev *indio_dev = container_of(inode->i_cdev,
1702 						struct iio_dev, chrdev);
1703 	clear_bit(IIO_BUSY_BIT_POS, &indio_dev->flags);
1704 	iio_device_put(indio_dev);
1705 
1706 	return 0;
1707 }
1708 
1709 void iio_device_ioctl_handler_register(struct iio_dev *indio_dev,
1710 				       struct iio_ioctl_handler *h)
1711 {
1712 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1713 
1714 	list_add_tail(&h->entry, &iio_dev_opaque->ioctl_handlers);
1715 }
1716 
1717 void iio_device_ioctl_handler_unregister(struct iio_ioctl_handler *h)
1718 {
1719 	list_del(&h->entry);
1720 }
1721 
1722 static long iio_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1723 {
1724 	struct iio_dev *indio_dev = filp->private_data;
1725 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1726 	struct iio_ioctl_handler *h;
1727 	int ret = -ENODEV;
1728 
1729 	mutex_lock(&indio_dev->info_exist_lock);
1730 
1731 	/**
1732 	 * The NULL check here is required to prevent crashing when a device
1733 	 * is being removed while userspace would still have open file handles
1734 	 * to try to access this device.
1735 	 */
1736 	if (!indio_dev->info)
1737 		goto out_unlock;
1738 
1739 	ret = -EINVAL;
1740 	list_for_each_entry(h, &iio_dev_opaque->ioctl_handlers, entry) {
1741 		ret = h->ioctl(indio_dev, filp, cmd, arg);
1742 		if (ret != IIO_IOCTL_UNHANDLED)
1743 			break;
1744 	}
1745 
1746 	if (ret == IIO_IOCTL_UNHANDLED)
1747 		ret = -EINVAL;
1748 
1749 out_unlock:
1750 	mutex_unlock(&indio_dev->info_exist_lock);
1751 
1752 	return ret;
1753 }
1754 
1755 static const struct file_operations iio_buffer_fileops = {
1756 	.owner = THIS_MODULE,
1757 	.llseek = noop_llseek,
1758 	.read = iio_buffer_read_outer_addr,
1759 	.poll = iio_buffer_poll_addr,
1760 	.unlocked_ioctl = iio_ioctl,
1761 	.compat_ioctl = compat_ptr_ioctl,
1762 	.open = iio_chrdev_open,
1763 	.release = iio_chrdev_release,
1764 };
1765 
1766 static int iio_check_unique_scan_index(struct iio_dev *indio_dev)
1767 {
1768 	int i, j;
1769 	const struct iio_chan_spec *channels = indio_dev->channels;
1770 
1771 	if (!(indio_dev->modes & INDIO_ALL_BUFFER_MODES))
1772 		return 0;
1773 
1774 	for (i = 0; i < indio_dev->num_channels - 1; i++) {
1775 		if (channels[i].scan_index < 0)
1776 			continue;
1777 		for (j = i + 1; j < indio_dev->num_channels; j++)
1778 			if (channels[i].scan_index == channels[j].scan_index) {
1779 				dev_err(&indio_dev->dev,
1780 					"Duplicate scan index %d\n",
1781 					channels[i].scan_index);
1782 				return -EINVAL;
1783 			}
1784 	}
1785 
1786 	return 0;
1787 }
1788 
1789 static const struct iio_buffer_setup_ops noop_ring_setup_ops;
1790 
1791 int __iio_device_register(struct iio_dev *indio_dev, struct module *this_mod)
1792 {
1793 	const char *label;
1794 	int ret;
1795 
1796 	if (!indio_dev->info)
1797 		return -EINVAL;
1798 
1799 	indio_dev->driver_module = this_mod;
1800 	/* If the calling driver did not initialize of_node, do it here */
1801 	if (!indio_dev->dev.of_node && indio_dev->dev.parent)
1802 		indio_dev->dev.of_node = indio_dev->dev.parent->of_node;
1803 
1804 	label = of_get_property(indio_dev->dev.of_node, "label", NULL);
1805 	if (label)
1806 		indio_dev->label = label;
1807 
1808 	ret = iio_check_unique_scan_index(indio_dev);
1809 	if (ret < 0)
1810 		return ret;
1811 
1812 	/* configure elements for the chrdev */
1813 	indio_dev->dev.devt = MKDEV(MAJOR(iio_devt), indio_dev->id);
1814 
1815 	iio_device_register_debugfs(indio_dev);
1816 
1817 	ret = iio_buffer_alloc_sysfs_and_mask(indio_dev);
1818 	if (ret) {
1819 		dev_err(indio_dev->dev.parent,
1820 			"Failed to create buffer sysfs interfaces\n");
1821 		goto error_unreg_debugfs;
1822 	}
1823 
1824 	ret = iio_device_register_sysfs(indio_dev);
1825 	if (ret) {
1826 		dev_err(indio_dev->dev.parent,
1827 			"Failed to register sysfs interfaces\n");
1828 		goto error_buffer_free_sysfs;
1829 	}
1830 	ret = iio_device_register_eventset(indio_dev);
1831 	if (ret) {
1832 		dev_err(indio_dev->dev.parent,
1833 			"Failed to register event set\n");
1834 		goto error_free_sysfs;
1835 	}
1836 	if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
1837 		iio_device_register_trigger_consumer(indio_dev);
1838 
1839 	if ((indio_dev->modes & INDIO_ALL_BUFFER_MODES) &&
1840 		indio_dev->setup_ops == NULL)
1841 		indio_dev->setup_ops = &noop_ring_setup_ops;
1842 
1843 	cdev_init(&indio_dev->chrdev, &iio_buffer_fileops);
1844 
1845 	indio_dev->chrdev.owner = this_mod;
1846 
1847 	ret = cdev_device_add(&indio_dev->chrdev, &indio_dev->dev);
1848 	if (ret < 0)
1849 		goto error_unreg_eventset;
1850 
1851 	return 0;
1852 
1853 error_unreg_eventset:
1854 	iio_device_unregister_eventset(indio_dev);
1855 error_free_sysfs:
1856 	iio_device_unregister_sysfs(indio_dev);
1857 error_buffer_free_sysfs:
1858 	iio_buffer_free_sysfs_and_mask(indio_dev);
1859 error_unreg_debugfs:
1860 	iio_device_unregister_debugfs(indio_dev);
1861 	return ret;
1862 }
1863 EXPORT_SYMBOL(__iio_device_register);
1864 
1865 /**
1866  * iio_device_unregister() - unregister a device from the IIO subsystem
1867  * @indio_dev:		Device structure representing the device.
1868  **/
1869 void iio_device_unregister(struct iio_dev *indio_dev)
1870 {
1871 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1872 	struct iio_ioctl_handler *h, *t;
1873 
1874 	cdev_device_del(&indio_dev->chrdev, &indio_dev->dev);
1875 
1876 	mutex_lock(&indio_dev->info_exist_lock);
1877 
1878 	iio_device_unregister_debugfs(indio_dev);
1879 
1880 	iio_disable_all_buffers(indio_dev);
1881 
1882 	indio_dev->info = NULL;
1883 
1884 	list_for_each_entry_safe(h, t, &iio_dev_opaque->ioctl_handlers, entry)
1885 		list_del(&h->entry);
1886 
1887 	iio_device_wakeup_eventset(indio_dev);
1888 	iio_buffer_wakeup_poll(indio_dev);
1889 
1890 	mutex_unlock(&indio_dev->info_exist_lock);
1891 
1892 	iio_buffer_free_sysfs_and_mask(indio_dev);
1893 }
1894 EXPORT_SYMBOL(iio_device_unregister);
1895 
1896 static void devm_iio_device_unreg(struct device *dev, void *res)
1897 {
1898 	iio_device_unregister(*(struct iio_dev **)res);
1899 }
1900 
1901 int __devm_iio_device_register(struct device *dev, struct iio_dev *indio_dev,
1902 			       struct module *this_mod)
1903 {
1904 	struct iio_dev **ptr;
1905 	int ret;
1906 
1907 	ptr = devres_alloc(devm_iio_device_unreg, sizeof(*ptr), GFP_KERNEL);
1908 	if (!ptr)
1909 		return -ENOMEM;
1910 
1911 	*ptr = indio_dev;
1912 	ret = __iio_device_register(indio_dev, this_mod);
1913 	if (!ret)
1914 		devres_add(dev, ptr);
1915 	else
1916 		devres_free(ptr);
1917 
1918 	return ret;
1919 }
1920 EXPORT_SYMBOL_GPL(__devm_iio_device_register);
1921 
1922 /**
1923  * iio_device_claim_direct_mode - Keep device in direct mode
1924  * @indio_dev:	the iio_dev associated with the device
1925  *
1926  * If the device is in direct mode it is guaranteed to stay
1927  * that way until iio_device_release_direct_mode() is called.
1928  *
1929  * Use with iio_device_release_direct_mode()
1930  *
1931  * Returns: 0 on success, -EBUSY on failure
1932  */
1933 int iio_device_claim_direct_mode(struct iio_dev *indio_dev)
1934 {
1935 	mutex_lock(&indio_dev->mlock);
1936 
1937 	if (iio_buffer_enabled(indio_dev)) {
1938 		mutex_unlock(&indio_dev->mlock);
1939 		return -EBUSY;
1940 	}
1941 	return 0;
1942 }
1943 EXPORT_SYMBOL_GPL(iio_device_claim_direct_mode);
1944 
1945 /**
1946  * iio_device_release_direct_mode - releases claim on direct mode
1947  * @indio_dev:	the iio_dev associated with the device
1948  *
1949  * Release the claim. Device is no longer guaranteed to stay
1950  * in direct mode.
1951  *
1952  * Use with iio_device_claim_direct_mode()
1953  */
1954 void iio_device_release_direct_mode(struct iio_dev *indio_dev)
1955 {
1956 	mutex_unlock(&indio_dev->mlock);
1957 }
1958 EXPORT_SYMBOL_GPL(iio_device_release_direct_mode);
1959 
1960 subsys_initcall(iio_init);
1961 module_exit(iio_exit);
1962 
1963 MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
1964 MODULE_DESCRIPTION("Industrial I/O core");
1965 MODULE_LICENSE("GPL");
1966