1 // SPDX-License-Identifier: GPL-2.0-only
2 /* The industrial I/O core
3  *
4  * Copyright (c) 2008 Jonathan Cameron
5  *
6  * Handling of buffer allocation / resizing.
7  *
8  * Things to look at here.
9  * - Better memory allocation techniques?
10  * - Alternative access techniques?
11  */
12 #include <linux/anon_inodes.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/device.h>
16 #include <linux/file.h>
17 #include <linux/fs.h>
18 #include <linux/cdev.h>
19 #include <linux/slab.h>
20 #include <linux/poll.h>
21 #include <linux/sched/signal.h>
22 
23 #include <linux/iio/iio.h>
24 #include <linux/iio/iio-opaque.h>
25 #include "iio_core.h"
26 #include "iio_core_trigger.h"
27 #include <linux/iio/sysfs.h>
28 #include <linux/iio/buffer.h>
29 #include <linux/iio/buffer_impl.h>
30 
31 static const char * const iio_endian_prefix[] = {
32 	[IIO_BE] = "be",
33 	[IIO_LE] = "le",
34 };
35 
36 static bool iio_buffer_is_active(struct iio_buffer *buf)
37 {
38 	return !list_empty(&buf->buffer_list);
39 }
40 
41 static size_t iio_buffer_data_available(struct iio_buffer *buf)
42 {
43 	return buf->access->data_available(buf);
44 }
45 
46 static int iio_buffer_flush_hwfifo(struct iio_dev *indio_dev,
47 				   struct iio_buffer *buf, size_t required)
48 {
49 	if (!indio_dev->info->hwfifo_flush_to_buffer)
50 		return -ENODEV;
51 
52 	return indio_dev->info->hwfifo_flush_to_buffer(indio_dev, required);
53 }
54 
55 static bool iio_buffer_ready(struct iio_dev *indio_dev, struct iio_buffer *buf,
56 			     size_t to_wait, int to_flush)
57 {
58 	size_t avail;
59 	int flushed = 0;
60 
61 	/* wakeup if the device was unregistered */
62 	if (!indio_dev->info)
63 		return true;
64 
65 	/* drain the buffer if it was disabled */
66 	if (!iio_buffer_is_active(buf)) {
67 		to_wait = min_t(size_t, to_wait, 1);
68 		to_flush = 0;
69 	}
70 
71 	avail = iio_buffer_data_available(buf);
72 
73 	if (avail >= to_wait) {
74 		/* force a flush for non-blocking reads */
75 		if (!to_wait && avail < to_flush)
76 			iio_buffer_flush_hwfifo(indio_dev, buf,
77 						to_flush - avail);
78 		return true;
79 	}
80 
81 	if (to_flush)
82 		flushed = iio_buffer_flush_hwfifo(indio_dev, buf,
83 						  to_wait - avail);
84 	if (flushed <= 0)
85 		return false;
86 
87 	if (avail + flushed >= to_wait)
88 		return true;
89 
90 	return false;
91 }
92 
93 /**
94  * iio_buffer_read() - chrdev read for buffer access
95  * @filp:	File structure pointer for the char device
96  * @buf:	Destination buffer for iio buffer read
97  * @n:		First n bytes to read
98  * @f_ps:	Long offset provided by the user as a seek position
99  *
100  * This function relies on all buffer implementations having an
101  * iio_buffer as their first element.
102  *
103  * Return: negative values corresponding to error codes or ret != 0
104  *	   for ending the reading activity
105  **/
106 static ssize_t iio_buffer_read(struct file *filp, char __user *buf,
107 			       size_t n, loff_t *f_ps)
108 {
109 	struct iio_dev_buffer_pair *ib = filp->private_data;
110 	struct iio_buffer *rb = ib->buffer;
111 	struct iio_dev *indio_dev = ib->indio_dev;
112 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
113 	size_t datum_size;
114 	size_t to_wait;
115 	int ret = 0;
116 
117 	if (!indio_dev->info)
118 		return -ENODEV;
119 
120 	if (!rb || !rb->access->read)
121 		return -EINVAL;
122 
123 	if (rb->direction != IIO_BUFFER_DIRECTION_IN)
124 		return -EPERM;
125 
126 	datum_size = rb->bytes_per_datum;
127 
128 	/*
129 	 * If datum_size is 0 there will never be anything to read from the
130 	 * buffer, so signal end of file now.
131 	 */
132 	if (!datum_size)
133 		return 0;
134 
135 	if (filp->f_flags & O_NONBLOCK)
136 		to_wait = 0;
137 	else
138 		to_wait = min_t(size_t, n / datum_size, rb->watermark);
139 
140 	add_wait_queue(&rb->pollq, &wait);
141 	do {
142 		if (!indio_dev->info) {
143 			ret = -ENODEV;
144 			break;
145 		}
146 
147 		if (!iio_buffer_ready(indio_dev, rb, to_wait, n / datum_size)) {
148 			if (signal_pending(current)) {
149 				ret = -ERESTARTSYS;
150 				break;
151 			}
152 
153 			wait_woken(&wait, TASK_INTERRUPTIBLE,
154 				   MAX_SCHEDULE_TIMEOUT);
155 			continue;
156 		}
157 
158 		ret = rb->access->read(rb, n, buf);
159 		if (ret == 0 && (filp->f_flags & O_NONBLOCK))
160 			ret = -EAGAIN;
161 	} while (ret == 0);
162 	remove_wait_queue(&rb->pollq, &wait);
163 
164 	return ret;
165 }
166 
167 static size_t iio_buffer_space_available(struct iio_buffer *buf)
168 {
169 	if (buf->access->space_available)
170 		return buf->access->space_available(buf);
171 
172 	return SIZE_MAX;
173 }
174 
175 static ssize_t iio_buffer_write(struct file *filp, const char __user *buf,
176 				size_t n, loff_t *f_ps)
177 {
178 	struct iio_dev_buffer_pair *ib = filp->private_data;
179 	struct iio_buffer *rb = ib->buffer;
180 	struct iio_dev *indio_dev = ib->indio_dev;
181 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
182 	int ret = 0;
183 	size_t written;
184 
185 	if (!indio_dev->info)
186 		return -ENODEV;
187 
188 	if (!rb || !rb->access->write)
189 		return -EINVAL;
190 
191 	if (rb->direction != IIO_BUFFER_DIRECTION_OUT)
192 		return -EPERM;
193 
194 	written = 0;
195 	add_wait_queue(&rb->pollq, &wait);
196 	do {
197 		if (indio_dev->info == NULL)
198 			return -ENODEV;
199 
200 		if (!iio_buffer_space_available(rb)) {
201 			if (signal_pending(current)) {
202 				ret = -ERESTARTSYS;
203 				break;
204 			}
205 
206 			wait_woken(&wait, TASK_INTERRUPTIBLE,
207 					MAX_SCHEDULE_TIMEOUT);
208 			continue;
209 		}
210 
211 		ret = rb->access->write(rb, n - written, buf + written);
212 		if (ret == 0 && (filp->f_flags & O_NONBLOCK))
213 			ret = -EAGAIN;
214 
215 		if (ret > 0) {
216 			written += ret;
217 			if (written != n && !(filp->f_flags & O_NONBLOCK))
218 				continue;
219 		}
220 	} while (ret == 0);
221 	remove_wait_queue(&rb->pollq, &wait);
222 
223 	return ret < 0 ? ret : n;
224 }
225 
226 /**
227  * iio_buffer_poll() - poll the buffer to find out if it has data
228  * @filp:	File structure pointer for device access
229  * @wait:	Poll table structure pointer for which the driver adds
230  *		a wait queue
231  *
232  * Return: (EPOLLIN | EPOLLRDNORM) if data is available for reading
233  *	   or 0 for other cases
234  */
235 static __poll_t iio_buffer_poll(struct file *filp,
236 				struct poll_table_struct *wait)
237 {
238 	struct iio_dev_buffer_pair *ib = filp->private_data;
239 	struct iio_buffer *rb = ib->buffer;
240 	struct iio_dev *indio_dev = ib->indio_dev;
241 
242 	if (!indio_dev->info || rb == NULL)
243 		return 0;
244 
245 	poll_wait(filp, &rb->pollq, wait);
246 
247 	switch (rb->direction) {
248 	case IIO_BUFFER_DIRECTION_IN:
249 		if (iio_buffer_ready(indio_dev, rb, rb->watermark, 0))
250 			return EPOLLIN | EPOLLRDNORM;
251 		break;
252 	case IIO_BUFFER_DIRECTION_OUT:
253 		if (iio_buffer_space_available(rb))
254 			return EPOLLOUT | EPOLLWRNORM;
255 		break;
256 	}
257 
258 	return 0;
259 }
260 
261 ssize_t iio_buffer_read_wrapper(struct file *filp, char __user *buf,
262 				size_t n, loff_t *f_ps)
263 {
264 	struct iio_dev_buffer_pair *ib = filp->private_data;
265 	struct iio_buffer *rb = ib->buffer;
266 
267 	/* check if buffer was opened through new API */
268 	if (test_bit(IIO_BUSY_BIT_POS, &rb->flags))
269 		return -EBUSY;
270 
271 	return iio_buffer_read(filp, buf, n, f_ps);
272 }
273 
274 ssize_t iio_buffer_write_wrapper(struct file *filp, const char __user *buf,
275 				 size_t n, loff_t *f_ps)
276 {
277 	struct iio_dev_buffer_pair *ib = filp->private_data;
278 	struct iio_buffer *rb = ib->buffer;
279 
280 	/* check if buffer was opened through new API */
281 	if (test_bit(IIO_BUSY_BIT_POS, &rb->flags))
282 		return -EBUSY;
283 
284 	return iio_buffer_write(filp, buf, n, f_ps);
285 }
286 
287 __poll_t iio_buffer_poll_wrapper(struct file *filp,
288 				 struct poll_table_struct *wait)
289 {
290 	struct iio_dev_buffer_pair *ib = filp->private_data;
291 	struct iio_buffer *rb = ib->buffer;
292 
293 	/* check if buffer was opened through new API */
294 	if (test_bit(IIO_BUSY_BIT_POS, &rb->flags))
295 		return 0;
296 
297 	return iio_buffer_poll(filp, wait);
298 }
299 
300 /**
301  * iio_buffer_wakeup_poll - Wakes up the buffer waitqueue
302  * @indio_dev: The IIO device
303  *
304  * Wakes up the event waitqueue used for poll(). Should usually
305  * be called when the device is unregistered.
306  */
307 void iio_buffer_wakeup_poll(struct iio_dev *indio_dev)
308 {
309 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
310 	struct iio_buffer *buffer;
311 	unsigned int i;
312 
313 	for (i = 0; i < iio_dev_opaque->attached_buffers_cnt; i++) {
314 		buffer = iio_dev_opaque->attached_buffers[i];
315 		wake_up(&buffer->pollq);
316 	}
317 }
318 
319 int iio_pop_from_buffer(struct iio_buffer *buffer, void *data)
320 {
321 	if (!buffer || !buffer->access || !buffer->access->remove_from)
322 		return -EINVAL;
323 
324 	return buffer->access->remove_from(buffer, data);
325 }
326 EXPORT_SYMBOL_GPL(iio_pop_from_buffer);
327 
328 void iio_buffer_init(struct iio_buffer *buffer)
329 {
330 	INIT_LIST_HEAD(&buffer->demux_list);
331 	INIT_LIST_HEAD(&buffer->buffer_list);
332 	init_waitqueue_head(&buffer->pollq);
333 	kref_init(&buffer->ref);
334 	if (!buffer->watermark)
335 		buffer->watermark = 1;
336 }
337 EXPORT_SYMBOL(iio_buffer_init);
338 
339 void iio_device_detach_buffers(struct iio_dev *indio_dev)
340 {
341 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
342 	struct iio_buffer *buffer;
343 	unsigned int i;
344 
345 	for (i = 0; i < iio_dev_opaque->attached_buffers_cnt; i++) {
346 		buffer = iio_dev_opaque->attached_buffers[i];
347 		iio_buffer_put(buffer);
348 	}
349 
350 	kfree(iio_dev_opaque->attached_buffers);
351 }
352 
353 static ssize_t iio_show_scan_index(struct device *dev,
354 				   struct device_attribute *attr,
355 				   char *buf)
356 {
357 	return sysfs_emit(buf, "%u\n", to_iio_dev_attr(attr)->c->scan_index);
358 }
359 
360 static ssize_t iio_show_fixed_type(struct device *dev,
361 				   struct device_attribute *attr,
362 				   char *buf)
363 {
364 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
365 	u8 type = this_attr->c->scan_type.endianness;
366 
367 	if (type == IIO_CPU) {
368 #ifdef __LITTLE_ENDIAN
369 		type = IIO_LE;
370 #else
371 		type = IIO_BE;
372 #endif
373 	}
374 	if (this_attr->c->scan_type.repeat > 1)
375 		return sysfs_emit(buf, "%s:%c%d/%dX%d>>%u\n",
376 		       iio_endian_prefix[type],
377 		       this_attr->c->scan_type.sign,
378 		       this_attr->c->scan_type.realbits,
379 		       this_attr->c->scan_type.storagebits,
380 		       this_attr->c->scan_type.repeat,
381 		       this_attr->c->scan_type.shift);
382 	else
383 		return sysfs_emit(buf, "%s:%c%d/%d>>%u\n",
384 		       iio_endian_prefix[type],
385 		       this_attr->c->scan_type.sign,
386 		       this_attr->c->scan_type.realbits,
387 		       this_attr->c->scan_type.storagebits,
388 		       this_attr->c->scan_type.shift);
389 }
390 
391 static ssize_t iio_scan_el_show(struct device *dev,
392 				struct device_attribute *attr,
393 				char *buf)
394 {
395 	int ret;
396 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
397 
398 	/* Ensure ret is 0 or 1. */
399 	ret = !!test_bit(to_iio_dev_attr(attr)->address,
400 		       buffer->scan_mask);
401 
402 	return sysfs_emit(buf, "%d\n", ret);
403 }
404 
405 /* Note NULL used as error indicator as it doesn't make sense. */
406 static const unsigned long *iio_scan_mask_match(const unsigned long *av_masks,
407 					  unsigned int masklength,
408 					  const unsigned long *mask,
409 					  bool strict)
410 {
411 	if (bitmap_empty(mask, masklength))
412 		return NULL;
413 	while (*av_masks) {
414 		if (strict) {
415 			if (bitmap_equal(mask, av_masks, masklength))
416 				return av_masks;
417 		} else {
418 			if (bitmap_subset(mask, av_masks, masklength))
419 				return av_masks;
420 		}
421 		av_masks += BITS_TO_LONGS(masklength);
422 	}
423 	return NULL;
424 }
425 
426 static bool iio_validate_scan_mask(struct iio_dev *indio_dev,
427 	const unsigned long *mask)
428 {
429 	if (!indio_dev->setup_ops->validate_scan_mask)
430 		return true;
431 
432 	return indio_dev->setup_ops->validate_scan_mask(indio_dev, mask);
433 }
434 
435 /**
436  * iio_scan_mask_set() - set particular bit in the scan mask
437  * @indio_dev: the iio device
438  * @buffer: the buffer whose scan mask we are interested in
439  * @bit: the bit to be set.
440  *
441  * Note that at this point we have no way of knowing what other
442  * buffers might request, hence this code only verifies that the
443  * individual buffers request is plausible.
444  */
445 static int iio_scan_mask_set(struct iio_dev *indio_dev,
446 		      struct iio_buffer *buffer, int bit)
447 {
448 	const unsigned long *mask;
449 	unsigned long *trialmask;
450 
451 	if (!indio_dev->masklength) {
452 		WARN(1, "Trying to set scanmask prior to registering buffer\n");
453 		return -EINVAL;
454 	}
455 
456 	trialmask = bitmap_alloc(indio_dev->masklength, GFP_KERNEL);
457 	if (!trialmask)
458 		return -ENOMEM;
459 	bitmap_copy(trialmask, buffer->scan_mask, indio_dev->masklength);
460 	set_bit(bit, trialmask);
461 
462 	if (!iio_validate_scan_mask(indio_dev, trialmask))
463 		goto err_invalid_mask;
464 
465 	if (indio_dev->available_scan_masks) {
466 		mask = iio_scan_mask_match(indio_dev->available_scan_masks,
467 					   indio_dev->masklength,
468 					   trialmask, false);
469 		if (!mask)
470 			goto err_invalid_mask;
471 	}
472 	bitmap_copy(buffer->scan_mask, trialmask, indio_dev->masklength);
473 
474 	bitmap_free(trialmask);
475 
476 	return 0;
477 
478 err_invalid_mask:
479 	bitmap_free(trialmask);
480 	return -EINVAL;
481 }
482 
483 static int iio_scan_mask_clear(struct iio_buffer *buffer, int bit)
484 {
485 	clear_bit(bit, buffer->scan_mask);
486 	return 0;
487 }
488 
489 static int iio_scan_mask_query(struct iio_dev *indio_dev,
490 			       struct iio_buffer *buffer, int bit)
491 {
492 	if (bit > indio_dev->masklength)
493 		return -EINVAL;
494 
495 	if (!buffer->scan_mask)
496 		return 0;
497 
498 	/* Ensure return value is 0 or 1. */
499 	return !!test_bit(bit, buffer->scan_mask);
500 };
501 
502 static ssize_t iio_scan_el_store(struct device *dev,
503 				 struct device_attribute *attr,
504 				 const char *buf,
505 				 size_t len)
506 {
507 	int ret;
508 	bool state;
509 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
510 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
511 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
512 	struct iio_buffer *buffer = this_attr->buffer;
513 
514 	ret = kstrtobool(buf, &state);
515 	if (ret < 0)
516 		return ret;
517 	mutex_lock(&iio_dev_opaque->mlock);
518 	if (iio_buffer_is_active(buffer)) {
519 		ret = -EBUSY;
520 		goto error_ret;
521 	}
522 	ret = iio_scan_mask_query(indio_dev, buffer, this_attr->address);
523 	if (ret < 0)
524 		goto error_ret;
525 	if (!state && ret) {
526 		ret = iio_scan_mask_clear(buffer, this_attr->address);
527 		if (ret)
528 			goto error_ret;
529 	} else if (state && !ret) {
530 		ret = iio_scan_mask_set(indio_dev, buffer, this_attr->address);
531 		if (ret)
532 			goto error_ret;
533 	}
534 
535 error_ret:
536 	mutex_unlock(&iio_dev_opaque->mlock);
537 
538 	return ret < 0 ? ret : len;
539 
540 }
541 
542 static ssize_t iio_scan_el_ts_show(struct device *dev,
543 				   struct device_attribute *attr,
544 				   char *buf)
545 {
546 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
547 
548 	return sysfs_emit(buf, "%d\n", buffer->scan_timestamp);
549 }
550 
551 static ssize_t iio_scan_el_ts_store(struct device *dev,
552 				    struct device_attribute *attr,
553 				    const char *buf,
554 				    size_t len)
555 {
556 	int ret;
557 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
558 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
559 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
560 	bool state;
561 
562 	ret = kstrtobool(buf, &state);
563 	if (ret < 0)
564 		return ret;
565 
566 	mutex_lock(&iio_dev_opaque->mlock);
567 	if (iio_buffer_is_active(buffer)) {
568 		ret = -EBUSY;
569 		goto error_ret;
570 	}
571 	buffer->scan_timestamp = state;
572 error_ret:
573 	mutex_unlock(&iio_dev_opaque->mlock);
574 
575 	return ret ? ret : len;
576 }
577 
578 static int iio_buffer_add_channel_sysfs(struct iio_dev *indio_dev,
579 					struct iio_buffer *buffer,
580 					const struct iio_chan_spec *chan)
581 {
582 	int ret, attrcount = 0;
583 
584 	ret = __iio_add_chan_devattr("index",
585 				     chan,
586 				     &iio_show_scan_index,
587 				     NULL,
588 				     0,
589 				     IIO_SEPARATE,
590 				     &indio_dev->dev,
591 				     buffer,
592 				     &buffer->buffer_attr_list);
593 	if (ret)
594 		return ret;
595 	attrcount++;
596 	ret = __iio_add_chan_devattr("type",
597 				     chan,
598 				     &iio_show_fixed_type,
599 				     NULL,
600 				     0,
601 				     0,
602 				     &indio_dev->dev,
603 				     buffer,
604 				     &buffer->buffer_attr_list);
605 	if (ret)
606 		return ret;
607 	attrcount++;
608 	if (chan->type != IIO_TIMESTAMP)
609 		ret = __iio_add_chan_devattr("en",
610 					     chan,
611 					     &iio_scan_el_show,
612 					     &iio_scan_el_store,
613 					     chan->scan_index,
614 					     0,
615 					     &indio_dev->dev,
616 					     buffer,
617 					     &buffer->buffer_attr_list);
618 	else
619 		ret = __iio_add_chan_devattr("en",
620 					     chan,
621 					     &iio_scan_el_ts_show,
622 					     &iio_scan_el_ts_store,
623 					     chan->scan_index,
624 					     0,
625 					     &indio_dev->dev,
626 					     buffer,
627 					     &buffer->buffer_attr_list);
628 	if (ret)
629 		return ret;
630 	attrcount++;
631 	ret = attrcount;
632 	return ret;
633 }
634 
635 static ssize_t length_show(struct device *dev, struct device_attribute *attr,
636 			   char *buf)
637 {
638 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
639 
640 	return sysfs_emit(buf, "%d\n", buffer->length);
641 }
642 
643 static ssize_t length_store(struct device *dev, struct device_attribute *attr,
644 			    const char *buf, size_t len)
645 {
646 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
647 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
648 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
649 	unsigned int val;
650 	int ret;
651 
652 	ret = kstrtouint(buf, 10, &val);
653 	if (ret)
654 		return ret;
655 
656 	if (val == buffer->length)
657 		return len;
658 
659 	mutex_lock(&iio_dev_opaque->mlock);
660 	if (iio_buffer_is_active(buffer)) {
661 		ret = -EBUSY;
662 	} else {
663 		buffer->access->set_length(buffer, val);
664 		ret = 0;
665 	}
666 	if (ret)
667 		goto out;
668 	if (buffer->length && buffer->length < buffer->watermark)
669 		buffer->watermark = buffer->length;
670 out:
671 	mutex_unlock(&iio_dev_opaque->mlock);
672 
673 	return ret ? ret : len;
674 }
675 
676 static ssize_t enable_show(struct device *dev, struct device_attribute *attr,
677 			   char *buf)
678 {
679 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
680 
681 	return sysfs_emit(buf, "%d\n", iio_buffer_is_active(buffer));
682 }
683 
684 static unsigned int iio_storage_bytes_for_si(struct iio_dev *indio_dev,
685 					     unsigned int scan_index)
686 {
687 	const struct iio_chan_spec *ch;
688 	unsigned int bytes;
689 
690 	ch = iio_find_channel_from_si(indio_dev, scan_index);
691 	bytes = ch->scan_type.storagebits / 8;
692 	if (ch->scan_type.repeat > 1)
693 		bytes *= ch->scan_type.repeat;
694 	return bytes;
695 }
696 
697 static unsigned int iio_storage_bytes_for_timestamp(struct iio_dev *indio_dev)
698 {
699 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
700 
701 	return iio_storage_bytes_for_si(indio_dev,
702 					iio_dev_opaque->scan_index_timestamp);
703 }
704 
705 static int iio_compute_scan_bytes(struct iio_dev *indio_dev,
706 				const unsigned long *mask, bool timestamp)
707 {
708 	unsigned int bytes = 0;
709 	int length, i, largest = 0;
710 
711 	/* How much space will the demuxed element take? */
712 	for_each_set_bit(i, mask,
713 			 indio_dev->masklength) {
714 		length = iio_storage_bytes_for_si(indio_dev, i);
715 		bytes = ALIGN(bytes, length);
716 		bytes += length;
717 		largest = max(largest, length);
718 	}
719 
720 	if (timestamp) {
721 		length = iio_storage_bytes_for_timestamp(indio_dev);
722 		bytes = ALIGN(bytes, length);
723 		bytes += length;
724 		largest = max(largest, length);
725 	}
726 
727 	bytes = ALIGN(bytes, largest);
728 	return bytes;
729 }
730 
731 static void iio_buffer_activate(struct iio_dev *indio_dev,
732 	struct iio_buffer *buffer)
733 {
734 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
735 
736 	iio_buffer_get(buffer);
737 	list_add(&buffer->buffer_list, &iio_dev_opaque->buffer_list);
738 }
739 
740 static void iio_buffer_deactivate(struct iio_buffer *buffer)
741 {
742 	list_del_init(&buffer->buffer_list);
743 	wake_up_interruptible(&buffer->pollq);
744 	iio_buffer_put(buffer);
745 }
746 
747 static void iio_buffer_deactivate_all(struct iio_dev *indio_dev)
748 {
749 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
750 	struct iio_buffer *buffer, *_buffer;
751 
752 	list_for_each_entry_safe(buffer, _buffer,
753 			&iio_dev_opaque->buffer_list, buffer_list)
754 		iio_buffer_deactivate(buffer);
755 }
756 
757 static int iio_buffer_enable(struct iio_buffer *buffer,
758 	struct iio_dev *indio_dev)
759 {
760 	if (!buffer->access->enable)
761 		return 0;
762 	return buffer->access->enable(buffer, indio_dev);
763 }
764 
765 static int iio_buffer_disable(struct iio_buffer *buffer,
766 	struct iio_dev *indio_dev)
767 {
768 	if (!buffer->access->disable)
769 		return 0;
770 	return buffer->access->disable(buffer, indio_dev);
771 }
772 
773 static void iio_buffer_update_bytes_per_datum(struct iio_dev *indio_dev,
774 	struct iio_buffer *buffer)
775 {
776 	unsigned int bytes;
777 
778 	if (!buffer->access->set_bytes_per_datum)
779 		return;
780 
781 	bytes = iio_compute_scan_bytes(indio_dev, buffer->scan_mask,
782 		buffer->scan_timestamp);
783 
784 	buffer->access->set_bytes_per_datum(buffer, bytes);
785 }
786 
787 static int iio_buffer_request_update(struct iio_dev *indio_dev,
788 	struct iio_buffer *buffer)
789 {
790 	int ret;
791 
792 	iio_buffer_update_bytes_per_datum(indio_dev, buffer);
793 	if (buffer->access->request_update) {
794 		ret = buffer->access->request_update(buffer);
795 		if (ret) {
796 			dev_dbg(&indio_dev->dev,
797 			       "Buffer not started: buffer parameter update failed (%d)\n",
798 				ret);
799 			return ret;
800 		}
801 	}
802 
803 	return 0;
804 }
805 
806 static void iio_free_scan_mask(struct iio_dev *indio_dev,
807 	const unsigned long *mask)
808 {
809 	/* If the mask is dynamically allocated free it, otherwise do nothing */
810 	if (!indio_dev->available_scan_masks)
811 		bitmap_free(mask);
812 }
813 
814 struct iio_device_config {
815 	unsigned int mode;
816 	unsigned int watermark;
817 	const unsigned long *scan_mask;
818 	unsigned int scan_bytes;
819 	bool scan_timestamp;
820 };
821 
822 static int iio_verify_update(struct iio_dev *indio_dev,
823 	struct iio_buffer *insert_buffer, struct iio_buffer *remove_buffer,
824 	struct iio_device_config *config)
825 {
826 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
827 	unsigned long *compound_mask;
828 	const unsigned long *scan_mask;
829 	bool strict_scanmask = false;
830 	struct iio_buffer *buffer;
831 	bool scan_timestamp;
832 	unsigned int modes;
833 
834 	if (insert_buffer &&
835 	    bitmap_empty(insert_buffer->scan_mask, indio_dev->masklength)) {
836 		dev_dbg(&indio_dev->dev,
837 			"At least one scan element must be enabled first\n");
838 		return -EINVAL;
839 	}
840 
841 	memset(config, 0, sizeof(*config));
842 	config->watermark = ~0;
843 
844 	/*
845 	 * If there is just one buffer and we are removing it there is nothing
846 	 * to verify.
847 	 */
848 	if (remove_buffer && !insert_buffer &&
849 	    list_is_singular(&iio_dev_opaque->buffer_list))
850 		return 0;
851 
852 	modes = indio_dev->modes;
853 
854 	list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) {
855 		if (buffer == remove_buffer)
856 			continue;
857 		modes &= buffer->access->modes;
858 		config->watermark = min(config->watermark, buffer->watermark);
859 	}
860 
861 	if (insert_buffer) {
862 		modes &= insert_buffer->access->modes;
863 		config->watermark = min(config->watermark,
864 			insert_buffer->watermark);
865 	}
866 
867 	/* Definitely possible for devices to support both of these. */
868 	if ((modes & INDIO_BUFFER_TRIGGERED) && indio_dev->trig) {
869 		config->mode = INDIO_BUFFER_TRIGGERED;
870 	} else if (modes & INDIO_BUFFER_HARDWARE) {
871 		/*
872 		 * Keep things simple for now and only allow a single buffer to
873 		 * be connected in hardware mode.
874 		 */
875 		if (insert_buffer && !list_empty(&iio_dev_opaque->buffer_list))
876 			return -EINVAL;
877 		config->mode = INDIO_BUFFER_HARDWARE;
878 		strict_scanmask = true;
879 	} else if (modes & INDIO_BUFFER_SOFTWARE) {
880 		config->mode = INDIO_BUFFER_SOFTWARE;
881 	} else {
882 		/* Can only occur on first buffer */
883 		if (indio_dev->modes & INDIO_BUFFER_TRIGGERED)
884 			dev_dbg(&indio_dev->dev, "Buffer not started: no trigger\n");
885 		return -EINVAL;
886 	}
887 
888 	/* What scan mask do we actually have? */
889 	compound_mask = bitmap_zalloc(indio_dev->masklength, GFP_KERNEL);
890 	if (compound_mask == NULL)
891 		return -ENOMEM;
892 
893 	scan_timestamp = false;
894 
895 	list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) {
896 		if (buffer == remove_buffer)
897 			continue;
898 		bitmap_or(compound_mask, compound_mask, buffer->scan_mask,
899 			  indio_dev->masklength);
900 		scan_timestamp |= buffer->scan_timestamp;
901 	}
902 
903 	if (insert_buffer) {
904 		bitmap_or(compound_mask, compound_mask,
905 			  insert_buffer->scan_mask, indio_dev->masklength);
906 		scan_timestamp |= insert_buffer->scan_timestamp;
907 	}
908 
909 	if (indio_dev->available_scan_masks) {
910 		scan_mask = iio_scan_mask_match(indio_dev->available_scan_masks,
911 				    indio_dev->masklength,
912 				    compound_mask,
913 				    strict_scanmask);
914 		bitmap_free(compound_mask);
915 		if (scan_mask == NULL)
916 			return -EINVAL;
917 	} else {
918 		scan_mask = compound_mask;
919 	}
920 
921 	config->scan_bytes = iio_compute_scan_bytes(indio_dev,
922 				    scan_mask, scan_timestamp);
923 	config->scan_mask = scan_mask;
924 	config->scan_timestamp = scan_timestamp;
925 
926 	return 0;
927 }
928 
929 /**
930  * struct iio_demux_table - table describing demux memcpy ops
931  * @from:	index to copy from
932  * @to:		index to copy to
933  * @length:	how many bytes to copy
934  * @l:		list head used for management
935  */
936 struct iio_demux_table {
937 	unsigned int from;
938 	unsigned int to;
939 	unsigned int length;
940 	struct list_head l;
941 };
942 
943 static void iio_buffer_demux_free(struct iio_buffer *buffer)
944 {
945 	struct iio_demux_table *p, *q;
946 
947 	list_for_each_entry_safe(p, q, &buffer->demux_list, l) {
948 		list_del(&p->l);
949 		kfree(p);
950 	}
951 }
952 
953 static int iio_buffer_add_demux(struct iio_buffer *buffer,
954 	struct iio_demux_table **p, unsigned int in_loc, unsigned int out_loc,
955 	unsigned int length)
956 {
957 
958 	if (*p && (*p)->from + (*p)->length == in_loc &&
959 		(*p)->to + (*p)->length == out_loc) {
960 		(*p)->length += length;
961 	} else {
962 		*p = kmalloc(sizeof(**p), GFP_KERNEL);
963 		if (*p == NULL)
964 			return -ENOMEM;
965 		(*p)->from = in_loc;
966 		(*p)->to = out_loc;
967 		(*p)->length = length;
968 		list_add_tail(&(*p)->l, &buffer->demux_list);
969 	}
970 
971 	return 0;
972 }
973 
974 static int iio_buffer_update_demux(struct iio_dev *indio_dev,
975 				   struct iio_buffer *buffer)
976 {
977 	int ret, in_ind = -1, out_ind, length;
978 	unsigned int in_loc = 0, out_loc = 0;
979 	struct iio_demux_table *p = NULL;
980 
981 	/* Clear out any old demux */
982 	iio_buffer_demux_free(buffer);
983 	kfree(buffer->demux_bounce);
984 	buffer->demux_bounce = NULL;
985 
986 	/* First work out which scan mode we will actually have */
987 	if (bitmap_equal(indio_dev->active_scan_mask,
988 			 buffer->scan_mask,
989 			 indio_dev->masklength))
990 		return 0;
991 
992 	/* Now we have the two masks, work from least sig and build up sizes */
993 	for_each_set_bit(out_ind,
994 			 buffer->scan_mask,
995 			 indio_dev->masklength) {
996 		in_ind = find_next_bit(indio_dev->active_scan_mask,
997 				       indio_dev->masklength,
998 				       in_ind + 1);
999 		while (in_ind != out_ind) {
1000 			length = iio_storage_bytes_for_si(indio_dev, in_ind);
1001 			/* Make sure we are aligned */
1002 			in_loc = roundup(in_loc, length) + length;
1003 			in_ind = find_next_bit(indio_dev->active_scan_mask,
1004 					       indio_dev->masklength,
1005 					       in_ind + 1);
1006 		}
1007 		length = iio_storage_bytes_for_si(indio_dev, in_ind);
1008 		out_loc = roundup(out_loc, length);
1009 		in_loc = roundup(in_loc, length);
1010 		ret = iio_buffer_add_demux(buffer, &p, in_loc, out_loc, length);
1011 		if (ret)
1012 			goto error_clear_mux_table;
1013 		out_loc += length;
1014 		in_loc += length;
1015 	}
1016 	/* Relies on scan_timestamp being last */
1017 	if (buffer->scan_timestamp) {
1018 		length = iio_storage_bytes_for_timestamp(indio_dev);
1019 		out_loc = roundup(out_loc, length);
1020 		in_loc = roundup(in_loc, length);
1021 		ret = iio_buffer_add_demux(buffer, &p, in_loc, out_loc, length);
1022 		if (ret)
1023 			goto error_clear_mux_table;
1024 		out_loc += length;
1025 	}
1026 	buffer->demux_bounce = kzalloc(out_loc, GFP_KERNEL);
1027 	if (buffer->demux_bounce == NULL) {
1028 		ret = -ENOMEM;
1029 		goto error_clear_mux_table;
1030 	}
1031 	return 0;
1032 
1033 error_clear_mux_table:
1034 	iio_buffer_demux_free(buffer);
1035 
1036 	return ret;
1037 }
1038 
1039 static int iio_update_demux(struct iio_dev *indio_dev)
1040 {
1041 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1042 	struct iio_buffer *buffer;
1043 	int ret;
1044 
1045 	list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) {
1046 		ret = iio_buffer_update_demux(indio_dev, buffer);
1047 		if (ret < 0)
1048 			goto error_clear_mux_table;
1049 	}
1050 	return 0;
1051 
1052 error_clear_mux_table:
1053 	list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list)
1054 		iio_buffer_demux_free(buffer);
1055 
1056 	return ret;
1057 }
1058 
1059 static int iio_enable_buffers(struct iio_dev *indio_dev,
1060 	struct iio_device_config *config)
1061 {
1062 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1063 	struct iio_buffer *buffer, *tmp = NULL;
1064 	int ret;
1065 
1066 	indio_dev->active_scan_mask = config->scan_mask;
1067 	indio_dev->scan_timestamp = config->scan_timestamp;
1068 	indio_dev->scan_bytes = config->scan_bytes;
1069 	iio_dev_opaque->currentmode = config->mode;
1070 
1071 	iio_update_demux(indio_dev);
1072 
1073 	/* Wind up again */
1074 	if (indio_dev->setup_ops->preenable) {
1075 		ret = indio_dev->setup_ops->preenable(indio_dev);
1076 		if (ret) {
1077 			dev_dbg(&indio_dev->dev,
1078 			       "Buffer not started: buffer preenable failed (%d)\n", ret);
1079 			goto err_undo_config;
1080 		}
1081 	}
1082 
1083 	if (indio_dev->info->update_scan_mode) {
1084 		ret = indio_dev->info
1085 			->update_scan_mode(indio_dev,
1086 					   indio_dev->active_scan_mask);
1087 		if (ret < 0) {
1088 			dev_dbg(&indio_dev->dev,
1089 				"Buffer not started: update scan mode failed (%d)\n",
1090 				ret);
1091 			goto err_run_postdisable;
1092 		}
1093 	}
1094 
1095 	if (indio_dev->info->hwfifo_set_watermark)
1096 		indio_dev->info->hwfifo_set_watermark(indio_dev,
1097 			config->watermark);
1098 
1099 	list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) {
1100 		ret = iio_buffer_enable(buffer, indio_dev);
1101 		if (ret) {
1102 			tmp = buffer;
1103 			goto err_disable_buffers;
1104 		}
1105 	}
1106 
1107 	if (iio_dev_opaque->currentmode == INDIO_BUFFER_TRIGGERED) {
1108 		ret = iio_trigger_attach_poll_func(indio_dev->trig,
1109 						   indio_dev->pollfunc);
1110 		if (ret)
1111 			goto err_disable_buffers;
1112 	}
1113 
1114 	if (indio_dev->setup_ops->postenable) {
1115 		ret = indio_dev->setup_ops->postenable(indio_dev);
1116 		if (ret) {
1117 			dev_dbg(&indio_dev->dev,
1118 			       "Buffer not started: postenable failed (%d)\n", ret);
1119 			goto err_detach_pollfunc;
1120 		}
1121 	}
1122 
1123 	return 0;
1124 
1125 err_detach_pollfunc:
1126 	if (iio_dev_opaque->currentmode == INDIO_BUFFER_TRIGGERED) {
1127 		iio_trigger_detach_poll_func(indio_dev->trig,
1128 					     indio_dev->pollfunc);
1129 	}
1130 err_disable_buffers:
1131 	buffer = list_prepare_entry(tmp, &iio_dev_opaque->buffer_list, buffer_list);
1132 	list_for_each_entry_continue_reverse(buffer, &iio_dev_opaque->buffer_list,
1133 					     buffer_list)
1134 		iio_buffer_disable(buffer, indio_dev);
1135 err_run_postdisable:
1136 	if (indio_dev->setup_ops->postdisable)
1137 		indio_dev->setup_ops->postdisable(indio_dev);
1138 err_undo_config:
1139 	iio_dev_opaque->currentmode = INDIO_DIRECT_MODE;
1140 	indio_dev->active_scan_mask = NULL;
1141 
1142 	return ret;
1143 }
1144 
1145 static int iio_disable_buffers(struct iio_dev *indio_dev)
1146 {
1147 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1148 	struct iio_buffer *buffer;
1149 	int ret = 0;
1150 	int ret2;
1151 
1152 	/* Wind down existing buffers - iff there are any */
1153 	if (list_empty(&iio_dev_opaque->buffer_list))
1154 		return 0;
1155 
1156 	/*
1157 	 * If things go wrong at some step in disable we still need to continue
1158 	 * to perform the other steps, otherwise we leave the device in a
1159 	 * inconsistent state. We return the error code for the first error we
1160 	 * encountered.
1161 	 */
1162 
1163 	if (indio_dev->setup_ops->predisable) {
1164 		ret2 = indio_dev->setup_ops->predisable(indio_dev);
1165 		if (ret2 && !ret)
1166 			ret = ret2;
1167 	}
1168 
1169 	if (iio_dev_opaque->currentmode == INDIO_BUFFER_TRIGGERED) {
1170 		iio_trigger_detach_poll_func(indio_dev->trig,
1171 					     indio_dev->pollfunc);
1172 	}
1173 
1174 	list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) {
1175 		ret2 = iio_buffer_disable(buffer, indio_dev);
1176 		if (ret2 && !ret)
1177 			ret = ret2;
1178 	}
1179 
1180 	if (indio_dev->setup_ops->postdisable) {
1181 		ret2 = indio_dev->setup_ops->postdisable(indio_dev);
1182 		if (ret2 && !ret)
1183 			ret = ret2;
1184 	}
1185 
1186 	iio_free_scan_mask(indio_dev, indio_dev->active_scan_mask);
1187 	indio_dev->active_scan_mask = NULL;
1188 	iio_dev_opaque->currentmode = INDIO_DIRECT_MODE;
1189 
1190 	return ret;
1191 }
1192 
1193 static int __iio_update_buffers(struct iio_dev *indio_dev,
1194 		       struct iio_buffer *insert_buffer,
1195 		       struct iio_buffer *remove_buffer)
1196 {
1197 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1198 	struct iio_device_config new_config;
1199 	int ret;
1200 
1201 	ret = iio_verify_update(indio_dev, insert_buffer, remove_buffer,
1202 		&new_config);
1203 	if (ret)
1204 		return ret;
1205 
1206 	if (insert_buffer) {
1207 		ret = iio_buffer_request_update(indio_dev, insert_buffer);
1208 		if (ret)
1209 			goto err_free_config;
1210 	}
1211 
1212 	ret = iio_disable_buffers(indio_dev);
1213 	if (ret)
1214 		goto err_deactivate_all;
1215 
1216 	if (remove_buffer)
1217 		iio_buffer_deactivate(remove_buffer);
1218 	if (insert_buffer)
1219 		iio_buffer_activate(indio_dev, insert_buffer);
1220 
1221 	/* If no buffers in list, we are done */
1222 	if (list_empty(&iio_dev_opaque->buffer_list))
1223 		return 0;
1224 
1225 	ret = iio_enable_buffers(indio_dev, &new_config);
1226 	if (ret)
1227 		goto err_deactivate_all;
1228 
1229 	return 0;
1230 
1231 err_deactivate_all:
1232 	/*
1233 	 * We've already verified that the config is valid earlier. If things go
1234 	 * wrong in either enable or disable the most likely reason is an IO
1235 	 * error from the device. In this case there is no good recovery
1236 	 * strategy. Just make sure to disable everything and leave the device
1237 	 * in a sane state.  With a bit of luck the device might come back to
1238 	 * life again later and userspace can try again.
1239 	 */
1240 	iio_buffer_deactivate_all(indio_dev);
1241 
1242 err_free_config:
1243 	iio_free_scan_mask(indio_dev, new_config.scan_mask);
1244 	return ret;
1245 }
1246 
1247 int iio_update_buffers(struct iio_dev *indio_dev,
1248 		       struct iio_buffer *insert_buffer,
1249 		       struct iio_buffer *remove_buffer)
1250 {
1251 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1252 	int ret;
1253 
1254 	if (insert_buffer == remove_buffer)
1255 		return 0;
1256 
1257 	if (insert_buffer &&
1258 	    (insert_buffer->direction == IIO_BUFFER_DIRECTION_OUT))
1259 		return -EINVAL;
1260 
1261 	mutex_lock(&iio_dev_opaque->info_exist_lock);
1262 	mutex_lock(&iio_dev_opaque->mlock);
1263 
1264 	if (insert_buffer && iio_buffer_is_active(insert_buffer))
1265 		insert_buffer = NULL;
1266 
1267 	if (remove_buffer && !iio_buffer_is_active(remove_buffer))
1268 		remove_buffer = NULL;
1269 
1270 	if (!insert_buffer && !remove_buffer) {
1271 		ret = 0;
1272 		goto out_unlock;
1273 	}
1274 
1275 	if (indio_dev->info == NULL) {
1276 		ret = -ENODEV;
1277 		goto out_unlock;
1278 	}
1279 
1280 	ret = __iio_update_buffers(indio_dev, insert_buffer, remove_buffer);
1281 
1282 out_unlock:
1283 	mutex_unlock(&iio_dev_opaque->mlock);
1284 	mutex_unlock(&iio_dev_opaque->info_exist_lock);
1285 
1286 	return ret;
1287 }
1288 EXPORT_SYMBOL_GPL(iio_update_buffers);
1289 
1290 void iio_disable_all_buffers(struct iio_dev *indio_dev)
1291 {
1292 	iio_disable_buffers(indio_dev);
1293 	iio_buffer_deactivate_all(indio_dev);
1294 }
1295 
1296 static ssize_t enable_store(struct device *dev, struct device_attribute *attr,
1297 			    const char *buf, size_t len)
1298 {
1299 	int ret;
1300 	bool requested_state;
1301 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1302 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1303 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
1304 	bool inlist;
1305 
1306 	ret = kstrtobool(buf, &requested_state);
1307 	if (ret < 0)
1308 		return ret;
1309 
1310 	mutex_lock(&iio_dev_opaque->mlock);
1311 
1312 	/* Find out if it is in the list */
1313 	inlist = iio_buffer_is_active(buffer);
1314 	/* Already in desired state */
1315 	if (inlist == requested_state)
1316 		goto done;
1317 
1318 	if (requested_state)
1319 		ret = __iio_update_buffers(indio_dev, buffer, NULL);
1320 	else
1321 		ret = __iio_update_buffers(indio_dev, NULL, buffer);
1322 
1323 done:
1324 	mutex_unlock(&iio_dev_opaque->mlock);
1325 	return (ret < 0) ? ret : len;
1326 }
1327 
1328 static ssize_t watermark_show(struct device *dev, struct device_attribute *attr,
1329 			      char *buf)
1330 {
1331 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
1332 
1333 	return sysfs_emit(buf, "%u\n", buffer->watermark);
1334 }
1335 
1336 static ssize_t watermark_store(struct device *dev,
1337 			       struct device_attribute *attr,
1338 			       const char *buf, size_t len)
1339 {
1340 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1341 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1342 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
1343 	unsigned int val;
1344 	int ret;
1345 
1346 	ret = kstrtouint(buf, 10, &val);
1347 	if (ret)
1348 		return ret;
1349 	if (!val)
1350 		return -EINVAL;
1351 
1352 	mutex_lock(&iio_dev_opaque->mlock);
1353 
1354 	if (val > buffer->length) {
1355 		ret = -EINVAL;
1356 		goto out;
1357 	}
1358 
1359 	if (iio_buffer_is_active(buffer)) {
1360 		ret = -EBUSY;
1361 		goto out;
1362 	}
1363 
1364 	buffer->watermark = val;
1365 out:
1366 	mutex_unlock(&iio_dev_opaque->mlock);
1367 
1368 	return ret ? ret : len;
1369 }
1370 
1371 static ssize_t data_available_show(struct device *dev,
1372 				   struct device_attribute *attr, char *buf)
1373 {
1374 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
1375 
1376 	return sysfs_emit(buf, "%zu\n", iio_buffer_data_available(buffer));
1377 }
1378 
1379 static ssize_t direction_show(struct device *dev,
1380 			      struct device_attribute *attr,
1381 			      char *buf)
1382 {
1383 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
1384 
1385 	switch (buffer->direction) {
1386 	case IIO_BUFFER_DIRECTION_IN:
1387 		return sysfs_emit(buf, "in\n");
1388 	case IIO_BUFFER_DIRECTION_OUT:
1389 		return sysfs_emit(buf, "out\n");
1390 	default:
1391 		return -EINVAL;
1392 	}
1393 }
1394 
1395 static DEVICE_ATTR_RW(length);
1396 static struct device_attribute dev_attr_length_ro = __ATTR_RO(length);
1397 static DEVICE_ATTR_RW(enable);
1398 static DEVICE_ATTR_RW(watermark);
1399 static struct device_attribute dev_attr_watermark_ro = __ATTR_RO(watermark);
1400 static DEVICE_ATTR_RO(data_available);
1401 static DEVICE_ATTR_RO(direction);
1402 
1403 /*
1404  * When adding new attributes here, put the at the end, at least until
1405  * the code that handles the length/length_ro & watermark/watermark_ro
1406  * assignments gets cleaned up. Otherwise these can create some weird
1407  * duplicate attributes errors under some setups.
1408  */
1409 static struct attribute *iio_buffer_attrs[] = {
1410 	&dev_attr_length.attr,
1411 	&dev_attr_enable.attr,
1412 	&dev_attr_watermark.attr,
1413 	&dev_attr_data_available.attr,
1414 	&dev_attr_direction.attr,
1415 };
1416 
1417 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1418 
1419 static struct attribute *iio_buffer_wrap_attr(struct iio_buffer *buffer,
1420 					      struct attribute *attr)
1421 {
1422 	struct device_attribute *dattr = to_dev_attr(attr);
1423 	struct iio_dev_attr *iio_attr;
1424 
1425 	iio_attr = kzalloc(sizeof(*iio_attr), GFP_KERNEL);
1426 	if (!iio_attr)
1427 		return NULL;
1428 
1429 	iio_attr->buffer = buffer;
1430 	memcpy(&iio_attr->dev_attr, dattr, sizeof(iio_attr->dev_attr));
1431 	iio_attr->dev_attr.attr.name = kstrdup_const(attr->name, GFP_KERNEL);
1432 	if (!iio_attr->dev_attr.attr.name) {
1433 		kfree(iio_attr);
1434 		return NULL;
1435 	}
1436 
1437 	sysfs_attr_init(&iio_attr->dev_attr.attr);
1438 
1439 	list_add(&iio_attr->l, &buffer->buffer_attr_list);
1440 
1441 	return &iio_attr->dev_attr.attr;
1442 }
1443 
1444 static int iio_buffer_register_legacy_sysfs_groups(struct iio_dev *indio_dev,
1445 						   struct attribute **buffer_attrs,
1446 						   int buffer_attrcount,
1447 						   int scan_el_attrcount)
1448 {
1449 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1450 	struct attribute_group *group;
1451 	struct attribute **attrs;
1452 	int ret;
1453 
1454 	attrs = kcalloc(buffer_attrcount + 1, sizeof(*attrs), GFP_KERNEL);
1455 	if (!attrs)
1456 		return -ENOMEM;
1457 
1458 	memcpy(attrs, buffer_attrs, buffer_attrcount * sizeof(*attrs));
1459 
1460 	group = &iio_dev_opaque->legacy_buffer_group;
1461 	group->attrs = attrs;
1462 	group->name = "buffer";
1463 
1464 	ret = iio_device_register_sysfs_group(indio_dev, group);
1465 	if (ret)
1466 		goto error_free_buffer_attrs;
1467 
1468 	attrs = kcalloc(scan_el_attrcount + 1, sizeof(*attrs), GFP_KERNEL);
1469 	if (!attrs) {
1470 		ret = -ENOMEM;
1471 		goto error_free_buffer_attrs;
1472 	}
1473 
1474 	memcpy(attrs, &buffer_attrs[buffer_attrcount],
1475 	       scan_el_attrcount * sizeof(*attrs));
1476 
1477 	group = &iio_dev_opaque->legacy_scan_el_group;
1478 	group->attrs = attrs;
1479 	group->name = "scan_elements";
1480 
1481 	ret = iio_device_register_sysfs_group(indio_dev, group);
1482 	if (ret)
1483 		goto error_free_scan_el_attrs;
1484 
1485 	return 0;
1486 
1487 error_free_scan_el_attrs:
1488 	kfree(iio_dev_opaque->legacy_scan_el_group.attrs);
1489 error_free_buffer_attrs:
1490 	kfree(iio_dev_opaque->legacy_buffer_group.attrs);
1491 
1492 	return ret;
1493 }
1494 
1495 static void iio_buffer_unregister_legacy_sysfs_groups(struct iio_dev *indio_dev)
1496 {
1497 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1498 
1499 	kfree(iio_dev_opaque->legacy_buffer_group.attrs);
1500 	kfree(iio_dev_opaque->legacy_scan_el_group.attrs);
1501 }
1502 
1503 static int iio_buffer_chrdev_release(struct inode *inode, struct file *filep)
1504 {
1505 	struct iio_dev_buffer_pair *ib = filep->private_data;
1506 	struct iio_dev *indio_dev = ib->indio_dev;
1507 	struct iio_buffer *buffer = ib->buffer;
1508 
1509 	wake_up(&buffer->pollq);
1510 
1511 	kfree(ib);
1512 	clear_bit(IIO_BUSY_BIT_POS, &buffer->flags);
1513 	iio_device_put(indio_dev);
1514 
1515 	return 0;
1516 }
1517 
1518 static const struct file_operations iio_buffer_chrdev_fileops = {
1519 	.owner = THIS_MODULE,
1520 	.llseek = noop_llseek,
1521 	.read = iio_buffer_read,
1522 	.write = iio_buffer_write,
1523 	.poll = iio_buffer_poll,
1524 	.release = iio_buffer_chrdev_release,
1525 };
1526 
1527 static long iio_device_buffer_getfd(struct iio_dev *indio_dev, unsigned long arg)
1528 {
1529 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1530 	int __user *ival = (int __user *)arg;
1531 	struct iio_dev_buffer_pair *ib;
1532 	struct iio_buffer *buffer;
1533 	int fd, idx, ret;
1534 
1535 	if (copy_from_user(&idx, ival, sizeof(idx)))
1536 		return -EFAULT;
1537 
1538 	if (idx >= iio_dev_opaque->attached_buffers_cnt)
1539 		return -ENODEV;
1540 
1541 	iio_device_get(indio_dev);
1542 
1543 	buffer = iio_dev_opaque->attached_buffers[idx];
1544 
1545 	if (test_and_set_bit(IIO_BUSY_BIT_POS, &buffer->flags)) {
1546 		ret = -EBUSY;
1547 		goto error_iio_dev_put;
1548 	}
1549 
1550 	ib = kzalloc(sizeof(*ib), GFP_KERNEL);
1551 	if (!ib) {
1552 		ret = -ENOMEM;
1553 		goto error_clear_busy_bit;
1554 	}
1555 
1556 	ib->indio_dev = indio_dev;
1557 	ib->buffer = buffer;
1558 
1559 	fd = anon_inode_getfd("iio:buffer", &iio_buffer_chrdev_fileops,
1560 			      ib, O_RDWR | O_CLOEXEC);
1561 	if (fd < 0) {
1562 		ret = fd;
1563 		goto error_free_ib;
1564 	}
1565 
1566 	if (copy_to_user(ival, &fd, sizeof(fd))) {
1567 		/*
1568 		 * "Leak" the fd, as there's not much we can do about this
1569 		 * anyway. 'fd' might have been closed already, as
1570 		 * anon_inode_getfd() called fd_install() on it, which made
1571 		 * it reachable by userland.
1572 		 *
1573 		 * Instead of allowing a malicious user to play tricks with
1574 		 * us, rely on the process exit path to do any necessary
1575 		 * cleanup, as in releasing the file, if still needed.
1576 		 */
1577 		return -EFAULT;
1578 	}
1579 
1580 	return 0;
1581 
1582 error_free_ib:
1583 	kfree(ib);
1584 error_clear_busy_bit:
1585 	clear_bit(IIO_BUSY_BIT_POS, &buffer->flags);
1586 error_iio_dev_put:
1587 	iio_device_put(indio_dev);
1588 	return ret;
1589 }
1590 
1591 static long iio_device_buffer_ioctl(struct iio_dev *indio_dev, struct file *filp,
1592 				    unsigned int cmd, unsigned long arg)
1593 {
1594 	switch (cmd) {
1595 	case IIO_BUFFER_GET_FD_IOCTL:
1596 		return iio_device_buffer_getfd(indio_dev, arg);
1597 	default:
1598 		return IIO_IOCTL_UNHANDLED;
1599 	}
1600 }
1601 
1602 static int __iio_buffer_alloc_sysfs_and_mask(struct iio_buffer *buffer,
1603 					     struct iio_dev *indio_dev,
1604 					     int index)
1605 {
1606 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1607 	struct iio_dev_attr *p;
1608 	const struct iio_dev_attr *id_attr;
1609 	struct attribute **attr;
1610 	int ret, i, attrn, scan_el_attrcount, buffer_attrcount;
1611 	const struct iio_chan_spec *channels;
1612 
1613 	buffer_attrcount = 0;
1614 	if (buffer->attrs) {
1615 		while (buffer->attrs[buffer_attrcount] != NULL)
1616 			buffer_attrcount++;
1617 	}
1618 	buffer_attrcount += ARRAY_SIZE(iio_buffer_attrs);
1619 
1620 	scan_el_attrcount = 0;
1621 	INIT_LIST_HEAD(&buffer->buffer_attr_list);
1622 	channels = indio_dev->channels;
1623 	if (channels) {
1624 		/* new magic */
1625 		for (i = 0; i < indio_dev->num_channels; i++) {
1626 			if (channels[i].scan_index < 0)
1627 				continue;
1628 
1629 			/* Verify that sample bits fit into storage */
1630 			if (channels[i].scan_type.storagebits <
1631 			    channels[i].scan_type.realbits +
1632 			    channels[i].scan_type.shift) {
1633 				dev_err(&indio_dev->dev,
1634 					"Channel %d storagebits (%d) < shifted realbits (%d + %d)\n",
1635 					i, channels[i].scan_type.storagebits,
1636 					channels[i].scan_type.realbits,
1637 					channels[i].scan_type.shift);
1638 				ret = -EINVAL;
1639 				goto error_cleanup_dynamic;
1640 			}
1641 
1642 			ret = iio_buffer_add_channel_sysfs(indio_dev, buffer,
1643 							 &channels[i]);
1644 			if (ret < 0)
1645 				goto error_cleanup_dynamic;
1646 			scan_el_attrcount += ret;
1647 			if (channels[i].type == IIO_TIMESTAMP)
1648 				iio_dev_opaque->scan_index_timestamp =
1649 					channels[i].scan_index;
1650 		}
1651 		if (indio_dev->masklength && buffer->scan_mask == NULL) {
1652 			buffer->scan_mask = bitmap_zalloc(indio_dev->masklength,
1653 							  GFP_KERNEL);
1654 			if (buffer->scan_mask == NULL) {
1655 				ret = -ENOMEM;
1656 				goto error_cleanup_dynamic;
1657 			}
1658 		}
1659 	}
1660 
1661 	attrn = buffer_attrcount + scan_el_attrcount;
1662 	attr = kcalloc(attrn + 1, sizeof(*attr), GFP_KERNEL);
1663 	if (!attr) {
1664 		ret = -ENOMEM;
1665 		goto error_free_scan_mask;
1666 	}
1667 
1668 	memcpy(attr, iio_buffer_attrs, sizeof(iio_buffer_attrs));
1669 	if (!buffer->access->set_length)
1670 		attr[0] = &dev_attr_length_ro.attr;
1671 
1672 	if (buffer->access->flags & INDIO_BUFFER_FLAG_FIXED_WATERMARK)
1673 		attr[2] = &dev_attr_watermark_ro.attr;
1674 
1675 	if (buffer->attrs)
1676 		for (i = 0, id_attr = buffer->attrs[i];
1677 		     (id_attr = buffer->attrs[i]); i++)
1678 			attr[ARRAY_SIZE(iio_buffer_attrs) + i] =
1679 				(struct attribute *)&id_attr->dev_attr.attr;
1680 
1681 	buffer->buffer_group.attrs = attr;
1682 
1683 	for (i = 0; i < buffer_attrcount; i++) {
1684 		struct attribute *wrapped;
1685 
1686 		wrapped = iio_buffer_wrap_attr(buffer, attr[i]);
1687 		if (!wrapped) {
1688 			ret = -ENOMEM;
1689 			goto error_free_buffer_attrs;
1690 		}
1691 		attr[i] = wrapped;
1692 	}
1693 
1694 	attrn = 0;
1695 	list_for_each_entry(p, &buffer->buffer_attr_list, l)
1696 		attr[attrn++] = &p->dev_attr.attr;
1697 
1698 	buffer->buffer_group.name = kasprintf(GFP_KERNEL, "buffer%d", index);
1699 	if (!buffer->buffer_group.name) {
1700 		ret = -ENOMEM;
1701 		goto error_free_buffer_attrs;
1702 	}
1703 
1704 	ret = iio_device_register_sysfs_group(indio_dev, &buffer->buffer_group);
1705 	if (ret)
1706 		goto error_free_buffer_attr_group_name;
1707 
1708 	/* we only need to register the legacy groups for the first buffer */
1709 	if (index > 0)
1710 		return 0;
1711 
1712 	ret = iio_buffer_register_legacy_sysfs_groups(indio_dev, attr,
1713 						      buffer_attrcount,
1714 						      scan_el_attrcount);
1715 	if (ret)
1716 		goto error_free_buffer_attr_group_name;
1717 
1718 	return 0;
1719 
1720 error_free_buffer_attr_group_name:
1721 	kfree(buffer->buffer_group.name);
1722 error_free_buffer_attrs:
1723 	kfree(buffer->buffer_group.attrs);
1724 error_free_scan_mask:
1725 	bitmap_free(buffer->scan_mask);
1726 error_cleanup_dynamic:
1727 	iio_free_chan_devattr_list(&buffer->buffer_attr_list);
1728 
1729 	return ret;
1730 }
1731 
1732 static void __iio_buffer_free_sysfs_and_mask(struct iio_buffer *buffer,
1733 					     struct iio_dev *indio_dev,
1734 					     int index)
1735 {
1736 	if (index == 0)
1737 		iio_buffer_unregister_legacy_sysfs_groups(indio_dev);
1738 	bitmap_free(buffer->scan_mask);
1739 	kfree(buffer->buffer_group.name);
1740 	kfree(buffer->buffer_group.attrs);
1741 	iio_free_chan_devattr_list(&buffer->buffer_attr_list);
1742 }
1743 
1744 int iio_buffers_alloc_sysfs_and_mask(struct iio_dev *indio_dev)
1745 {
1746 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1747 	const struct iio_chan_spec *channels;
1748 	struct iio_buffer *buffer;
1749 	int ret, i, idx;
1750 	size_t sz;
1751 
1752 	channels = indio_dev->channels;
1753 	if (channels) {
1754 		int ml = indio_dev->masklength;
1755 
1756 		for (i = 0; i < indio_dev->num_channels; i++)
1757 			ml = max(ml, channels[i].scan_index + 1);
1758 		indio_dev->masklength = ml;
1759 	}
1760 
1761 	if (!iio_dev_opaque->attached_buffers_cnt)
1762 		return 0;
1763 
1764 	for (idx = 0; idx < iio_dev_opaque->attached_buffers_cnt; idx++) {
1765 		buffer = iio_dev_opaque->attached_buffers[idx];
1766 		ret = __iio_buffer_alloc_sysfs_and_mask(buffer, indio_dev, idx);
1767 		if (ret)
1768 			goto error_unwind_sysfs_and_mask;
1769 	}
1770 
1771 	sz = sizeof(*(iio_dev_opaque->buffer_ioctl_handler));
1772 	iio_dev_opaque->buffer_ioctl_handler = kzalloc(sz, GFP_KERNEL);
1773 	if (!iio_dev_opaque->buffer_ioctl_handler) {
1774 		ret = -ENOMEM;
1775 		goto error_unwind_sysfs_and_mask;
1776 	}
1777 
1778 	iio_dev_opaque->buffer_ioctl_handler->ioctl = iio_device_buffer_ioctl;
1779 	iio_device_ioctl_handler_register(indio_dev,
1780 					  iio_dev_opaque->buffer_ioctl_handler);
1781 
1782 	return 0;
1783 
1784 error_unwind_sysfs_and_mask:
1785 	while (idx--) {
1786 		buffer = iio_dev_opaque->attached_buffers[idx];
1787 		__iio_buffer_free_sysfs_and_mask(buffer, indio_dev, idx);
1788 	}
1789 	return ret;
1790 }
1791 
1792 void iio_buffers_free_sysfs_and_mask(struct iio_dev *indio_dev)
1793 {
1794 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1795 	struct iio_buffer *buffer;
1796 	int i;
1797 
1798 	if (!iio_dev_opaque->attached_buffers_cnt)
1799 		return;
1800 
1801 	iio_device_ioctl_handler_unregister(iio_dev_opaque->buffer_ioctl_handler);
1802 	kfree(iio_dev_opaque->buffer_ioctl_handler);
1803 
1804 	for (i = iio_dev_opaque->attached_buffers_cnt - 1; i >= 0; i--) {
1805 		buffer = iio_dev_opaque->attached_buffers[i];
1806 		__iio_buffer_free_sysfs_and_mask(buffer, indio_dev, i);
1807 	}
1808 }
1809 
1810 /**
1811  * iio_validate_scan_mask_onehot() - Validates that exactly one channel is selected
1812  * @indio_dev: the iio device
1813  * @mask: scan mask to be checked
1814  *
1815  * Return true if exactly one bit is set in the scan mask, false otherwise. It
1816  * can be used for devices where only one channel can be active for sampling at
1817  * a time.
1818  */
1819 bool iio_validate_scan_mask_onehot(struct iio_dev *indio_dev,
1820 	const unsigned long *mask)
1821 {
1822 	return bitmap_weight(mask, indio_dev->masklength) == 1;
1823 }
1824 EXPORT_SYMBOL_GPL(iio_validate_scan_mask_onehot);
1825 
1826 static const void *iio_demux(struct iio_buffer *buffer,
1827 				 const void *datain)
1828 {
1829 	struct iio_demux_table *t;
1830 
1831 	if (list_empty(&buffer->demux_list))
1832 		return datain;
1833 	list_for_each_entry(t, &buffer->demux_list, l)
1834 		memcpy(buffer->demux_bounce + t->to,
1835 		       datain + t->from, t->length);
1836 
1837 	return buffer->demux_bounce;
1838 }
1839 
1840 static int iio_push_to_buffer(struct iio_buffer *buffer, const void *data)
1841 {
1842 	const void *dataout = iio_demux(buffer, data);
1843 	int ret;
1844 
1845 	ret = buffer->access->store_to(buffer, dataout);
1846 	if (ret)
1847 		return ret;
1848 
1849 	/*
1850 	 * We can't just test for watermark to decide if we wake the poll queue
1851 	 * because read may request less samples than the watermark.
1852 	 */
1853 	wake_up_interruptible_poll(&buffer->pollq, EPOLLIN | EPOLLRDNORM);
1854 	return 0;
1855 }
1856 
1857 /**
1858  * iio_push_to_buffers() - push to a registered buffer.
1859  * @indio_dev:		iio_dev structure for device.
1860  * @data:		Full scan.
1861  */
1862 int iio_push_to_buffers(struct iio_dev *indio_dev, const void *data)
1863 {
1864 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1865 	int ret;
1866 	struct iio_buffer *buf;
1867 
1868 	list_for_each_entry(buf, &iio_dev_opaque->buffer_list, buffer_list) {
1869 		ret = iio_push_to_buffer(buf, data);
1870 		if (ret < 0)
1871 			return ret;
1872 	}
1873 
1874 	return 0;
1875 }
1876 EXPORT_SYMBOL_GPL(iio_push_to_buffers);
1877 
1878 /**
1879  * iio_push_to_buffers_with_ts_unaligned() - push to registered buffer,
1880  *    no alignment or space requirements.
1881  * @indio_dev:		iio_dev structure for device.
1882  * @data:		channel data excluding the timestamp.
1883  * @data_sz:		size of data.
1884  * @timestamp:		timestamp for the sample data.
1885  *
1886  * This special variant of iio_push_to_buffers_with_timestamp() does
1887  * not require space for the timestamp, or 8 byte alignment of data.
1888  * It does however require an allocation on first call and additional
1889  * copies on all calls, so should be avoided if possible.
1890  */
1891 int iio_push_to_buffers_with_ts_unaligned(struct iio_dev *indio_dev,
1892 					  const void *data,
1893 					  size_t data_sz,
1894 					  int64_t timestamp)
1895 {
1896 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1897 
1898 	/*
1899 	 * Conservative estimate - we can always safely copy the minimum
1900 	 * of either the data provided or the length of the destination buffer.
1901 	 * This relaxed limit allows the calling drivers to be lax about
1902 	 * tracking the size of the data they are pushing, at the cost of
1903 	 * unnecessary copying of padding.
1904 	 */
1905 	data_sz = min_t(size_t, indio_dev->scan_bytes, data_sz);
1906 	if (iio_dev_opaque->bounce_buffer_size !=  indio_dev->scan_bytes) {
1907 		void *bb;
1908 
1909 		bb = devm_krealloc(&indio_dev->dev,
1910 				   iio_dev_opaque->bounce_buffer,
1911 				   indio_dev->scan_bytes, GFP_KERNEL);
1912 		if (!bb)
1913 			return -ENOMEM;
1914 		iio_dev_opaque->bounce_buffer = bb;
1915 		iio_dev_opaque->bounce_buffer_size = indio_dev->scan_bytes;
1916 	}
1917 	memcpy(iio_dev_opaque->bounce_buffer, data, data_sz);
1918 	return iio_push_to_buffers_with_timestamp(indio_dev,
1919 						  iio_dev_opaque->bounce_buffer,
1920 						  timestamp);
1921 }
1922 EXPORT_SYMBOL_GPL(iio_push_to_buffers_with_ts_unaligned);
1923 
1924 /**
1925  * iio_buffer_release() - Free a buffer's resources
1926  * @ref: Pointer to the kref embedded in the iio_buffer struct
1927  *
1928  * This function is called when the last reference to the buffer has been
1929  * dropped. It will typically free all resources allocated by the buffer. Do not
1930  * call this function manually, always use iio_buffer_put() when done using a
1931  * buffer.
1932  */
1933 static void iio_buffer_release(struct kref *ref)
1934 {
1935 	struct iio_buffer *buffer = container_of(ref, struct iio_buffer, ref);
1936 
1937 	buffer->access->release(buffer);
1938 }
1939 
1940 /**
1941  * iio_buffer_get() - Grab a reference to the buffer
1942  * @buffer: The buffer to grab a reference for, may be NULL
1943  *
1944  * Returns the pointer to the buffer that was passed into the function.
1945  */
1946 struct iio_buffer *iio_buffer_get(struct iio_buffer *buffer)
1947 {
1948 	if (buffer)
1949 		kref_get(&buffer->ref);
1950 
1951 	return buffer;
1952 }
1953 EXPORT_SYMBOL_GPL(iio_buffer_get);
1954 
1955 /**
1956  * iio_buffer_put() - Release the reference to the buffer
1957  * @buffer: The buffer to release the reference for, may be NULL
1958  */
1959 void iio_buffer_put(struct iio_buffer *buffer)
1960 {
1961 	if (buffer)
1962 		kref_put(&buffer->ref, iio_buffer_release);
1963 }
1964 EXPORT_SYMBOL_GPL(iio_buffer_put);
1965 
1966 /**
1967  * iio_device_attach_buffer - Attach a buffer to a IIO device
1968  * @indio_dev: The device the buffer should be attached to
1969  * @buffer: The buffer to attach to the device
1970  *
1971  * Return 0 if successful, negative if error.
1972  *
1973  * This function attaches a buffer to a IIO device. The buffer stays attached to
1974  * the device until the device is freed. For legacy reasons, the first attached
1975  * buffer will also be assigned to 'indio_dev->buffer'.
1976  * The array allocated here, will be free'd via the iio_device_detach_buffers()
1977  * call which is handled by the iio_device_free().
1978  */
1979 int iio_device_attach_buffer(struct iio_dev *indio_dev,
1980 			     struct iio_buffer *buffer)
1981 {
1982 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1983 	struct iio_buffer **new, **old = iio_dev_opaque->attached_buffers;
1984 	unsigned int cnt = iio_dev_opaque->attached_buffers_cnt;
1985 
1986 	cnt++;
1987 
1988 	new = krealloc(old, sizeof(*new) * cnt, GFP_KERNEL);
1989 	if (!new)
1990 		return -ENOMEM;
1991 	iio_dev_opaque->attached_buffers = new;
1992 
1993 	buffer = iio_buffer_get(buffer);
1994 
1995 	/* first buffer is legacy; attach it to the IIO device directly */
1996 	if (!indio_dev->buffer)
1997 		indio_dev->buffer = buffer;
1998 
1999 	iio_dev_opaque->attached_buffers[cnt - 1] = buffer;
2000 	iio_dev_opaque->attached_buffers_cnt = cnt;
2001 
2002 	return 0;
2003 }
2004 EXPORT_SYMBOL_GPL(iio_device_attach_buffer);
2005