xref: /openbmc/linux/drivers/iio/industrialio-buffer.c (revision 0af5cb349a2c97fbabb3cede96efcde9d54b7940)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* The industrial I/O core
3  *
4  * Copyright (c) 2008 Jonathan Cameron
5  *
6  * Handling of buffer allocation / resizing.
7  *
8  * Things to look at here.
9  * - Better memory allocation techniques?
10  * - Alternative access techniques?
11  */
12 #include <linux/anon_inodes.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/device.h>
16 #include <linux/file.h>
17 #include <linux/fs.h>
18 #include <linux/cdev.h>
19 #include <linux/slab.h>
20 #include <linux/poll.h>
21 #include <linux/sched/signal.h>
22 
23 #include <linux/iio/iio.h>
24 #include <linux/iio/iio-opaque.h>
25 #include "iio_core.h"
26 #include "iio_core_trigger.h"
27 #include <linux/iio/sysfs.h>
28 #include <linux/iio/buffer.h>
29 #include <linux/iio/buffer_impl.h>
30 
31 static const char * const iio_endian_prefix[] = {
32 	[IIO_BE] = "be",
33 	[IIO_LE] = "le",
34 };
35 
36 static bool iio_buffer_is_active(struct iio_buffer *buf)
37 {
38 	return !list_empty(&buf->buffer_list);
39 }
40 
41 static size_t iio_buffer_data_available(struct iio_buffer *buf)
42 {
43 	return buf->access->data_available(buf);
44 }
45 
46 static int iio_buffer_flush_hwfifo(struct iio_dev *indio_dev,
47 				   struct iio_buffer *buf, size_t required)
48 {
49 	if (!indio_dev->info->hwfifo_flush_to_buffer)
50 		return -ENODEV;
51 
52 	return indio_dev->info->hwfifo_flush_to_buffer(indio_dev, required);
53 }
54 
55 static bool iio_buffer_ready(struct iio_dev *indio_dev, struct iio_buffer *buf,
56 			     size_t to_wait, int to_flush)
57 {
58 	size_t avail;
59 	int flushed = 0;
60 
61 	/* wakeup if the device was unregistered */
62 	if (!indio_dev->info)
63 		return true;
64 
65 	/* drain the buffer if it was disabled */
66 	if (!iio_buffer_is_active(buf)) {
67 		to_wait = min_t(size_t, to_wait, 1);
68 		to_flush = 0;
69 	}
70 
71 	avail = iio_buffer_data_available(buf);
72 
73 	if (avail >= to_wait) {
74 		/* force a flush for non-blocking reads */
75 		if (!to_wait && avail < to_flush)
76 			iio_buffer_flush_hwfifo(indio_dev, buf,
77 						to_flush - avail);
78 		return true;
79 	}
80 
81 	if (to_flush)
82 		flushed = iio_buffer_flush_hwfifo(indio_dev, buf,
83 						  to_wait - avail);
84 	if (flushed <= 0)
85 		return false;
86 
87 	if (avail + flushed >= to_wait)
88 		return true;
89 
90 	return false;
91 }
92 
93 /**
94  * iio_buffer_read() - chrdev read for buffer access
95  * @filp:	File structure pointer for the char device
96  * @buf:	Destination buffer for iio buffer read
97  * @n:		First n bytes to read
98  * @f_ps:	Long offset provided by the user as a seek position
99  *
100  * This function relies on all buffer implementations having an
101  * iio_buffer as their first element.
102  *
103  * Return: negative values corresponding to error codes or ret != 0
104  *	   for ending the reading activity
105  **/
106 static ssize_t iio_buffer_read(struct file *filp, char __user *buf,
107 			       size_t n, loff_t *f_ps)
108 {
109 	struct iio_dev_buffer_pair *ib = filp->private_data;
110 	struct iio_buffer *rb = ib->buffer;
111 	struct iio_dev *indio_dev = ib->indio_dev;
112 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
113 	size_t datum_size;
114 	size_t to_wait;
115 	int ret = 0;
116 
117 	if (!indio_dev->info)
118 		return -ENODEV;
119 
120 	if (!rb || !rb->access->read)
121 		return -EINVAL;
122 
123 	if (rb->direction != IIO_BUFFER_DIRECTION_IN)
124 		return -EPERM;
125 
126 	datum_size = rb->bytes_per_datum;
127 
128 	/*
129 	 * If datum_size is 0 there will never be anything to read from the
130 	 * buffer, so signal end of file now.
131 	 */
132 	if (!datum_size)
133 		return 0;
134 
135 	if (filp->f_flags & O_NONBLOCK)
136 		to_wait = 0;
137 	else
138 		to_wait = min_t(size_t, n / datum_size, rb->watermark);
139 
140 	add_wait_queue(&rb->pollq, &wait);
141 	do {
142 		if (!indio_dev->info) {
143 			ret = -ENODEV;
144 			break;
145 		}
146 
147 		if (!iio_buffer_ready(indio_dev, rb, to_wait, n / datum_size)) {
148 			if (signal_pending(current)) {
149 				ret = -ERESTARTSYS;
150 				break;
151 			}
152 
153 			wait_woken(&wait, TASK_INTERRUPTIBLE,
154 				   MAX_SCHEDULE_TIMEOUT);
155 			continue;
156 		}
157 
158 		ret = rb->access->read(rb, n, buf);
159 		if (ret == 0 && (filp->f_flags & O_NONBLOCK))
160 			ret = -EAGAIN;
161 	} while (ret == 0);
162 	remove_wait_queue(&rb->pollq, &wait);
163 
164 	return ret;
165 }
166 
167 static size_t iio_buffer_space_available(struct iio_buffer *buf)
168 {
169 	if (buf->access->space_available)
170 		return buf->access->space_available(buf);
171 
172 	return SIZE_MAX;
173 }
174 
175 static ssize_t iio_buffer_write(struct file *filp, const char __user *buf,
176 				size_t n, loff_t *f_ps)
177 {
178 	struct iio_dev_buffer_pair *ib = filp->private_data;
179 	struct iio_buffer *rb = ib->buffer;
180 	struct iio_dev *indio_dev = ib->indio_dev;
181 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
182 	int ret = 0;
183 	size_t written;
184 
185 	if (!indio_dev->info)
186 		return -ENODEV;
187 
188 	if (!rb || !rb->access->write)
189 		return -EINVAL;
190 
191 	if (rb->direction != IIO_BUFFER_DIRECTION_OUT)
192 		return -EPERM;
193 
194 	written = 0;
195 	add_wait_queue(&rb->pollq, &wait);
196 	do {
197 		if (indio_dev->info == NULL)
198 			return -ENODEV;
199 
200 		if (!iio_buffer_space_available(rb)) {
201 			if (signal_pending(current)) {
202 				ret = -ERESTARTSYS;
203 				break;
204 			}
205 
206 			wait_woken(&wait, TASK_INTERRUPTIBLE,
207 					MAX_SCHEDULE_TIMEOUT);
208 			continue;
209 		}
210 
211 		ret = rb->access->write(rb, n - written, buf + written);
212 		if (ret == 0 && (filp->f_flags & O_NONBLOCK))
213 			ret = -EAGAIN;
214 
215 		if (ret > 0) {
216 			written += ret;
217 			if (written != n && !(filp->f_flags & O_NONBLOCK))
218 				continue;
219 		}
220 	} while (ret == 0);
221 	remove_wait_queue(&rb->pollq, &wait);
222 
223 	return ret < 0 ? ret : n;
224 }
225 
226 /**
227  * iio_buffer_poll() - poll the buffer to find out if it has data
228  * @filp:	File structure pointer for device access
229  * @wait:	Poll table structure pointer for which the driver adds
230  *		a wait queue
231  *
232  * Return: (EPOLLIN | EPOLLRDNORM) if data is available for reading
233  *	   or 0 for other cases
234  */
235 static __poll_t iio_buffer_poll(struct file *filp,
236 				struct poll_table_struct *wait)
237 {
238 	struct iio_dev_buffer_pair *ib = filp->private_data;
239 	struct iio_buffer *rb = ib->buffer;
240 	struct iio_dev *indio_dev = ib->indio_dev;
241 
242 	if (!indio_dev->info || rb == NULL)
243 		return 0;
244 
245 	poll_wait(filp, &rb->pollq, wait);
246 
247 	switch (rb->direction) {
248 	case IIO_BUFFER_DIRECTION_IN:
249 		if (iio_buffer_ready(indio_dev, rb, rb->watermark, 0))
250 			return EPOLLIN | EPOLLRDNORM;
251 		break;
252 	case IIO_BUFFER_DIRECTION_OUT:
253 		if (iio_buffer_space_available(rb))
254 			return EPOLLOUT | EPOLLWRNORM;
255 		break;
256 	}
257 
258 	return 0;
259 }
260 
261 ssize_t iio_buffer_read_wrapper(struct file *filp, char __user *buf,
262 				size_t n, loff_t *f_ps)
263 {
264 	struct iio_dev_buffer_pair *ib = filp->private_data;
265 	struct iio_buffer *rb = ib->buffer;
266 
267 	/* check if buffer was opened through new API */
268 	if (test_bit(IIO_BUSY_BIT_POS, &rb->flags))
269 		return -EBUSY;
270 
271 	return iio_buffer_read(filp, buf, n, f_ps);
272 }
273 
274 ssize_t iio_buffer_write_wrapper(struct file *filp, const char __user *buf,
275 				 size_t n, loff_t *f_ps)
276 {
277 	struct iio_dev_buffer_pair *ib = filp->private_data;
278 	struct iio_buffer *rb = ib->buffer;
279 
280 	/* check if buffer was opened through new API */
281 	if (test_bit(IIO_BUSY_BIT_POS, &rb->flags))
282 		return -EBUSY;
283 
284 	return iio_buffer_write(filp, buf, n, f_ps);
285 }
286 
287 __poll_t iio_buffer_poll_wrapper(struct file *filp,
288 				 struct poll_table_struct *wait)
289 {
290 	struct iio_dev_buffer_pair *ib = filp->private_data;
291 	struct iio_buffer *rb = ib->buffer;
292 
293 	/* check if buffer was opened through new API */
294 	if (test_bit(IIO_BUSY_BIT_POS, &rb->flags))
295 		return 0;
296 
297 	return iio_buffer_poll(filp, wait);
298 }
299 
300 /**
301  * iio_buffer_wakeup_poll - Wakes up the buffer waitqueue
302  * @indio_dev: The IIO device
303  *
304  * Wakes up the event waitqueue used for poll(). Should usually
305  * be called when the device is unregistered.
306  */
307 void iio_buffer_wakeup_poll(struct iio_dev *indio_dev)
308 {
309 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
310 	struct iio_buffer *buffer;
311 	unsigned int i;
312 
313 	for (i = 0; i < iio_dev_opaque->attached_buffers_cnt; i++) {
314 		buffer = iio_dev_opaque->attached_buffers[i];
315 		wake_up(&buffer->pollq);
316 	}
317 }
318 
319 int iio_pop_from_buffer(struct iio_buffer *buffer, void *data)
320 {
321 	if (!buffer || !buffer->access || !buffer->access->remove_from)
322 		return -EINVAL;
323 
324 	return buffer->access->remove_from(buffer, data);
325 }
326 EXPORT_SYMBOL_GPL(iio_pop_from_buffer);
327 
328 void iio_buffer_init(struct iio_buffer *buffer)
329 {
330 	INIT_LIST_HEAD(&buffer->demux_list);
331 	INIT_LIST_HEAD(&buffer->buffer_list);
332 	init_waitqueue_head(&buffer->pollq);
333 	kref_init(&buffer->ref);
334 	if (!buffer->watermark)
335 		buffer->watermark = 1;
336 }
337 EXPORT_SYMBOL(iio_buffer_init);
338 
339 void iio_device_detach_buffers(struct iio_dev *indio_dev)
340 {
341 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
342 	struct iio_buffer *buffer;
343 	unsigned int i;
344 
345 	for (i = 0; i < iio_dev_opaque->attached_buffers_cnt; i++) {
346 		buffer = iio_dev_opaque->attached_buffers[i];
347 		iio_buffer_put(buffer);
348 	}
349 
350 	kfree(iio_dev_opaque->attached_buffers);
351 }
352 
353 static ssize_t iio_show_scan_index(struct device *dev,
354 				   struct device_attribute *attr,
355 				   char *buf)
356 {
357 	return sysfs_emit(buf, "%u\n", to_iio_dev_attr(attr)->c->scan_index);
358 }
359 
360 static ssize_t iio_show_fixed_type(struct device *dev,
361 				   struct device_attribute *attr,
362 				   char *buf)
363 {
364 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
365 	u8 type = this_attr->c->scan_type.endianness;
366 
367 	if (type == IIO_CPU) {
368 #ifdef __LITTLE_ENDIAN
369 		type = IIO_LE;
370 #else
371 		type = IIO_BE;
372 #endif
373 	}
374 	if (this_attr->c->scan_type.repeat > 1)
375 		return sysfs_emit(buf, "%s:%c%d/%dX%d>>%u\n",
376 		       iio_endian_prefix[type],
377 		       this_attr->c->scan_type.sign,
378 		       this_attr->c->scan_type.realbits,
379 		       this_attr->c->scan_type.storagebits,
380 		       this_attr->c->scan_type.repeat,
381 		       this_attr->c->scan_type.shift);
382 	else
383 		return sysfs_emit(buf, "%s:%c%d/%d>>%u\n",
384 		       iio_endian_prefix[type],
385 		       this_attr->c->scan_type.sign,
386 		       this_attr->c->scan_type.realbits,
387 		       this_attr->c->scan_type.storagebits,
388 		       this_attr->c->scan_type.shift);
389 }
390 
391 static ssize_t iio_scan_el_show(struct device *dev,
392 				struct device_attribute *attr,
393 				char *buf)
394 {
395 	int ret;
396 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
397 
398 	/* Ensure ret is 0 or 1. */
399 	ret = !!test_bit(to_iio_dev_attr(attr)->address,
400 		       buffer->scan_mask);
401 
402 	return sysfs_emit(buf, "%d\n", ret);
403 }
404 
405 /* Note NULL used as error indicator as it doesn't make sense. */
406 static const unsigned long *iio_scan_mask_match(const unsigned long *av_masks,
407 					  unsigned int masklength,
408 					  const unsigned long *mask,
409 					  bool strict)
410 {
411 	if (bitmap_empty(mask, masklength))
412 		return NULL;
413 	while (*av_masks) {
414 		if (strict) {
415 			if (bitmap_equal(mask, av_masks, masklength))
416 				return av_masks;
417 		} else {
418 			if (bitmap_subset(mask, av_masks, masklength))
419 				return av_masks;
420 		}
421 		av_masks += BITS_TO_LONGS(masklength);
422 	}
423 	return NULL;
424 }
425 
426 static bool iio_validate_scan_mask(struct iio_dev *indio_dev,
427 	const unsigned long *mask)
428 {
429 	if (!indio_dev->setup_ops->validate_scan_mask)
430 		return true;
431 
432 	return indio_dev->setup_ops->validate_scan_mask(indio_dev, mask);
433 }
434 
435 /**
436  * iio_scan_mask_set() - set particular bit in the scan mask
437  * @indio_dev: the iio device
438  * @buffer: the buffer whose scan mask we are interested in
439  * @bit: the bit to be set.
440  *
441  * Note that at this point we have no way of knowing what other
442  * buffers might request, hence this code only verifies that the
443  * individual buffers request is plausible.
444  */
445 static int iio_scan_mask_set(struct iio_dev *indio_dev,
446 		      struct iio_buffer *buffer, int bit)
447 {
448 	const unsigned long *mask;
449 	unsigned long *trialmask;
450 
451 	if (!indio_dev->masklength) {
452 		WARN(1, "Trying to set scanmask prior to registering buffer\n");
453 		return -EINVAL;
454 	}
455 
456 	trialmask = bitmap_alloc(indio_dev->masklength, GFP_KERNEL);
457 	if (!trialmask)
458 		return -ENOMEM;
459 	bitmap_copy(trialmask, buffer->scan_mask, indio_dev->masklength);
460 	set_bit(bit, trialmask);
461 
462 	if (!iio_validate_scan_mask(indio_dev, trialmask))
463 		goto err_invalid_mask;
464 
465 	if (indio_dev->available_scan_masks) {
466 		mask = iio_scan_mask_match(indio_dev->available_scan_masks,
467 					   indio_dev->masklength,
468 					   trialmask, false);
469 		if (!mask)
470 			goto err_invalid_mask;
471 	}
472 	bitmap_copy(buffer->scan_mask, trialmask, indio_dev->masklength);
473 
474 	bitmap_free(trialmask);
475 
476 	return 0;
477 
478 err_invalid_mask:
479 	bitmap_free(trialmask);
480 	return -EINVAL;
481 }
482 
483 static int iio_scan_mask_clear(struct iio_buffer *buffer, int bit)
484 {
485 	clear_bit(bit, buffer->scan_mask);
486 	return 0;
487 }
488 
489 static int iio_scan_mask_query(struct iio_dev *indio_dev,
490 			       struct iio_buffer *buffer, int bit)
491 {
492 	if (bit > indio_dev->masklength)
493 		return -EINVAL;
494 
495 	if (!buffer->scan_mask)
496 		return 0;
497 
498 	/* Ensure return value is 0 or 1. */
499 	return !!test_bit(bit, buffer->scan_mask);
500 };
501 
502 static ssize_t iio_scan_el_store(struct device *dev,
503 				 struct device_attribute *attr,
504 				 const char *buf,
505 				 size_t len)
506 {
507 	int ret;
508 	bool state;
509 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
510 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
511 	struct iio_buffer *buffer = this_attr->buffer;
512 
513 	ret = kstrtobool(buf, &state);
514 	if (ret < 0)
515 		return ret;
516 	mutex_lock(&indio_dev->mlock);
517 	if (iio_buffer_is_active(buffer)) {
518 		ret = -EBUSY;
519 		goto error_ret;
520 	}
521 	ret = iio_scan_mask_query(indio_dev, buffer, this_attr->address);
522 	if (ret < 0)
523 		goto error_ret;
524 	if (!state && ret) {
525 		ret = iio_scan_mask_clear(buffer, this_attr->address);
526 		if (ret)
527 			goto error_ret;
528 	} else if (state && !ret) {
529 		ret = iio_scan_mask_set(indio_dev, buffer, this_attr->address);
530 		if (ret)
531 			goto error_ret;
532 	}
533 
534 error_ret:
535 	mutex_unlock(&indio_dev->mlock);
536 
537 	return ret < 0 ? ret : len;
538 
539 }
540 
541 static ssize_t iio_scan_el_ts_show(struct device *dev,
542 				   struct device_attribute *attr,
543 				   char *buf)
544 {
545 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
546 
547 	return sysfs_emit(buf, "%d\n", buffer->scan_timestamp);
548 }
549 
550 static ssize_t iio_scan_el_ts_store(struct device *dev,
551 				    struct device_attribute *attr,
552 				    const char *buf,
553 				    size_t len)
554 {
555 	int ret;
556 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
557 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
558 	bool state;
559 
560 	ret = kstrtobool(buf, &state);
561 	if (ret < 0)
562 		return ret;
563 
564 	mutex_lock(&indio_dev->mlock);
565 	if (iio_buffer_is_active(buffer)) {
566 		ret = -EBUSY;
567 		goto error_ret;
568 	}
569 	buffer->scan_timestamp = state;
570 error_ret:
571 	mutex_unlock(&indio_dev->mlock);
572 
573 	return ret ? ret : len;
574 }
575 
576 static int iio_buffer_add_channel_sysfs(struct iio_dev *indio_dev,
577 					struct iio_buffer *buffer,
578 					const struct iio_chan_spec *chan)
579 {
580 	int ret, attrcount = 0;
581 
582 	ret = __iio_add_chan_devattr("index",
583 				     chan,
584 				     &iio_show_scan_index,
585 				     NULL,
586 				     0,
587 				     IIO_SEPARATE,
588 				     &indio_dev->dev,
589 				     buffer,
590 				     &buffer->buffer_attr_list);
591 	if (ret)
592 		return ret;
593 	attrcount++;
594 	ret = __iio_add_chan_devattr("type",
595 				     chan,
596 				     &iio_show_fixed_type,
597 				     NULL,
598 				     0,
599 				     0,
600 				     &indio_dev->dev,
601 				     buffer,
602 				     &buffer->buffer_attr_list);
603 	if (ret)
604 		return ret;
605 	attrcount++;
606 	if (chan->type != IIO_TIMESTAMP)
607 		ret = __iio_add_chan_devattr("en",
608 					     chan,
609 					     &iio_scan_el_show,
610 					     &iio_scan_el_store,
611 					     chan->scan_index,
612 					     0,
613 					     &indio_dev->dev,
614 					     buffer,
615 					     &buffer->buffer_attr_list);
616 	else
617 		ret = __iio_add_chan_devattr("en",
618 					     chan,
619 					     &iio_scan_el_ts_show,
620 					     &iio_scan_el_ts_store,
621 					     chan->scan_index,
622 					     0,
623 					     &indio_dev->dev,
624 					     buffer,
625 					     &buffer->buffer_attr_list);
626 	if (ret)
627 		return ret;
628 	attrcount++;
629 	ret = attrcount;
630 	return ret;
631 }
632 
633 static ssize_t length_show(struct device *dev, struct device_attribute *attr,
634 			   char *buf)
635 {
636 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
637 
638 	return sysfs_emit(buf, "%d\n", buffer->length);
639 }
640 
641 static ssize_t length_store(struct device *dev, struct device_attribute *attr,
642 			    const char *buf, size_t len)
643 {
644 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
645 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
646 	unsigned int val;
647 	int ret;
648 
649 	ret = kstrtouint(buf, 10, &val);
650 	if (ret)
651 		return ret;
652 
653 	if (val == buffer->length)
654 		return len;
655 
656 	mutex_lock(&indio_dev->mlock);
657 	if (iio_buffer_is_active(buffer)) {
658 		ret = -EBUSY;
659 	} else {
660 		buffer->access->set_length(buffer, val);
661 		ret = 0;
662 	}
663 	if (ret)
664 		goto out;
665 	if (buffer->length && buffer->length < buffer->watermark)
666 		buffer->watermark = buffer->length;
667 out:
668 	mutex_unlock(&indio_dev->mlock);
669 
670 	return ret ? ret : len;
671 }
672 
673 static ssize_t enable_show(struct device *dev, struct device_attribute *attr,
674 			   char *buf)
675 {
676 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
677 
678 	return sysfs_emit(buf, "%d\n", iio_buffer_is_active(buffer));
679 }
680 
681 static unsigned int iio_storage_bytes_for_si(struct iio_dev *indio_dev,
682 					     unsigned int scan_index)
683 {
684 	const struct iio_chan_spec *ch;
685 	unsigned int bytes;
686 
687 	ch = iio_find_channel_from_si(indio_dev, scan_index);
688 	bytes = ch->scan_type.storagebits / 8;
689 	if (ch->scan_type.repeat > 1)
690 		bytes *= ch->scan_type.repeat;
691 	return bytes;
692 }
693 
694 static unsigned int iio_storage_bytes_for_timestamp(struct iio_dev *indio_dev)
695 {
696 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
697 
698 	return iio_storage_bytes_for_si(indio_dev,
699 					iio_dev_opaque->scan_index_timestamp);
700 }
701 
702 static int iio_compute_scan_bytes(struct iio_dev *indio_dev,
703 				const unsigned long *mask, bool timestamp)
704 {
705 	unsigned int bytes = 0;
706 	int length, i, largest = 0;
707 
708 	/* How much space will the demuxed element take? */
709 	for_each_set_bit(i, mask,
710 			 indio_dev->masklength) {
711 		length = iio_storage_bytes_for_si(indio_dev, i);
712 		bytes = ALIGN(bytes, length);
713 		bytes += length;
714 		largest = max(largest, length);
715 	}
716 
717 	if (timestamp) {
718 		length = iio_storage_bytes_for_timestamp(indio_dev);
719 		bytes = ALIGN(bytes, length);
720 		bytes += length;
721 		largest = max(largest, length);
722 	}
723 
724 	bytes = ALIGN(bytes, largest);
725 	return bytes;
726 }
727 
728 static void iio_buffer_activate(struct iio_dev *indio_dev,
729 	struct iio_buffer *buffer)
730 {
731 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
732 
733 	iio_buffer_get(buffer);
734 	list_add(&buffer->buffer_list, &iio_dev_opaque->buffer_list);
735 }
736 
737 static void iio_buffer_deactivate(struct iio_buffer *buffer)
738 {
739 	list_del_init(&buffer->buffer_list);
740 	wake_up_interruptible(&buffer->pollq);
741 	iio_buffer_put(buffer);
742 }
743 
744 static void iio_buffer_deactivate_all(struct iio_dev *indio_dev)
745 {
746 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
747 	struct iio_buffer *buffer, *_buffer;
748 
749 	list_for_each_entry_safe(buffer, _buffer,
750 			&iio_dev_opaque->buffer_list, buffer_list)
751 		iio_buffer_deactivate(buffer);
752 }
753 
754 static int iio_buffer_enable(struct iio_buffer *buffer,
755 	struct iio_dev *indio_dev)
756 {
757 	if (!buffer->access->enable)
758 		return 0;
759 	return buffer->access->enable(buffer, indio_dev);
760 }
761 
762 static int iio_buffer_disable(struct iio_buffer *buffer,
763 	struct iio_dev *indio_dev)
764 {
765 	if (!buffer->access->disable)
766 		return 0;
767 	return buffer->access->disable(buffer, indio_dev);
768 }
769 
770 static void iio_buffer_update_bytes_per_datum(struct iio_dev *indio_dev,
771 	struct iio_buffer *buffer)
772 {
773 	unsigned int bytes;
774 
775 	if (!buffer->access->set_bytes_per_datum)
776 		return;
777 
778 	bytes = iio_compute_scan_bytes(indio_dev, buffer->scan_mask,
779 		buffer->scan_timestamp);
780 
781 	buffer->access->set_bytes_per_datum(buffer, bytes);
782 }
783 
784 static int iio_buffer_request_update(struct iio_dev *indio_dev,
785 	struct iio_buffer *buffer)
786 {
787 	int ret;
788 
789 	iio_buffer_update_bytes_per_datum(indio_dev, buffer);
790 	if (buffer->access->request_update) {
791 		ret = buffer->access->request_update(buffer);
792 		if (ret) {
793 			dev_dbg(&indio_dev->dev,
794 			       "Buffer not started: buffer parameter update failed (%d)\n",
795 				ret);
796 			return ret;
797 		}
798 	}
799 
800 	return 0;
801 }
802 
803 static void iio_free_scan_mask(struct iio_dev *indio_dev,
804 	const unsigned long *mask)
805 {
806 	/* If the mask is dynamically allocated free it, otherwise do nothing */
807 	if (!indio_dev->available_scan_masks)
808 		bitmap_free(mask);
809 }
810 
811 struct iio_device_config {
812 	unsigned int mode;
813 	unsigned int watermark;
814 	const unsigned long *scan_mask;
815 	unsigned int scan_bytes;
816 	bool scan_timestamp;
817 };
818 
819 static int iio_verify_update(struct iio_dev *indio_dev,
820 	struct iio_buffer *insert_buffer, struct iio_buffer *remove_buffer,
821 	struct iio_device_config *config)
822 {
823 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
824 	unsigned long *compound_mask;
825 	const unsigned long *scan_mask;
826 	bool strict_scanmask = false;
827 	struct iio_buffer *buffer;
828 	bool scan_timestamp;
829 	unsigned int modes;
830 
831 	if (insert_buffer &&
832 	    bitmap_empty(insert_buffer->scan_mask, indio_dev->masklength)) {
833 		dev_dbg(&indio_dev->dev,
834 			"At least one scan element must be enabled first\n");
835 		return -EINVAL;
836 	}
837 
838 	memset(config, 0, sizeof(*config));
839 	config->watermark = ~0;
840 
841 	/*
842 	 * If there is just one buffer and we are removing it there is nothing
843 	 * to verify.
844 	 */
845 	if (remove_buffer && !insert_buffer &&
846 		list_is_singular(&iio_dev_opaque->buffer_list))
847 			return 0;
848 
849 	modes = indio_dev->modes;
850 
851 	list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) {
852 		if (buffer == remove_buffer)
853 			continue;
854 		modes &= buffer->access->modes;
855 		config->watermark = min(config->watermark, buffer->watermark);
856 	}
857 
858 	if (insert_buffer) {
859 		modes &= insert_buffer->access->modes;
860 		config->watermark = min(config->watermark,
861 			insert_buffer->watermark);
862 	}
863 
864 	/* Definitely possible for devices to support both of these. */
865 	if ((modes & INDIO_BUFFER_TRIGGERED) && indio_dev->trig) {
866 		config->mode = INDIO_BUFFER_TRIGGERED;
867 	} else if (modes & INDIO_BUFFER_HARDWARE) {
868 		/*
869 		 * Keep things simple for now and only allow a single buffer to
870 		 * be connected in hardware mode.
871 		 */
872 		if (insert_buffer && !list_empty(&iio_dev_opaque->buffer_list))
873 			return -EINVAL;
874 		config->mode = INDIO_BUFFER_HARDWARE;
875 		strict_scanmask = true;
876 	} else if (modes & INDIO_BUFFER_SOFTWARE) {
877 		config->mode = INDIO_BUFFER_SOFTWARE;
878 	} else {
879 		/* Can only occur on first buffer */
880 		if (indio_dev->modes & INDIO_BUFFER_TRIGGERED)
881 			dev_dbg(&indio_dev->dev, "Buffer not started: no trigger\n");
882 		return -EINVAL;
883 	}
884 
885 	/* What scan mask do we actually have? */
886 	compound_mask = bitmap_zalloc(indio_dev->masklength, GFP_KERNEL);
887 	if (compound_mask == NULL)
888 		return -ENOMEM;
889 
890 	scan_timestamp = false;
891 
892 	list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) {
893 		if (buffer == remove_buffer)
894 			continue;
895 		bitmap_or(compound_mask, compound_mask, buffer->scan_mask,
896 			  indio_dev->masklength);
897 		scan_timestamp |= buffer->scan_timestamp;
898 	}
899 
900 	if (insert_buffer) {
901 		bitmap_or(compound_mask, compound_mask,
902 			  insert_buffer->scan_mask, indio_dev->masklength);
903 		scan_timestamp |= insert_buffer->scan_timestamp;
904 	}
905 
906 	if (indio_dev->available_scan_masks) {
907 		scan_mask = iio_scan_mask_match(indio_dev->available_scan_masks,
908 				    indio_dev->masklength,
909 				    compound_mask,
910 				    strict_scanmask);
911 		bitmap_free(compound_mask);
912 		if (scan_mask == NULL)
913 			return -EINVAL;
914 	} else {
915 		scan_mask = compound_mask;
916 	}
917 
918 	config->scan_bytes = iio_compute_scan_bytes(indio_dev,
919 				    scan_mask, scan_timestamp);
920 	config->scan_mask = scan_mask;
921 	config->scan_timestamp = scan_timestamp;
922 
923 	return 0;
924 }
925 
926 /**
927  * struct iio_demux_table - table describing demux memcpy ops
928  * @from:	index to copy from
929  * @to:		index to copy to
930  * @length:	how many bytes to copy
931  * @l:		list head used for management
932  */
933 struct iio_demux_table {
934 	unsigned int from;
935 	unsigned int to;
936 	unsigned int length;
937 	struct list_head l;
938 };
939 
940 static void iio_buffer_demux_free(struct iio_buffer *buffer)
941 {
942 	struct iio_demux_table *p, *q;
943 	list_for_each_entry_safe(p, q, &buffer->demux_list, l) {
944 		list_del(&p->l);
945 		kfree(p);
946 	}
947 }
948 
949 static int iio_buffer_add_demux(struct iio_buffer *buffer,
950 	struct iio_demux_table **p, unsigned int in_loc, unsigned int out_loc,
951 	unsigned int length)
952 {
953 
954 	if (*p && (*p)->from + (*p)->length == in_loc &&
955 		(*p)->to + (*p)->length == out_loc) {
956 		(*p)->length += length;
957 	} else {
958 		*p = kmalloc(sizeof(**p), GFP_KERNEL);
959 		if (*p == NULL)
960 			return -ENOMEM;
961 		(*p)->from = in_loc;
962 		(*p)->to = out_loc;
963 		(*p)->length = length;
964 		list_add_tail(&(*p)->l, &buffer->demux_list);
965 	}
966 
967 	return 0;
968 }
969 
970 static int iio_buffer_update_demux(struct iio_dev *indio_dev,
971 				   struct iio_buffer *buffer)
972 {
973 	int ret, in_ind = -1, out_ind, length;
974 	unsigned int in_loc = 0, out_loc = 0;
975 	struct iio_demux_table *p = NULL;
976 
977 	/* Clear out any old demux */
978 	iio_buffer_demux_free(buffer);
979 	kfree(buffer->demux_bounce);
980 	buffer->demux_bounce = NULL;
981 
982 	/* First work out which scan mode we will actually have */
983 	if (bitmap_equal(indio_dev->active_scan_mask,
984 			 buffer->scan_mask,
985 			 indio_dev->masklength))
986 		return 0;
987 
988 	/* Now we have the two masks, work from least sig and build up sizes */
989 	for_each_set_bit(out_ind,
990 			 buffer->scan_mask,
991 			 indio_dev->masklength) {
992 		in_ind = find_next_bit(indio_dev->active_scan_mask,
993 				       indio_dev->masklength,
994 				       in_ind + 1);
995 		while (in_ind != out_ind) {
996 			length = iio_storage_bytes_for_si(indio_dev, in_ind);
997 			/* Make sure we are aligned */
998 			in_loc = roundup(in_loc, length) + length;
999 			in_ind = find_next_bit(indio_dev->active_scan_mask,
1000 					       indio_dev->masklength,
1001 					       in_ind + 1);
1002 		}
1003 		length = iio_storage_bytes_for_si(indio_dev, in_ind);
1004 		out_loc = roundup(out_loc, length);
1005 		in_loc = roundup(in_loc, length);
1006 		ret = iio_buffer_add_demux(buffer, &p, in_loc, out_loc, length);
1007 		if (ret)
1008 			goto error_clear_mux_table;
1009 		out_loc += length;
1010 		in_loc += length;
1011 	}
1012 	/* Relies on scan_timestamp being last */
1013 	if (buffer->scan_timestamp) {
1014 		length = iio_storage_bytes_for_timestamp(indio_dev);
1015 		out_loc = roundup(out_loc, length);
1016 		in_loc = roundup(in_loc, length);
1017 		ret = iio_buffer_add_demux(buffer, &p, in_loc, out_loc, length);
1018 		if (ret)
1019 			goto error_clear_mux_table;
1020 		out_loc += length;
1021 	}
1022 	buffer->demux_bounce = kzalloc(out_loc, GFP_KERNEL);
1023 	if (buffer->demux_bounce == NULL) {
1024 		ret = -ENOMEM;
1025 		goto error_clear_mux_table;
1026 	}
1027 	return 0;
1028 
1029 error_clear_mux_table:
1030 	iio_buffer_demux_free(buffer);
1031 
1032 	return ret;
1033 }
1034 
1035 static int iio_update_demux(struct iio_dev *indio_dev)
1036 {
1037 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1038 	struct iio_buffer *buffer;
1039 	int ret;
1040 
1041 	list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) {
1042 		ret = iio_buffer_update_demux(indio_dev, buffer);
1043 		if (ret < 0)
1044 			goto error_clear_mux_table;
1045 	}
1046 	return 0;
1047 
1048 error_clear_mux_table:
1049 	list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list)
1050 		iio_buffer_demux_free(buffer);
1051 
1052 	return ret;
1053 }
1054 
1055 static int iio_enable_buffers(struct iio_dev *indio_dev,
1056 	struct iio_device_config *config)
1057 {
1058 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1059 	struct iio_buffer *buffer, *tmp = NULL;
1060 	int ret;
1061 
1062 	indio_dev->active_scan_mask = config->scan_mask;
1063 	indio_dev->scan_timestamp = config->scan_timestamp;
1064 	indio_dev->scan_bytes = config->scan_bytes;
1065 	iio_dev_opaque->currentmode = config->mode;
1066 
1067 	iio_update_demux(indio_dev);
1068 
1069 	/* Wind up again */
1070 	if (indio_dev->setup_ops->preenable) {
1071 		ret = indio_dev->setup_ops->preenable(indio_dev);
1072 		if (ret) {
1073 			dev_dbg(&indio_dev->dev,
1074 			       "Buffer not started: buffer preenable failed (%d)\n", ret);
1075 			goto err_undo_config;
1076 		}
1077 	}
1078 
1079 	if (indio_dev->info->update_scan_mode) {
1080 		ret = indio_dev->info
1081 			->update_scan_mode(indio_dev,
1082 					   indio_dev->active_scan_mask);
1083 		if (ret < 0) {
1084 			dev_dbg(&indio_dev->dev,
1085 				"Buffer not started: update scan mode failed (%d)\n",
1086 				ret);
1087 			goto err_run_postdisable;
1088 		}
1089 	}
1090 
1091 	if (indio_dev->info->hwfifo_set_watermark)
1092 		indio_dev->info->hwfifo_set_watermark(indio_dev,
1093 			config->watermark);
1094 
1095 	list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) {
1096 		ret = iio_buffer_enable(buffer, indio_dev);
1097 		if (ret) {
1098 			tmp = buffer;
1099 			goto err_disable_buffers;
1100 		}
1101 	}
1102 
1103 	if (iio_dev_opaque->currentmode == INDIO_BUFFER_TRIGGERED) {
1104 		ret = iio_trigger_attach_poll_func(indio_dev->trig,
1105 						   indio_dev->pollfunc);
1106 		if (ret)
1107 			goto err_disable_buffers;
1108 	}
1109 
1110 	if (indio_dev->setup_ops->postenable) {
1111 		ret = indio_dev->setup_ops->postenable(indio_dev);
1112 		if (ret) {
1113 			dev_dbg(&indio_dev->dev,
1114 			       "Buffer not started: postenable failed (%d)\n", ret);
1115 			goto err_detach_pollfunc;
1116 		}
1117 	}
1118 
1119 	return 0;
1120 
1121 err_detach_pollfunc:
1122 	if (iio_dev_opaque->currentmode == INDIO_BUFFER_TRIGGERED) {
1123 		iio_trigger_detach_poll_func(indio_dev->trig,
1124 					     indio_dev->pollfunc);
1125 	}
1126 err_disable_buffers:
1127 	buffer = list_prepare_entry(tmp, &iio_dev_opaque->buffer_list, buffer_list);
1128 	list_for_each_entry_continue_reverse(buffer, &iio_dev_opaque->buffer_list,
1129 					     buffer_list)
1130 		iio_buffer_disable(buffer, indio_dev);
1131 err_run_postdisable:
1132 	if (indio_dev->setup_ops->postdisable)
1133 		indio_dev->setup_ops->postdisable(indio_dev);
1134 err_undo_config:
1135 	iio_dev_opaque->currentmode = INDIO_DIRECT_MODE;
1136 	indio_dev->active_scan_mask = NULL;
1137 
1138 	return ret;
1139 }
1140 
1141 static int iio_disable_buffers(struct iio_dev *indio_dev)
1142 {
1143 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1144 	struct iio_buffer *buffer;
1145 	int ret = 0;
1146 	int ret2;
1147 
1148 	/* Wind down existing buffers - iff there are any */
1149 	if (list_empty(&iio_dev_opaque->buffer_list))
1150 		return 0;
1151 
1152 	/*
1153 	 * If things go wrong at some step in disable we still need to continue
1154 	 * to perform the other steps, otherwise we leave the device in a
1155 	 * inconsistent state. We return the error code for the first error we
1156 	 * encountered.
1157 	 */
1158 
1159 	if (indio_dev->setup_ops->predisable) {
1160 		ret2 = indio_dev->setup_ops->predisable(indio_dev);
1161 		if (ret2 && !ret)
1162 			ret = ret2;
1163 	}
1164 
1165 	if (iio_dev_opaque->currentmode == INDIO_BUFFER_TRIGGERED) {
1166 		iio_trigger_detach_poll_func(indio_dev->trig,
1167 					     indio_dev->pollfunc);
1168 	}
1169 
1170 	list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) {
1171 		ret2 = iio_buffer_disable(buffer, indio_dev);
1172 		if (ret2 && !ret)
1173 			ret = ret2;
1174 	}
1175 
1176 	if (indio_dev->setup_ops->postdisable) {
1177 		ret2 = indio_dev->setup_ops->postdisable(indio_dev);
1178 		if (ret2 && !ret)
1179 			ret = ret2;
1180 	}
1181 
1182 	iio_free_scan_mask(indio_dev, indio_dev->active_scan_mask);
1183 	indio_dev->active_scan_mask = NULL;
1184 	iio_dev_opaque->currentmode = INDIO_DIRECT_MODE;
1185 
1186 	return ret;
1187 }
1188 
1189 static int __iio_update_buffers(struct iio_dev *indio_dev,
1190 		       struct iio_buffer *insert_buffer,
1191 		       struct iio_buffer *remove_buffer)
1192 {
1193 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1194 	struct iio_device_config new_config;
1195 	int ret;
1196 
1197 	ret = iio_verify_update(indio_dev, insert_buffer, remove_buffer,
1198 		&new_config);
1199 	if (ret)
1200 		return ret;
1201 
1202 	if (insert_buffer) {
1203 		ret = iio_buffer_request_update(indio_dev, insert_buffer);
1204 		if (ret)
1205 			goto err_free_config;
1206 	}
1207 
1208 	ret = iio_disable_buffers(indio_dev);
1209 	if (ret)
1210 		goto err_deactivate_all;
1211 
1212 	if (remove_buffer)
1213 		iio_buffer_deactivate(remove_buffer);
1214 	if (insert_buffer)
1215 		iio_buffer_activate(indio_dev, insert_buffer);
1216 
1217 	/* If no buffers in list, we are done */
1218 	if (list_empty(&iio_dev_opaque->buffer_list))
1219 		return 0;
1220 
1221 	ret = iio_enable_buffers(indio_dev, &new_config);
1222 	if (ret)
1223 		goto err_deactivate_all;
1224 
1225 	return 0;
1226 
1227 err_deactivate_all:
1228 	/*
1229 	 * We've already verified that the config is valid earlier. If things go
1230 	 * wrong in either enable or disable the most likely reason is an IO
1231 	 * error from the device. In this case there is no good recovery
1232 	 * strategy. Just make sure to disable everything and leave the device
1233 	 * in a sane state.  With a bit of luck the device might come back to
1234 	 * life again later and userspace can try again.
1235 	 */
1236 	iio_buffer_deactivate_all(indio_dev);
1237 
1238 err_free_config:
1239 	iio_free_scan_mask(indio_dev, new_config.scan_mask);
1240 	return ret;
1241 }
1242 
1243 int iio_update_buffers(struct iio_dev *indio_dev,
1244 		       struct iio_buffer *insert_buffer,
1245 		       struct iio_buffer *remove_buffer)
1246 {
1247 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1248 	int ret;
1249 
1250 	if (insert_buffer == remove_buffer)
1251 		return 0;
1252 
1253 	if (insert_buffer &&
1254 	    (insert_buffer->direction == IIO_BUFFER_DIRECTION_OUT))
1255 		return -EINVAL;
1256 
1257 	mutex_lock(&iio_dev_opaque->info_exist_lock);
1258 	mutex_lock(&indio_dev->mlock);
1259 
1260 	if (insert_buffer && iio_buffer_is_active(insert_buffer))
1261 		insert_buffer = NULL;
1262 
1263 	if (remove_buffer && !iio_buffer_is_active(remove_buffer))
1264 		remove_buffer = NULL;
1265 
1266 	if (!insert_buffer && !remove_buffer) {
1267 		ret = 0;
1268 		goto out_unlock;
1269 	}
1270 
1271 	if (indio_dev->info == NULL) {
1272 		ret = -ENODEV;
1273 		goto out_unlock;
1274 	}
1275 
1276 	ret = __iio_update_buffers(indio_dev, insert_buffer, remove_buffer);
1277 
1278 out_unlock:
1279 	mutex_unlock(&indio_dev->mlock);
1280 	mutex_unlock(&iio_dev_opaque->info_exist_lock);
1281 
1282 	return ret;
1283 }
1284 EXPORT_SYMBOL_GPL(iio_update_buffers);
1285 
1286 void iio_disable_all_buffers(struct iio_dev *indio_dev)
1287 {
1288 	iio_disable_buffers(indio_dev);
1289 	iio_buffer_deactivate_all(indio_dev);
1290 }
1291 
1292 static ssize_t enable_store(struct device *dev, struct device_attribute *attr,
1293 			    const char *buf, size_t len)
1294 {
1295 	int ret;
1296 	bool requested_state;
1297 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1298 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
1299 	bool inlist;
1300 
1301 	ret = kstrtobool(buf, &requested_state);
1302 	if (ret < 0)
1303 		return ret;
1304 
1305 	mutex_lock(&indio_dev->mlock);
1306 
1307 	/* Find out if it is in the list */
1308 	inlist = iio_buffer_is_active(buffer);
1309 	/* Already in desired state */
1310 	if (inlist == requested_state)
1311 		goto done;
1312 
1313 	if (requested_state)
1314 		ret = __iio_update_buffers(indio_dev, buffer, NULL);
1315 	else
1316 		ret = __iio_update_buffers(indio_dev, NULL, buffer);
1317 
1318 done:
1319 	mutex_unlock(&indio_dev->mlock);
1320 	return (ret < 0) ? ret : len;
1321 }
1322 
1323 static ssize_t watermark_show(struct device *dev, struct device_attribute *attr,
1324 			      char *buf)
1325 {
1326 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
1327 
1328 	return sysfs_emit(buf, "%u\n", buffer->watermark);
1329 }
1330 
1331 static ssize_t watermark_store(struct device *dev,
1332 			       struct device_attribute *attr,
1333 			       const char *buf, size_t len)
1334 {
1335 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1336 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
1337 	unsigned int val;
1338 	int ret;
1339 
1340 	ret = kstrtouint(buf, 10, &val);
1341 	if (ret)
1342 		return ret;
1343 	if (!val)
1344 		return -EINVAL;
1345 
1346 	mutex_lock(&indio_dev->mlock);
1347 
1348 	if (val > buffer->length) {
1349 		ret = -EINVAL;
1350 		goto out;
1351 	}
1352 
1353 	if (iio_buffer_is_active(buffer)) {
1354 		ret = -EBUSY;
1355 		goto out;
1356 	}
1357 
1358 	buffer->watermark = val;
1359 out:
1360 	mutex_unlock(&indio_dev->mlock);
1361 
1362 	return ret ? ret : len;
1363 }
1364 
1365 static ssize_t data_available_show(struct device *dev,
1366 				   struct device_attribute *attr, char *buf)
1367 {
1368 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
1369 
1370 	return sysfs_emit(buf, "%zu\n", iio_buffer_data_available(buffer));
1371 }
1372 
1373 static ssize_t direction_show(struct device *dev,
1374 			      struct device_attribute *attr,
1375 			      char *buf)
1376 {
1377 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
1378 
1379 	switch (buffer->direction) {
1380 	case IIO_BUFFER_DIRECTION_IN:
1381 		return sysfs_emit(buf, "in\n");
1382 	case IIO_BUFFER_DIRECTION_OUT:
1383 		return sysfs_emit(buf, "out\n");
1384 	default:
1385 		return -EINVAL;
1386 	}
1387 }
1388 
1389 static DEVICE_ATTR_RW(length);
1390 static struct device_attribute dev_attr_length_ro = __ATTR_RO(length);
1391 static DEVICE_ATTR_RW(enable);
1392 static DEVICE_ATTR_RW(watermark);
1393 static struct device_attribute dev_attr_watermark_ro = __ATTR_RO(watermark);
1394 static DEVICE_ATTR_RO(data_available);
1395 static DEVICE_ATTR_RO(direction);
1396 
1397 /*
1398  * When adding new attributes here, put the at the end, at least until
1399  * the code that handles the length/length_ro & watermark/watermark_ro
1400  * assignments gets cleaned up. Otherwise these can create some weird
1401  * duplicate attributes errors under some setups.
1402  */
1403 static struct attribute *iio_buffer_attrs[] = {
1404 	&dev_attr_length.attr,
1405 	&dev_attr_enable.attr,
1406 	&dev_attr_watermark.attr,
1407 	&dev_attr_data_available.attr,
1408 	&dev_attr_direction.attr,
1409 };
1410 
1411 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1412 
1413 static struct attribute *iio_buffer_wrap_attr(struct iio_buffer *buffer,
1414 					      struct attribute *attr)
1415 {
1416 	struct device_attribute *dattr = to_dev_attr(attr);
1417 	struct iio_dev_attr *iio_attr;
1418 
1419 	iio_attr = kzalloc(sizeof(*iio_attr), GFP_KERNEL);
1420 	if (!iio_attr)
1421 		return NULL;
1422 
1423 	iio_attr->buffer = buffer;
1424 	memcpy(&iio_attr->dev_attr, dattr, sizeof(iio_attr->dev_attr));
1425 	iio_attr->dev_attr.attr.name = kstrdup_const(attr->name, GFP_KERNEL);
1426 	if (!iio_attr->dev_attr.attr.name) {
1427 		kfree(iio_attr);
1428 		return NULL;
1429 	}
1430 
1431 	sysfs_attr_init(&iio_attr->dev_attr.attr);
1432 
1433 	list_add(&iio_attr->l, &buffer->buffer_attr_list);
1434 
1435 	return &iio_attr->dev_attr.attr;
1436 }
1437 
1438 static int iio_buffer_register_legacy_sysfs_groups(struct iio_dev *indio_dev,
1439 						   struct attribute **buffer_attrs,
1440 						   int buffer_attrcount,
1441 						   int scan_el_attrcount)
1442 {
1443 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1444 	struct attribute_group *group;
1445 	struct attribute **attrs;
1446 	int ret;
1447 
1448 	attrs = kcalloc(buffer_attrcount + 1, sizeof(*attrs), GFP_KERNEL);
1449 	if (!attrs)
1450 		return -ENOMEM;
1451 
1452 	memcpy(attrs, buffer_attrs, buffer_attrcount * sizeof(*attrs));
1453 
1454 	group = &iio_dev_opaque->legacy_buffer_group;
1455 	group->attrs = attrs;
1456 	group->name = "buffer";
1457 
1458 	ret = iio_device_register_sysfs_group(indio_dev, group);
1459 	if (ret)
1460 		goto error_free_buffer_attrs;
1461 
1462 	attrs = kcalloc(scan_el_attrcount + 1, sizeof(*attrs), GFP_KERNEL);
1463 	if (!attrs) {
1464 		ret = -ENOMEM;
1465 		goto error_free_buffer_attrs;
1466 	}
1467 
1468 	memcpy(attrs, &buffer_attrs[buffer_attrcount],
1469 	       scan_el_attrcount * sizeof(*attrs));
1470 
1471 	group = &iio_dev_opaque->legacy_scan_el_group;
1472 	group->attrs = attrs;
1473 	group->name = "scan_elements";
1474 
1475 	ret = iio_device_register_sysfs_group(indio_dev, group);
1476 	if (ret)
1477 		goto error_free_scan_el_attrs;
1478 
1479 	return 0;
1480 
1481 error_free_scan_el_attrs:
1482 	kfree(iio_dev_opaque->legacy_scan_el_group.attrs);
1483 error_free_buffer_attrs:
1484 	kfree(iio_dev_opaque->legacy_buffer_group.attrs);
1485 
1486 	return ret;
1487 }
1488 
1489 static void iio_buffer_unregister_legacy_sysfs_groups(struct iio_dev *indio_dev)
1490 {
1491 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1492 
1493 	kfree(iio_dev_opaque->legacy_buffer_group.attrs);
1494 	kfree(iio_dev_opaque->legacy_scan_el_group.attrs);
1495 }
1496 
1497 static int iio_buffer_chrdev_release(struct inode *inode, struct file *filep)
1498 {
1499 	struct iio_dev_buffer_pair *ib = filep->private_data;
1500 	struct iio_dev *indio_dev = ib->indio_dev;
1501 	struct iio_buffer *buffer = ib->buffer;
1502 
1503 	wake_up(&buffer->pollq);
1504 
1505 	kfree(ib);
1506 	clear_bit(IIO_BUSY_BIT_POS, &buffer->flags);
1507 	iio_device_put(indio_dev);
1508 
1509 	return 0;
1510 }
1511 
1512 static const struct file_operations iio_buffer_chrdev_fileops = {
1513 	.owner = THIS_MODULE,
1514 	.llseek = noop_llseek,
1515 	.read = iio_buffer_read,
1516 	.write = iio_buffer_write,
1517 	.poll = iio_buffer_poll,
1518 	.release = iio_buffer_chrdev_release,
1519 };
1520 
1521 static long iio_device_buffer_getfd(struct iio_dev *indio_dev, unsigned long arg)
1522 {
1523 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1524 	int __user *ival = (int __user *)arg;
1525 	struct iio_dev_buffer_pair *ib;
1526 	struct iio_buffer *buffer;
1527 	int fd, idx, ret;
1528 
1529 	if (copy_from_user(&idx, ival, sizeof(idx)))
1530 		return -EFAULT;
1531 
1532 	if (idx >= iio_dev_opaque->attached_buffers_cnt)
1533 		return -ENODEV;
1534 
1535 	iio_device_get(indio_dev);
1536 
1537 	buffer = iio_dev_opaque->attached_buffers[idx];
1538 
1539 	if (test_and_set_bit(IIO_BUSY_BIT_POS, &buffer->flags)) {
1540 		ret = -EBUSY;
1541 		goto error_iio_dev_put;
1542 	}
1543 
1544 	ib = kzalloc(sizeof(*ib), GFP_KERNEL);
1545 	if (!ib) {
1546 		ret = -ENOMEM;
1547 		goto error_clear_busy_bit;
1548 	}
1549 
1550 	ib->indio_dev = indio_dev;
1551 	ib->buffer = buffer;
1552 
1553 	fd = anon_inode_getfd("iio:buffer", &iio_buffer_chrdev_fileops,
1554 			      ib, O_RDWR | O_CLOEXEC);
1555 	if (fd < 0) {
1556 		ret = fd;
1557 		goto error_free_ib;
1558 	}
1559 
1560 	if (copy_to_user(ival, &fd, sizeof(fd))) {
1561 		/*
1562 		 * "Leak" the fd, as there's not much we can do about this
1563 		 * anyway. 'fd' might have been closed already, as
1564 		 * anon_inode_getfd() called fd_install() on it, which made
1565 		 * it reachable by userland.
1566 		 *
1567 		 * Instead of allowing a malicious user to play tricks with
1568 		 * us, rely on the process exit path to do any necessary
1569 		 * cleanup, as in releasing the file, if still needed.
1570 		 */
1571 		return -EFAULT;
1572 	}
1573 
1574 	return 0;
1575 
1576 error_free_ib:
1577 	kfree(ib);
1578 error_clear_busy_bit:
1579 	clear_bit(IIO_BUSY_BIT_POS, &buffer->flags);
1580 error_iio_dev_put:
1581 	iio_device_put(indio_dev);
1582 	return ret;
1583 }
1584 
1585 static long iio_device_buffer_ioctl(struct iio_dev *indio_dev, struct file *filp,
1586 				    unsigned int cmd, unsigned long arg)
1587 {
1588 	switch (cmd) {
1589 	case IIO_BUFFER_GET_FD_IOCTL:
1590 		return iio_device_buffer_getfd(indio_dev, arg);
1591 	default:
1592 		return IIO_IOCTL_UNHANDLED;
1593 	}
1594 }
1595 
1596 static int __iio_buffer_alloc_sysfs_and_mask(struct iio_buffer *buffer,
1597 					     struct iio_dev *indio_dev,
1598 					     int index)
1599 {
1600 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1601 	struct iio_dev_attr *p;
1602 	struct attribute **attr;
1603 	int ret, i, attrn, scan_el_attrcount, buffer_attrcount;
1604 	const struct iio_chan_spec *channels;
1605 
1606 	buffer_attrcount = 0;
1607 	if (buffer->attrs) {
1608 		while (buffer->attrs[buffer_attrcount] != NULL)
1609 			buffer_attrcount++;
1610 	}
1611 
1612 	scan_el_attrcount = 0;
1613 	INIT_LIST_HEAD(&buffer->buffer_attr_list);
1614 	channels = indio_dev->channels;
1615 	if (channels) {
1616 		/* new magic */
1617 		for (i = 0; i < indio_dev->num_channels; i++) {
1618 			if (channels[i].scan_index < 0)
1619 				continue;
1620 
1621 			/* Verify that sample bits fit into storage */
1622 			if (channels[i].scan_type.storagebits <
1623 			    channels[i].scan_type.realbits +
1624 			    channels[i].scan_type.shift) {
1625 				dev_err(&indio_dev->dev,
1626 					"Channel %d storagebits (%d) < shifted realbits (%d + %d)\n",
1627 					i, channels[i].scan_type.storagebits,
1628 					channels[i].scan_type.realbits,
1629 					channels[i].scan_type.shift);
1630 				ret = -EINVAL;
1631 				goto error_cleanup_dynamic;
1632 			}
1633 
1634 			ret = iio_buffer_add_channel_sysfs(indio_dev, buffer,
1635 							 &channels[i]);
1636 			if (ret < 0)
1637 				goto error_cleanup_dynamic;
1638 			scan_el_attrcount += ret;
1639 			if (channels[i].type == IIO_TIMESTAMP)
1640 				iio_dev_opaque->scan_index_timestamp =
1641 					channels[i].scan_index;
1642 		}
1643 		if (indio_dev->masklength && buffer->scan_mask == NULL) {
1644 			buffer->scan_mask = bitmap_zalloc(indio_dev->masklength,
1645 							  GFP_KERNEL);
1646 			if (buffer->scan_mask == NULL) {
1647 				ret = -ENOMEM;
1648 				goto error_cleanup_dynamic;
1649 			}
1650 		}
1651 	}
1652 
1653 	attrn = buffer_attrcount + scan_el_attrcount + ARRAY_SIZE(iio_buffer_attrs);
1654 	attr = kcalloc(attrn + 1, sizeof(*attr), GFP_KERNEL);
1655 	if (!attr) {
1656 		ret = -ENOMEM;
1657 		goto error_free_scan_mask;
1658 	}
1659 
1660 	memcpy(attr, iio_buffer_attrs, sizeof(iio_buffer_attrs));
1661 	if (!buffer->access->set_length)
1662 		attr[0] = &dev_attr_length_ro.attr;
1663 
1664 	if (buffer->access->flags & INDIO_BUFFER_FLAG_FIXED_WATERMARK)
1665 		attr[2] = &dev_attr_watermark_ro.attr;
1666 
1667 	if (buffer->attrs)
1668 		memcpy(&attr[ARRAY_SIZE(iio_buffer_attrs)], buffer->attrs,
1669 		       sizeof(struct attribute *) * buffer_attrcount);
1670 
1671 	buffer_attrcount += ARRAY_SIZE(iio_buffer_attrs);
1672 	buffer->buffer_group.attrs = attr;
1673 
1674 	for (i = 0; i < buffer_attrcount; i++) {
1675 		struct attribute *wrapped;
1676 
1677 		wrapped = iio_buffer_wrap_attr(buffer, attr[i]);
1678 		if (!wrapped) {
1679 			ret = -ENOMEM;
1680 			goto error_free_buffer_attrs;
1681 		}
1682 		attr[i] = wrapped;
1683 	}
1684 
1685 	attrn = 0;
1686 	list_for_each_entry(p, &buffer->buffer_attr_list, l)
1687 		attr[attrn++] = &p->dev_attr.attr;
1688 
1689 	buffer->buffer_group.name = kasprintf(GFP_KERNEL, "buffer%d", index);
1690 	if (!buffer->buffer_group.name) {
1691 		ret = -ENOMEM;
1692 		goto error_free_buffer_attrs;
1693 	}
1694 
1695 	ret = iio_device_register_sysfs_group(indio_dev, &buffer->buffer_group);
1696 	if (ret)
1697 		goto error_free_buffer_attr_group_name;
1698 
1699 	/* we only need to register the legacy groups for the first buffer */
1700 	if (index > 0)
1701 		return 0;
1702 
1703 	ret = iio_buffer_register_legacy_sysfs_groups(indio_dev, attr,
1704 						      buffer_attrcount,
1705 						      scan_el_attrcount);
1706 	if (ret)
1707 		goto error_free_buffer_attr_group_name;
1708 
1709 	return 0;
1710 
1711 error_free_buffer_attr_group_name:
1712 	kfree(buffer->buffer_group.name);
1713 error_free_buffer_attrs:
1714 	kfree(buffer->buffer_group.attrs);
1715 error_free_scan_mask:
1716 	bitmap_free(buffer->scan_mask);
1717 error_cleanup_dynamic:
1718 	iio_free_chan_devattr_list(&buffer->buffer_attr_list);
1719 
1720 	return ret;
1721 }
1722 
1723 static void __iio_buffer_free_sysfs_and_mask(struct iio_buffer *buffer,
1724 					     struct iio_dev *indio_dev,
1725 					     int index)
1726 {
1727 	if (index == 0)
1728 		iio_buffer_unregister_legacy_sysfs_groups(indio_dev);
1729 	bitmap_free(buffer->scan_mask);
1730 	kfree(buffer->buffer_group.name);
1731 	kfree(buffer->buffer_group.attrs);
1732 	iio_free_chan_devattr_list(&buffer->buffer_attr_list);
1733 }
1734 
1735 int iio_buffers_alloc_sysfs_and_mask(struct iio_dev *indio_dev)
1736 {
1737 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1738 	const struct iio_chan_spec *channels;
1739 	struct iio_buffer *buffer;
1740 	int ret, i, idx;
1741 	size_t sz;
1742 
1743 	channels = indio_dev->channels;
1744 	if (channels) {
1745 		int ml = indio_dev->masklength;
1746 
1747 		for (i = 0; i < indio_dev->num_channels; i++)
1748 			ml = max(ml, channels[i].scan_index + 1);
1749 		indio_dev->masklength = ml;
1750 	}
1751 
1752 	if (!iio_dev_opaque->attached_buffers_cnt)
1753 		return 0;
1754 
1755 	for (idx = 0; idx < iio_dev_opaque->attached_buffers_cnt; idx++) {
1756 		buffer = iio_dev_opaque->attached_buffers[idx];
1757 		ret = __iio_buffer_alloc_sysfs_and_mask(buffer, indio_dev, idx);
1758 		if (ret)
1759 			goto error_unwind_sysfs_and_mask;
1760 	}
1761 
1762 	sz = sizeof(*(iio_dev_opaque->buffer_ioctl_handler));
1763 	iio_dev_opaque->buffer_ioctl_handler = kzalloc(sz, GFP_KERNEL);
1764 	if (!iio_dev_opaque->buffer_ioctl_handler) {
1765 		ret = -ENOMEM;
1766 		goto error_unwind_sysfs_and_mask;
1767 	}
1768 
1769 	iio_dev_opaque->buffer_ioctl_handler->ioctl = iio_device_buffer_ioctl;
1770 	iio_device_ioctl_handler_register(indio_dev,
1771 					  iio_dev_opaque->buffer_ioctl_handler);
1772 
1773 	return 0;
1774 
1775 error_unwind_sysfs_and_mask:
1776 	while (idx--) {
1777 		buffer = iio_dev_opaque->attached_buffers[idx];
1778 		__iio_buffer_free_sysfs_and_mask(buffer, indio_dev, idx);
1779 	}
1780 	return ret;
1781 }
1782 
1783 void iio_buffers_free_sysfs_and_mask(struct iio_dev *indio_dev)
1784 {
1785 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1786 	struct iio_buffer *buffer;
1787 	int i;
1788 
1789 	if (!iio_dev_opaque->attached_buffers_cnt)
1790 		return;
1791 
1792 	iio_device_ioctl_handler_unregister(iio_dev_opaque->buffer_ioctl_handler);
1793 	kfree(iio_dev_opaque->buffer_ioctl_handler);
1794 
1795 	for (i = iio_dev_opaque->attached_buffers_cnt - 1; i >= 0; i--) {
1796 		buffer = iio_dev_opaque->attached_buffers[i];
1797 		__iio_buffer_free_sysfs_and_mask(buffer, indio_dev, i);
1798 	}
1799 }
1800 
1801 /**
1802  * iio_validate_scan_mask_onehot() - Validates that exactly one channel is selected
1803  * @indio_dev: the iio device
1804  * @mask: scan mask to be checked
1805  *
1806  * Return true if exactly one bit is set in the scan mask, false otherwise. It
1807  * can be used for devices where only one channel can be active for sampling at
1808  * a time.
1809  */
1810 bool iio_validate_scan_mask_onehot(struct iio_dev *indio_dev,
1811 	const unsigned long *mask)
1812 {
1813 	return bitmap_weight(mask, indio_dev->masklength) == 1;
1814 }
1815 EXPORT_SYMBOL_GPL(iio_validate_scan_mask_onehot);
1816 
1817 static const void *iio_demux(struct iio_buffer *buffer,
1818 				 const void *datain)
1819 {
1820 	struct iio_demux_table *t;
1821 
1822 	if (list_empty(&buffer->demux_list))
1823 		return datain;
1824 	list_for_each_entry(t, &buffer->demux_list, l)
1825 		memcpy(buffer->demux_bounce + t->to,
1826 		       datain + t->from, t->length);
1827 
1828 	return buffer->demux_bounce;
1829 }
1830 
1831 static int iio_push_to_buffer(struct iio_buffer *buffer, const void *data)
1832 {
1833 	const void *dataout = iio_demux(buffer, data);
1834 	int ret;
1835 
1836 	ret = buffer->access->store_to(buffer, dataout);
1837 	if (ret)
1838 		return ret;
1839 
1840 	/*
1841 	 * We can't just test for watermark to decide if we wake the poll queue
1842 	 * because read may request less samples than the watermark.
1843 	 */
1844 	wake_up_interruptible_poll(&buffer->pollq, EPOLLIN | EPOLLRDNORM);
1845 	return 0;
1846 }
1847 
1848 /**
1849  * iio_push_to_buffers() - push to a registered buffer.
1850  * @indio_dev:		iio_dev structure for device.
1851  * @data:		Full scan.
1852  */
1853 int iio_push_to_buffers(struct iio_dev *indio_dev, const void *data)
1854 {
1855 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1856 	int ret;
1857 	struct iio_buffer *buf;
1858 
1859 	list_for_each_entry(buf, &iio_dev_opaque->buffer_list, buffer_list) {
1860 		ret = iio_push_to_buffer(buf, data);
1861 		if (ret < 0)
1862 			return ret;
1863 	}
1864 
1865 	return 0;
1866 }
1867 EXPORT_SYMBOL_GPL(iio_push_to_buffers);
1868 
1869 /**
1870  * iio_push_to_buffers_with_ts_unaligned() - push to registered buffer,
1871  *    no alignment or space requirements.
1872  * @indio_dev:		iio_dev structure for device.
1873  * @data:		channel data excluding the timestamp.
1874  * @data_sz:		size of data.
1875  * @timestamp:		timestamp for the sample data.
1876  *
1877  * This special variant of iio_push_to_buffers_with_timestamp() does
1878  * not require space for the timestamp, or 8 byte alignment of data.
1879  * It does however require an allocation on first call and additional
1880  * copies on all calls, so should be avoided if possible.
1881  */
1882 int iio_push_to_buffers_with_ts_unaligned(struct iio_dev *indio_dev,
1883 					  const void *data,
1884 					  size_t data_sz,
1885 					  int64_t timestamp)
1886 {
1887 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1888 
1889 	/*
1890 	 * Conservative estimate - we can always safely copy the minimum
1891 	 * of either the data provided or the length of the destination buffer.
1892 	 * This relaxed limit allows the calling drivers to be lax about
1893 	 * tracking the size of the data they are pushing, at the cost of
1894 	 * unnecessary copying of padding.
1895 	 */
1896 	data_sz = min_t(size_t, indio_dev->scan_bytes, data_sz);
1897 	if (iio_dev_opaque->bounce_buffer_size !=  indio_dev->scan_bytes) {
1898 		void *bb;
1899 
1900 		bb = devm_krealloc(&indio_dev->dev,
1901 				   iio_dev_opaque->bounce_buffer,
1902 				   indio_dev->scan_bytes, GFP_KERNEL);
1903 		if (!bb)
1904 			return -ENOMEM;
1905 		iio_dev_opaque->bounce_buffer = bb;
1906 		iio_dev_opaque->bounce_buffer_size = indio_dev->scan_bytes;
1907 	}
1908 	memcpy(iio_dev_opaque->bounce_buffer, data, data_sz);
1909 	return iio_push_to_buffers_with_timestamp(indio_dev,
1910 						  iio_dev_opaque->bounce_buffer,
1911 						  timestamp);
1912 }
1913 EXPORT_SYMBOL_GPL(iio_push_to_buffers_with_ts_unaligned);
1914 
1915 /**
1916  * iio_buffer_release() - Free a buffer's resources
1917  * @ref: Pointer to the kref embedded in the iio_buffer struct
1918  *
1919  * This function is called when the last reference to the buffer has been
1920  * dropped. It will typically free all resources allocated by the buffer. Do not
1921  * call this function manually, always use iio_buffer_put() when done using a
1922  * buffer.
1923  */
1924 static void iio_buffer_release(struct kref *ref)
1925 {
1926 	struct iio_buffer *buffer = container_of(ref, struct iio_buffer, ref);
1927 
1928 	buffer->access->release(buffer);
1929 }
1930 
1931 /**
1932  * iio_buffer_get() - Grab a reference to the buffer
1933  * @buffer: The buffer to grab a reference for, may be NULL
1934  *
1935  * Returns the pointer to the buffer that was passed into the function.
1936  */
1937 struct iio_buffer *iio_buffer_get(struct iio_buffer *buffer)
1938 {
1939 	if (buffer)
1940 		kref_get(&buffer->ref);
1941 
1942 	return buffer;
1943 }
1944 EXPORT_SYMBOL_GPL(iio_buffer_get);
1945 
1946 /**
1947  * iio_buffer_put() - Release the reference to the buffer
1948  * @buffer: The buffer to release the reference for, may be NULL
1949  */
1950 void iio_buffer_put(struct iio_buffer *buffer)
1951 {
1952 	if (buffer)
1953 		kref_put(&buffer->ref, iio_buffer_release);
1954 }
1955 EXPORT_SYMBOL_GPL(iio_buffer_put);
1956 
1957 /**
1958  * iio_device_attach_buffer - Attach a buffer to a IIO device
1959  * @indio_dev: The device the buffer should be attached to
1960  * @buffer: The buffer to attach to the device
1961  *
1962  * Return 0 if successful, negative if error.
1963  *
1964  * This function attaches a buffer to a IIO device. The buffer stays attached to
1965  * the device until the device is freed. For legacy reasons, the first attached
1966  * buffer will also be assigned to 'indio_dev->buffer'.
1967  * The array allocated here, will be free'd via the iio_device_detach_buffers()
1968  * call which is handled by the iio_device_free().
1969  */
1970 int iio_device_attach_buffer(struct iio_dev *indio_dev,
1971 			     struct iio_buffer *buffer)
1972 {
1973 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1974 	struct iio_buffer **new, **old = iio_dev_opaque->attached_buffers;
1975 	unsigned int cnt = iio_dev_opaque->attached_buffers_cnt;
1976 
1977 	cnt++;
1978 
1979 	new = krealloc(old, sizeof(*new) * cnt, GFP_KERNEL);
1980 	if (!new)
1981 		return -ENOMEM;
1982 	iio_dev_opaque->attached_buffers = new;
1983 
1984 	buffer = iio_buffer_get(buffer);
1985 
1986 	/* first buffer is legacy; attach it to the IIO device directly */
1987 	if (!indio_dev->buffer)
1988 		indio_dev->buffer = buffer;
1989 
1990 	iio_dev_opaque->attached_buffers[cnt - 1] = buffer;
1991 	iio_dev_opaque->attached_buffers_cnt = cnt;
1992 
1993 	return 0;
1994 }
1995 EXPORT_SYMBOL_GPL(iio_device_attach_buffer);
1996