1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * STMicroelectronics st_lsm6dsx sensor driver
4  *
5  * The ST LSM6DSx IMU MEMS series consists of 3D digital accelerometer
6  * and 3D digital gyroscope system-in-package with a digital I2C/SPI serial
7  * interface standard output.
8  * LSM6DSx IMU MEMS series has a dynamic user-selectable full-scale
9  * acceleration range of +-2/+-4/+-8/+-16 g and an angular rate range of
10  * +-125/+-245/+-500/+-1000/+-2000 dps
11  * LSM6DSx series has an integrated First-In-First-Out (FIFO) buffer
12  * allowing dynamic batching of sensor data.
13  * LSM9DSx series is similar but includes an additional magnetometer, handled
14  * by a different driver.
15  *
16  * Supported sensors:
17  * - LSM6DS3:
18  *   - Accelerometer/Gyroscope supported ODR [Hz]: 13, 26, 52, 104, 208, 416
19  *   - Accelerometer supported full-scale [g]: +-2/+-4/+-8/+-16
20  *   - Gyroscope supported full-scale [dps]: +-125/+-245/+-500/+-1000/+-2000
21  *   - FIFO size: 8KB
22  *
23  * - LSM6DS3H/LSM6DSL/LSM6DSM/ISM330DLC/LSM6DS3TR-C:
24  *   - Accelerometer/Gyroscope supported ODR [Hz]: 13, 26, 52, 104, 208, 416
25  *   - Accelerometer supported full-scale [g]: +-2/+-4/+-8/+-16
26  *   - Gyroscope supported full-scale [dps]: +-125/+-245/+-500/+-1000/+-2000
27  *   - FIFO size: 4KB
28  *
29  * - LSM6DSO/LSM6DSOX/ASM330LHH/LSM6DSR/ISM330DHCX/LSM6DST/LSM6DSOP:
30  *   - Accelerometer/Gyroscope supported ODR [Hz]: 13, 26, 52, 104, 208, 416,
31  *     833
32  *   - Accelerometer supported full-scale [g]: +-2/+-4/+-8/+-16
33  *   - Gyroscope supported full-scale [dps]: +-125/+-245/+-500/+-1000/+-2000
34  *   - FIFO size: 3KB
35  *
36  * - LSM9DS1/LSM6DS0:
37  *   - Accelerometer supported ODR [Hz]: 10, 50, 119, 238, 476, 952
38  *   - Accelerometer supported full-scale [g]: +-2/+-4/+-8/+-16
39  *   - Gyroscope supported ODR [Hz]: 15, 60, 119, 238, 476, 952
40  *   - Gyroscope supported full-scale [dps]: +-245/+-500/+-2000
41  *   - FIFO size: 32
42  *
43  * Copyright 2016 STMicroelectronics Inc.
44  *
45  * Lorenzo Bianconi <lorenzo.bianconi@st.com>
46  * Denis Ciocca <denis.ciocca@st.com>
47  */
48 
49 #include <linux/kernel.h>
50 #include <linux/module.h>
51 #include <linux/delay.h>
52 #include <linux/iio/events.h>
53 #include <linux/iio/iio.h>
54 #include <linux/iio/sysfs.h>
55 #include <linux/interrupt.h>
56 #include <linux/irq.h>
57 #include <linux/pm.h>
58 #include <linux/property.h>
59 #include <linux/regmap.h>
60 #include <linux/bitfield.h>
61 
62 #include <linux/platform_data/st_sensors_pdata.h>
63 
64 #include "st_lsm6dsx.h"
65 
66 #define ST_LSM6DSX_REG_WHOAMI_ADDR		0x0f
67 
68 #define ST_LSM6DSX_TS_SENSITIVITY		25000UL /* 25us */
69 
70 static const struct iio_chan_spec st_lsm6dsx_acc_channels[] = {
71 	ST_LSM6DSX_CHANNEL_ACC(IIO_ACCEL, 0x28, IIO_MOD_X, 0),
72 	ST_LSM6DSX_CHANNEL_ACC(IIO_ACCEL, 0x2a, IIO_MOD_Y, 1),
73 	ST_LSM6DSX_CHANNEL_ACC(IIO_ACCEL, 0x2c, IIO_MOD_Z, 2),
74 	IIO_CHAN_SOFT_TIMESTAMP(3),
75 };
76 
77 static const struct iio_chan_spec st_lsm6dsx_gyro_channels[] = {
78 	ST_LSM6DSX_CHANNEL(IIO_ANGL_VEL, 0x22, IIO_MOD_X, 0),
79 	ST_LSM6DSX_CHANNEL(IIO_ANGL_VEL, 0x24, IIO_MOD_Y, 1),
80 	ST_LSM6DSX_CHANNEL(IIO_ANGL_VEL, 0x26, IIO_MOD_Z, 2),
81 	IIO_CHAN_SOFT_TIMESTAMP(3),
82 };
83 
84 static const struct iio_chan_spec st_lsm6ds0_gyro_channels[] = {
85 	ST_LSM6DSX_CHANNEL(IIO_ANGL_VEL, 0x18, IIO_MOD_X, 0),
86 	ST_LSM6DSX_CHANNEL(IIO_ANGL_VEL, 0x1a, IIO_MOD_Y, 1),
87 	ST_LSM6DSX_CHANNEL(IIO_ANGL_VEL, 0x1c, IIO_MOD_Z, 2),
88 	IIO_CHAN_SOFT_TIMESTAMP(3),
89 };
90 
91 static const struct st_lsm6dsx_settings st_lsm6dsx_sensor_settings[] = {
92 	{
93 		.reset = {
94 			.addr = 0x22,
95 			.mask = BIT(0),
96 		},
97 		.boot = {
98 			.addr = 0x22,
99 			.mask = BIT(7),
100 		},
101 		.bdu = {
102 			.addr = 0x22,
103 			.mask = BIT(6),
104 		},
105 		.max_fifo_size = 32,
106 		.id = {
107 			{
108 				.hw_id = ST_LSM9DS1_ID,
109 				.name = ST_LSM9DS1_DEV_NAME,
110 				.wai = 0x68,
111 			}, {
112 				.hw_id = ST_LSM6DS0_ID,
113 				.name = ST_LSM6DS0_DEV_NAME,
114 				.wai = 0x68,
115 			},
116 		},
117 		.channels = {
118 			[ST_LSM6DSX_ID_ACC] = {
119 				.chan = st_lsm6dsx_acc_channels,
120 				.len = ARRAY_SIZE(st_lsm6dsx_acc_channels),
121 			},
122 			[ST_LSM6DSX_ID_GYRO] = {
123 				.chan = st_lsm6ds0_gyro_channels,
124 				.len = ARRAY_SIZE(st_lsm6ds0_gyro_channels),
125 			},
126 		},
127 		.odr_table = {
128 			[ST_LSM6DSX_ID_ACC] = {
129 				.reg = {
130 					.addr = 0x20,
131 					.mask = GENMASK(7, 5),
132 				},
133 				.odr_avl[0] = {  10000, 0x01 },
134 				.odr_avl[1] = {  50000, 0x02 },
135 				.odr_avl[2] = { 119000, 0x03 },
136 				.odr_avl[3] = { 238000, 0x04 },
137 				.odr_avl[4] = { 476000, 0x05 },
138 				.odr_avl[5] = { 952000, 0x06 },
139 				.odr_len = 6,
140 			},
141 			[ST_LSM6DSX_ID_GYRO] = {
142 				.reg = {
143 					.addr = 0x10,
144 					.mask = GENMASK(7, 5),
145 				},
146 				.odr_avl[0] = {  14900, 0x01 },
147 				.odr_avl[1] = {  59500, 0x02 },
148 				.odr_avl[2] = { 119000, 0x03 },
149 				.odr_avl[3] = { 238000, 0x04 },
150 				.odr_avl[4] = { 476000, 0x05 },
151 				.odr_avl[5] = { 952000, 0x06 },
152 				.odr_len = 6,
153 			},
154 		},
155 		.fs_table = {
156 			[ST_LSM6DSX_ID_ACC] = {
157 				.reg = {
158 					.addr = 0x20,
159 					.mask = GENMASK(4, 3),
160 				},
161 				.fs_avl[0] = {  IIO_G_TO_M_S_2(61000), 0x0 },
162 				.fs_avl[1] = { IIO_G_TO_M_S_2(122000), 0x2 },
163 				.fs_avl[2] = { IIO_G_TO_M_S_2(244000), 0x3 },
164 				.fs_avl[3] = { IIO_G_TO_M_S_2(732000), 0x1 },
165 				.fs_len = 4,
166 			},
167 			[ST_LSM6DSX_ID_GYRO] = {
168 				.reg = {
169 					.addr = 0x10,
170 					.mask = GENMASK(4, 3),
171 				},
172 
173 				.fs_avl[0] = {  IIO_DEGREE_TO_RAD(8750000), 0x0 },
174 				.fs_avl[1] = { IIO_DEGREE_TO_RAD(17500000), 0x1 },
175 				.fs_avl[2] = { IIO_DEGREE_TO_RAD(70000000), 0x3 },
176 				.fs_len = 3,
177 			},
178 		},
179 		.irq_config = {
180 			.irq1 = {
181 				.addr = 0x0c,
182 				.mask = BIT(3),
183 			},
184 			.irq2 = {
185 				.addr = 0x0d,
186 				.mask = BIT(3),
187 			},
188 			.hla = {
189 				.addr = 0x22,
190 				.mask = BIT(5),
191 			},
192 			.od = {
193 				.addr = 0x22,
194 				.mask = BIT(4),
195 			},
196 		},
197 	},
198 	{
199 		.reset = {
200 			.addr = 0x12,
201 			.mask = BIT(0),
202 		},
203 		.boot = {
204 			.addr = 0x12,
205 			.mask = BIT(7),
206 		},
207 		.bdu = {
208 			.addr = 0x12,
209 			.mask = BIT(6),
210 		},
211 		.max_fifo_size = 1365,
212 		.id = {
213 			{
214 				.hw_id = ST_LSM6DS3_ID,
215 				.name = ST_LSM6DS3_DEV_NAME,
216 				.wai = 0x69,
217 			},
218 		},
219 		.channels = {
220 			[ST_LSM6DSX_ID_ACC] = {
221 				.chan = st_lsm6dsx_acc_channels,
222 				.len = ARRAY_SIZE(st_lsm6dsx_acc_channels),
223 			},
224 			[ST_LSM6DSX_ID_GYRO] = {
225 				.chan = st_lsm6dsx_gyro_channels,
226 				.len = ARRAY_SIZE(st_lsm6dsx_gyro_channels),
227 			},
228 		},
229 		.odr_table = {
230 			[ST_LSM6DSX_ID_ACC] = {
231 				.reg = {
232 					.addr = 0x10,
233 					.mask = GENMASK(7, 4),
234 				},
235 				.odr_avl[0] = {  12500, 0x01 },
236 				.odr_avl[1] = {  26000, 0x02 },
237 				.odr_avl[2] = {  52000, 0x03 },
238 				.odr_avl[3] = { 104000, 0x04 },
239 				.odr_avl[4] = { 208000, 0x05 },
240 				.odr_avl[5] = { 416000, 0x06 },
241 				.odr_len = 6,
242 			},
243 			[ST_LSM6DSX_ID_GYRO] = {
244 				.reg = {
245 					.addr = 0x11,
246 					.mask = GENMASK(7, 4),
247 				},
248 				.odr_avl[0] = {  12500, 0x01 },
249 				.odr_avl[1] = {  26000, 0x02 },
250 				.odr_avl[2] = {  52000, 0x03 },
251 				.odr_avl[3] = { 104000, 0x04 },
252 				.odr_avl[4] = { 208000, 0x05 },
253 				.odr_avl[5] = { 416000, 0x06 },
254 				.odr_len = 6,
255 			},
256 		},
257 		.fs_table = {
258 			[ST_LSM6DSX_ID_ACC] = {
259 				.reg = {
260 					.addr = 0x10,
261 					.mask = GENMASK(3, 2),
262 				},
263 				.fs_avl[0] = {  IIO_G_TO_M_S_2(61000), 0x0 },
264 				.fs_avl[1] = { IIO_G_TO_M_S_2(122000), 0x2 },
265 				.fs_avl[2] = { IIO_G_TO_M_S_2(244000), 0x3 },
266 				.fs_avl[3] = { IIO_G_TO_M_S_2(488000), 0x1 },
267 				.fs_len = 4,
268 			},
269 			[ST_LSM6DSX_ID_GYRO] = {
270 				.reg = {
271 					.addr = 0x11,
272 					.mask = GENMASK(3, 2),
273 				},
274 				.fs_avl[0] = {  IIO_DEGREE_TO_RAD(8750000), 0x0 },
275 				.fs_avl[1] = { IIO_DEGREE_TO_RAD(17500000), 0x1 },
276 				.fs_avl[2] = { IIO_DEGREE_TO_RAD(35000000), 0x2 },
277 				.fs_avl[3] = { IIO_DEGREE_TO_RAD(70000000), 0x3 },
278 				.fs_len = 4,
279 			},
280 		},
281 		.irq_config = {
282 			.irq1 = {
283 				.addr = 0x0d,
284 				.mask = BIT(3),
285 			},
286 			.irq2 = {
287 				.addr = 0x0e,
288 				.mask = BIT(3),
289 			},
290 			.lir = {
291 				.addr = 0x58,
292 				.mask = BIT(0),
293 			},
294 			.irq1_func = {
295 				.addr = 0x5e,
296 				.mask = BIT(5),
297 			},
298 			.irq2_func = {
299 				.addr = 0x5f,
300 				.mask = BIT(5),
301 			},
302 			.hla = {
303 				.addr = 0x12,
304 				.mask = BIT(5),
305 			},
306 			.od = {
307 				.addr = 0x12,
308 				.mask = BIT(4),
309 			},
310 		},
311 		.decimator = {
312 			[ST_LSM6DSX_ID_ACC] = {
313 				.addr = 0x08,
314 				.mask = GENMASK(2, 0),
315 			},
316 			[ST_LSM6DSX_ID_GYRO] = {
317 				.addr = 0x08,
318 				.mask = GENMASK(5, 3),
319 			},
320 		},
321 		.fifo_ops = {
322 			.update_fifo = st_lsm6dsx_update_fifo,
323 			.read_fifo = st_lsm6dsx_read_fifo,
324 			.fifo_th = {
325 				.addr = 0x06,
326 				.mask = GENMASK(11, 0),
327 			},
328 			.fifo_diff = {
329 				.addr = 0x3a,
330 				.mask = GENMASK(11, 0),
331 			},
332 			.th_wl = 3, /* 1LSB = 2B */
333 		},
334 		.ts_settings = {
335 			.timer_en = {
336 				.addr = 0x58,
337 				.mask = BIT(7),
338 			},
339 			.hr_timer = {
340 				.addr = 0x5c,
341 				.mask = BIT(4),
342 			},
343 			.fifo_en = {
344 				.addr = 0x07,
345 				.mask = BIT(7),
346 			},
347 			.decimator = {
348 				.addr = 0x09,
349 				.mask = GENMASK(5, 3),
350 			},
351 		},
352 		.event_settings = {
353 			.wakeup_reg = {
354 				.addr = 0x5B,
355 				.mask = GENMASK(5, 0),
356 			},
357 			.wakeup_src_reg = 0x1b,
358 			.wakeup_src_status_mask = BIT(3),
359 			.wakeup_src_z_mask = BIT(0),
360 			.wakeup_src_y_mask = BIT(1),
361 			.wakeup_src_x_mask = BIT(2),
362 		},
363 	},
364 	{
365 		.reset = {
366 			.addr = 0x12,
367 			.mask = BIT(0),
368 		},
369 		.boot = {
370 			.addr = 0x12,
371 			.mask = BIT(7),
372 		},
373 		.bdu = {
374 			.addr = 0x12,
375 			.mask = BIT(6),
376 		},
377 		.max_fifo_size = 682,
378 		.id = {
379 			{
380 				.hw_id = ST_LSM6DS3H_ID,
381 				.name = ST_LSM6DS3H_DEV_NAME,
382 				.wai = 0x69,
383 			},
384 		},
385 		.channels = {
386 			[ST_LSM6DSX_ID_ACC] = {
387 				.chan = st_lsm6dsx_acc_channels,
388 				.len = ARRAY_SIZE(st_lsm6dsx_acc_channels),
389 			},
390 			[ST_LSM6DSX_ID_GYRO] = {
391 				.chan = st_lsm6dsx_gyro_channels,
392 				.len = ARRAY_SIZE(st_lsm6dsx_gyro_channels),
393 			},
394 		},
395 		.odr_table = {
396 			[ST_LSM6DSX_ID_ACC] = {
397 				.reg = {
398 					.addr = 0x10,
399 					.mask = GENMASK(7, 4),
400 				},
401 				.odr_avl[0] = {  12500, 0x01 },
402 				.odr_avl[1] = {  26000, 0x02 },
403 				.odr_avl[2] = {  52000, 0x03 },
404 				.odr_avl[3] = { 104000, 0x04 },
405 				.odr_avl[4] = { 208000, 0x05 },
406 				.odr_avl[5] = { 416000, 0x06 },
407 				.odr_len = 6,
408 			},
409 			[ST_LSM6DSX_ID_GYRO] = {
410 				.reg = {
411 					.addr = 0x11,
412 					.mask = GENMASK(7, 4),
413 				},
414 				.odr_avl[0] = {  12500, 0x01 },
415 				.odr_avl[1] = {  26000, 0x02 },
416 				.odr_avl[2] = {  52000, 0x03 },
417 				.odr_avl[3] = { 104000, 0x04 },
418 				.odr_avl[4] = { 208000, 0x05 },
419 				.odr_avl[5] = { 416000, 0x06 },
420 				.odr_len = 6,
421 			},
422 		},
423 		.fs_table = {
424 			[ST_LSM6DSX_ID_ACC] = {
425 				.reg = {
426 					.addr = 0x10,
427 					.mask = GENMASK(3, 2),
428 				},
429 				.fs_avl[0] = {  IIO_G_TO_M_S_2(61000), 0x0 },
430 				.fs_avl[1] = { IIO_G_TO_M_S_2(122000), 0x2 },
431 				.fs_avl[2] = { IIO_G_TO_M_S_2(244000), 0x3 },
432 				.fs_avl[3] = { IIO_G_TO_M_S_2(488000), 0x1 },
433 				.fs_len = 4,
434 			},
435 			[ST_LSM6DSX_ID_GYRO] = {
436 				.reg = {
437 					.addr = 0x11,
438 					.mask = GENMASK(3, 2),
439 				},
440 				.fs_avl[0] = {  IIO_DEGREE_TO_RAD(8750000), 0x0 },
441 				.fs_avl[1] = { IIO_DEGREE_TO_RAD(17500000), 0x1 },
442 				.fs_avl[2] = { IIO_DEGREE_TO_RAD(35000000), 0x2 },
443 				.fs_avl[3] = { IIO_DEGREE_TO_RAD(70000000), 0x3 },
444 				.fs_len = 4,
445 			},
446 		},
447 		.irq_config = {
448 			.irq1 = {
449 				.addr = 0x0d,
450 				.mask = BIT(3),
451 			},
452 			.irq2 = {
453 				.addr = 0x0e,
454 				.mask = BIT(3),
455 			},
456 			.lir = {
457 				.addr = 0x58,
458 				.mask = BIT(0),
459 			},
460 			.irq1_func = {
461 				.addr = 0x5e,
462 				.mask = BIT(5),
463 			},
464 			.irq2_func = {
465 				.addr = 0x5f,
466 				.mask = BIT(5),
467 			},
468 			.hla = {
469 				.addr = 0x12,
470 				.mask = BIT(5),
471 			},
472 			.od = {
473 				.addr = 0x12,
474 				.mask = BIT(4),
475 			},
476 		},
477 		.decimator = {
478 			[ST_LSM6DSX_ID_ACC] = {
479 				.addr = 0x08,
480 				.mask = GENMASK(2, 0),
481 			},
482 			[ST_LSM6DSX_ID_GYRO] = {
483 				.addr = 0x08,
484 				.mask = GENMASK(5, 3),
485 			},
486 		},
487 		.fifo_ops = {
488 			.update_fifo = st_lsm6dsx_update_fifo,
489 			.read_fifo = st_lsm6dsx_read_fifo,
490 			.fifo_th = {
491 				.addr = 0x06,
492 				.mask = GENMASK(11, 0),
493 			},
494 			.fifo_diff = {
495 				.addr = 0x3a,
496 				.mask = GENMASK(11, 0),
497 			},
498 			.th_wl = 3, /* 1LSB = 2B */
499 		},
500 		.ts_settings = {
501 			.timer_en = {
502 				.addr = 0x58,
503 				.mask = BIT(7),
504 			},
505 			.hr_timer = {
506 				.addr = 0x5c,
507 				.mask = BIT(4),
508 			},
509 			.fifo_en = {
510 				.addr = 0x07,
511 				.mask = BIT(7),
512 			},
513 			.decimator = {
514 				.addr = 0x09,
515 				.mask = GENMASK(5, 3),
516 			},
517 		},
518 		.event_settings = {
519 			.wakeup_reg = {
520 				.addr = 0x5B,
521 				.mask = GENMASK(5, 0),
522 			},
523 			.wakeup_src_reg = 0x1b,
524 			.wakeup_src_status_mask = BIT(3),
525 			.wakeup_src_z_mask = BIT(0),
526 			.wakeup_src_y_mask = BIT(1),
527 			.wakeup_src_x_mask = BIT(2),
528 		},
529 	},
530 	{
531 		.reset = {
532 			.addr = 0x12,
533 			.mask = BIT(0),
534 		},
535 		.boot = {
536 			.addr = 0x12,
537 			.mask = BIT(7),
538 		},
539 		.bdu = {
540 			.addr = 0x12,
541 			.mask = BIT(6),
542 		},
543 		.max_fifo_size = 682,
544 		.id = {
545 			{
546 				.hw_id = ST_LSM6DSL_ID,
547 				.name = ST_LSM6DSL_DEV_NAME,
548 				.wai = 0x6a,
549 			}, {
550 				.hw_id = ST_LSM6DSM_ID,
551 				.name = ST_LSM6DSM_DEV_NAME,
552 				.wai = 0x6a,
553 			}, {
554 				.hw_id = ST_ISM330DLC_ID,
555 				.name = ST_ISM330DLC_DEV_NAME,
556 				.wai = 0x6a,
557 			}, {
558 				.hw_id = ST_LSM6DS3TRC_ID,
559 				.name = ST_LSM6DS3TRC_DEV_NAME,
560 				.wai = 0x6a,
561 			},
562 		},
563 		.channels = {
564 			[ST_LSM6DSX_ID_ACC] = {
565 				.chan = st_lsm6dsx_acc_channels,
566 				.len = ARRAY_SIZE(st_lsm6dsx_acc_channels),
567 			},
568 			[ST_LSM6DSX_ID_GYRO] = {
569 				.chan = st_lsm6dsx_gyro_channels,
570 				.len = ARRAY_SIZE(st_lsm6dsx_gyro_channels),
571 			},
572 		},
573 		.odr_table = {
574 			[ST_LSM6DSX_ID_ACC] = {
575 				.reg = {
576 					.addr = 0x10,
577 					.mask = GENMASK(7, 4),
578 				},
579 				.odr_avl[0] = {  12500, 0x01 },
580 				.odr_avl[1] = {  26000, 0x02 },
581 				.odr_avl[2] = {  52000, 0x03 },
582 				.odr_avl[3] = { 104000, 0x04 },
583 				.odr_avl[4] = { 208000, 0x05 },
584 				.odr_avl[5] = { 416000, 0x06 },
585 				.odr_len = 6,
586 			},
587 			[ST_LSM6DSX_ID_GYRO] = {
588 				.reg = {
589 					.addr = 0x11,
590 					.mask = GENMASK(7, 4),
591 				},
592 				.odr_avl[0] = {  12500, 0x01 },
593 				.odr_avl[1] = {  26000, 0x02 },
594 				.odr_avl[2] = {  52000, 0x03 },
595 				.odr_avl[3] = { 104000, 0x04 },
596 				.odr_avl[4] = { 208000, 0x05 },
597 				.odr_avl[5] = { 416000, 0x06 },
598 				.odr_len = 6,
599 			},
600 		},
601 		.fs_table = {
602 			[ST_LSM6DSX_ID_ACC] = {
603 				.reg = {
604 					.addr = 0x10,
605 					.mask = GENMASK(3, 2),
606 				},
607 				.fs_avl[0] = {  IIO_G_TO_M_S_2(61000), 0x0 },
608 				.fs_avl[1] = { IIO_G_TO_M_S_2(122000), 0x2 },
609 				.fs_avl[2] = { IIO_G_TO_M_S_2(244000), 0x3 },
610 				.fs_avl[3] = { IIO_G_TO_M_S_2(488000), 0x1 },
611 				.fs_len = 4,
612 			},
613 			[ST_LSM6DSX_ID_GYRO] = {
614 				.reg = {
615 					.addr = 0x11,
616 					.mask = GENMASK(3, 2),
617 				},
618 				.fs_avl[0] = {  IIO_DEGREE_TO_RAD(8750000), 0x0 },
619 				.fs_avl[1] = { IIO_DEGREE_TO_RAD(17500000), 0x1 },
620 				.fs_avl[2] = { IIO_DEGREE_TO_RAD(35000000), 0x2 },
621 				.fs_avl[3] = { IIO_DEGREE_TO_RAD(70000000), 0x3 },
622 				.fs_len = 4,
623 			},
624 		},
625 		.irq_config = {
626 			.irq1 = {
627 				.addr = 0x0d,
628 				.mask = BIT(3),
629 			},
630 			.irq2 = {
631 				.addr = 0x0e,
632 				.mask = BIT(3),
633 			},
634 			.lir = {
635 				.addr = 0x58,
636 				.mask = BIT(0),
637 			},
638 			.irq1_func = {
639 				.addr = 0x5e,
640 				.mask = BIT(5),
641 			},
642 			.irq2_func = {
643 				.addr = 0x5f,
644 				.mask = BIT(5),
645 			},
646 			.hla = {
647 				.addr = 0x12,
648 				.mask = BIT(5),
649 			},
650 			.od = {
651 				.addr = 0x12,
652 				.mask = BIT(4),
653 			},
654 		},
655 		.decimator = {
656 			[ST_LSM6DSX_ID_ACC] = {
657 				.addr = 0x08,
658 				.mask = GENMASK(2, 0),
659 			},
660 			[ST_LSM6DSX_ID_GYRO] = {
661 				.addr = 0x08,
662 				.mask = GENMASK(5, 3),
663 			},
664 			[ST_LSM6DSX_ID_EXT0] = {
665 				.addr = 0x09,
666 				.mask = GENMASK(2, 0),
667 			},
668 		},
669 		.fifo_ops = {
670 			.update_fifo = st_lsm6dsx_update_fifo,
671 			.read_fifo = st_lsm6dsx_read_fifo,
672 			.fifo_th = {
673 				.addr = 0x06,
674 				.mask = GENMASK(10, 0),
675 			},
676 			.fifo_diff = {
677 				.addr = 0x3a,
678 				.mask = GENMASK(10, 0),
679 			},
680 			.th_wl = 3, /* 1LSB = 2B */
681 		},
682 		.ts_settings = {
683 			.timer_en = {
684 				.addr = 0x19,
685 				.mask = BIT(5),
686 			},
687 			.hr_timer = {
688 				.addr = 0x5c,
689 				.mask = BIT(4),
690 			},
691 			.fifo_en = {
692 				.addr = 0x07,
693 				.mask = BIT(7),
694 			},
695 			.decimator = {
696 				.addr = 0x09,
697 				.mask = GENMASK(5, 3),
698 			},
699 		},
700 		.shub_settings = {
701 			.page_mux = {
702 				.addr = 0x01,
703 				.mask = BIT(7),
704 			},
705 			.master_en = {
706 				.addr = 0x1a,
707 				.mask = BIT(0),
708 			},
709 			.pullup_en = {
710 				.addr = 0x1a,
711 				.mask = BIT(3),
712 			},
713 			.aux_sens = {
714 				.addr = 0x04,
715 				.mask = GENMASK(5, 4),
716 			},
717 			.wr_once = {
718 				.addr = 0x07,
719 				.mask = BIT(5),
720 			},
721 			.emb_func = {
722 				.addr = 0x19,
723 				.mask = BIT(2),
724 			},
725 			.num_ext_dev = 1,
726 			.shub_out = {
727 				.addr = 0x2e,
728 			},
729 			.slv0_addr = 0x02,
730 			.dw_slv0_addr = 0x0e,
731 			.pause = 0x7,
732 		},
733 		.event_settings = {
734 			.enable_reg = {
735 				.addr = 0x58,
736 				.mask = BIT(7),
737 			},
738 			.wakeup_reg = {
739 				.addr = 0x5B,
740 				.mask = GENMASK(5, 0),
741 			},
742 			.wakeup_src_reg = 0x1b,
743 			.wakeup_src_status_mask = BIT(3),
744 			.wakeup_src_z_mask = BIT(0),
745 			.wakeup_src_y_mask = BIT(1),
746 			.wakeup_src_x_mask = BIT(2),
747 		},
748 	},
749 	{
750 		.reset = {
751 			.addr = 0x12,
752 			.mask = BIT(0),
753 		},
754 		.boot = {
755 			.addr = 0x12,
756 			.mask = BIT(7),
757 		},
758 		.bdu = {
759 			.addr = 0x12,
760 			.mask = BIT(6),
761 		},
762 		.max_fifo_size = 512,
763 		.id = {
764 			{
765 				.hw_id = ST_LSM6DSR_ID,
766 				.name = ST_LSM6DSR_DEV_NAME,
767 				.wai = 0x6b,
768 			}, {
769 				.hw_id = ST_ISM330DHCX_ID,
770 				.name = ST_ISM330DHCX_DEV_NAME,
771 				.wai = 0x6b,
772 			}, {
773 				.hw_id = ST_LSM6DSRX_ID,
774 				.name = ST_LSM6DSRX_DEV_NAME,
775 				.wai = 0x6b,
776 			}, {
777 				.hw_id = ST_LSM6DSO_ID,
778 				.name = ST_LSM6DSO_DEV_NAME,
779 				.wai = 0x6c,
780 			}, {
781 				.hw_id = ST_LSM6DSOX_ID,
782 				.name = ST_LSM6DSOX_DEV_NAME,
783 				.wai = 0x6c,
784 			}, {
785 				.hw_id = ST_LSM6DST_ID,
786 				.name = ST_LSM6DST_DEV_NAME,
787 				.wai = 0x6d,
788 			},
789 		},
790 		.channels = {
791 			[ST_LSM6DSX_ID_ACC] = {
792 				.chan = st_lsm6dsx_acc_channels,
793 				.len = ARRAY_SIZE(st_lsm6dsx_acc_channels),
794 			},
795 			[ST_LSM6DSX_ID_GYRO] = {
796 				.chan = st_lsm6dsx_gyro_channels,
797 				.len = ARRAY_SIZE(st_lsm6dsx_gyro_channels),
798 			},
799 		},
800 		.drdy_mask = {
801 			.addr = 0x13,
802 			.mask = BIT(3),
803 		},
804 		.odr_table = {
805 			[ST_LSM6DSX_ID_ACC] = {
806 				.reg = {
807 					.addr = 0x10,
808 					.mask = GENMASK(7, 4),
809 				},
810 				.odr_avl[0] = {  12500, 0x01 },
811 				.odr_avl[1] = {  26000, 0x02 },
812 				.odr_avl[2] = {  52000, 0x03 },
813 				.odr_avl[3] = { 104000, 0x04 },
814 				.odr_avl[4] = { 208000, 0x05 },
815 				.odr_avl[5] = { 416000, 0x06 },
816 				.odr_avl[6] = { 833000, 0x07 },
817 				.odr_len = 7,
818 			},
819 			[ST_LSM6DSX_ID_GYRO] = {
820 				.reg = {
821 					.addr = 0x11,
822 					.mask = GENMASK(7, 4),
823 				},
824 				.odr_avl[0] = {  12500, 0x01 },
825 				.odr_avl[1] = {  26000, 0x02 },
826 				.odr_avl[2] = {  52000, 0x03 },
827 				.odr_avl[3] = { 104000, 0x04 },
828 				.odr_avl[4] = { 208000, 0x05 },
829 				.odr_avl[5] = { 416000, 0x06 },
830 				.odr_avl[6] = { 833000, 0x07 },
831 				.odr_len = 7,
832 			},
833 		},
834 		.fs_table = {
835 			[ST_LSM6DSX_ID_ACC] = {
836 				.reg = {
837 					.addr = 0x10,
838 					.mask = GENMASK(3, 2),
839 				},
840 				.fs_avl[0] = {  IIO_G_TO_M_S_2(61000), 0x0 },
841 				.fs_avl[1] = { IIO_G_TO_M_S_2(122000), 0x2 },
842 				.fs_avl[2] = { IIO_G_TO_M_S_2(244000), 0x3 },
843 				.fs_avl[3] = { IIO_G_TO_M_S_2(488000), 0x1 },
844 				.fs_len = 4,
845 			},
846 			[ST_LSM6DSX_ID_GYRO] = {
847 				.reg = {
848 					.addr = 0x11,
849 					.mask = GENMASK(3, 2),
850 				},
851 				.fs_avl[0] = {  IIO_DEGREE_TO_RAD(8750000), 0x0 },
852 				.fs_avl[1] = { IIO_DEGREE_TO_RAD(17500000), 0x1 },
853 				.fs_avl[2] = { IIO_DEGREE_TO_RAD(35000000), 0x2 },
854 				.fs_avl[3] = { IIO_DEGREE_TO_RAD(70000000), 0x3 },
855 				.fs_len = 4,
856 			},
857 		},
858 		.irq_config = {
859 			.irq1 = {
860 				.addr = 0x0d,
861 				.mask = BIT(3),
862 			},
863 			.irq2 = {
864 				.addr = 0x0e,
865 				.mask = BIT(3),
866 			},
867 			.lir = {
868 				.addr = 0x56,
869 				.mask = BIT(0),
870 			},
871 			.clear_on_read = {
872 				.addr = 0x56,
873 				.mask = BIT(6),
874 			},
875 			.irq1_func = {
876 				.addr = 0x5e,
877 				.mask = BIT(5),
878 			},
879 			.irq2_func = {
880 				.addr = 0x5f,
881 				.mask = BIT(5),
882 			},
883 			.hla = {
884 				.addr = 0x12,
885 				.mask = BIT(5),
886 			},
887 			.od = {
888 				.addr = 0x12,
889 				.mask = BIT(4),
890 			},
891 		},
892 		.batch = {
893 			[ST_LSM6DSX_ID_ACC] = {
894 				.addr = 0x09,
895 				.mask = GENMASK(3, 0),
896 			},
897 			[ST_LSM6DSX_ID_GYRO] = {
898 				.addr = 0x09,
899 				.mask = GENMASK(7, 4),
900 			},
901 		},
902 		.fifo_ops = {
903 			.update_fifo = st_lsm6dsx_update_fifo,
904 			.read_fifo = st_lsm6dsx_read_tagged_fifo,
905 			.fifo_th = {
906 				.addr = 0x07,
907 				.mask = GENMASK(8, 0),
908 			},
909 			.fifo_diff = {
910 				.addr = 0x3a,
911 				.mask = GENMASK(9, 0),
912 			},
913 			.th_wl = 1,
914 		},
915 		.ts_settings = {
916 			.timer_en = {
917 				.addr = 0x19,
918 				.mask = BIT(5),
919 			},
920 			.decimator = {
921 				.addr = 0x0a,
922 				.mask = GENMASK(7, 6),
923 			},
924 			.freq_fine = 0x63,
925 		},
926 		.shub_settings = {
927 			.page_mux = {
928 				.addr = 0x01,
929 				.mask = BIT(6),
930 			},
931 			.master_en = {
932 				.sec_page = true,
933 				.addr = 0x14,
934 				.mask = BIT(2),
935 			},
936 			.pullup_en = {
937 				.sec_page = true,
938 				.addr = 0x14,
939 				.mask = BIT(3),
940 			},
941 			.aux_sens = {
942 				.addr = 0x14,
943 				.mask = GENMASK(1, 0),
944 			},
945 			.wr_once = {
946 				.addr = 0x14,
947 				.mask = BIT(6),
948 			},
949 			.num_ext_dev = 3,
950 			.shub_out = {
951 				.sec_page = true,
952 				.addr = 0x02,
953 			},
954 			.slv0_addr = 0x15,
955 			.dw_slv0_addr = 0x21,
956 			.batch_en = BIT(3),
957 		},
958 		.event_settings = {
959 			.enable_reg = {
960 				.addr = 0x58,
961 				.mask = BIT(7),
962 			},
963 			.wakeup_reg = {
964 				.addr = 0x5b,
965 				.mask = GENMASK(5, 0),
966 			},
967 			.wakeup_src_reg = 0x1b,
968 			.wakeup_src_status_mask = BIT(3),
969 			.wakeup_src_z_mask = BIT(0),
970 			.wakeup_src_y_mask = BIT(1),
971 			.wakeup_src_x_mask = BIT(2),
972 		},
973 	},
974 	{
975 		.reset = {
976 			.addr = 0x12,
977 			.mask = BIT(0),
978 		},
979 		.boot = {
980 			.addr = 0x12,
981 			.mask = BIT(7),
982 		},
983 		.bdu = {
984 			.addr = 0x12,
985 			.mask = BIT(6),
986 		},
987 		.max_fifo_size = 512,
988 		.id = {
989 			{
990 				.hw_id = ST_ASM330LHH_ID,
991 				.name = ST_ASM330LHH_DEV_NAME,
992 				.wai = 0x6b,
993 			}, {
994 				.hw_id = ST_LSM6DSOP_ID,
995 				.name = ST_LSM6DSOP_DEV_NAME,
996 				.wai = 0x6c,
997 			},
998 		},
999 		.channels = {
1000 			[ST_LSM6DSX_ID_ACC] = {
1001 				.chan = st_lsm6dsx_acc_channels,
1002 				.len = ARRAY_SIZE(st_lsm6dsx_acc_channels),
1003 			},
1004 			[ST_LSM6DSX_ID_GYRO] = {
1005 				.chan = st_lsm6dsx_gyro_channels,
1006 				.len = ARRAY_SIZE(st_lsm6dsx_gyro_channels),
1007 			},
1008 		},
1009 		.drdy_mask = {
1010 			.addr = 0x13,
1011 			.mask = BIT(3),
1012 		},
1013 		.odr_table = {
1014 			[ST_LSM6DSX_ID_ACC] = {
1015 				.reg = {
1016 					.addr = 0x10,
1017 					.mask = GENMASK(7, 4),
1018 				},
1019 				.odr_avl[0] = {  12500, 0x01 },
1020 				.odr_avl[1] = {  26000, 0x02 },
1021 				.odr_avl[2] = {  52000, 0x03 },
1022 				.odr_avl[3] = { 104000, 0x04 },
1023 				.odr_avl[4] = { 208000, 0x05 },
1024 				.odr_avl[5] = { 416000, 0x06 },
1025 				.odr_avl[6] = { 833000, 0x07 },
1026 				.odr_len = 7,
1027 			},
1028 			[ST_LSM6DSX_ID_GYRO] = {
1029 				.reg = {
1030 					.addr = 0x11,
1031 					.mask = GENMASK(7, 4),
1032 				},
1033 				.odr_avl[0] = {  12500, 0x01 },
1034 				.odr_avl[1] = {  26000, 0x02 },
1035 				.odr_avl[2] = {  52000, 0x03 },
1036 				.odr_avl[3] = { 104000, 0x04 },
1037 				.odr_avl[4] = { 208000, 0x05 },
1038 				.odr_avl[5] = { 416000, 0x06 },
1039 				.odr_avl[6] = { 833000, 0x07 },
1040 				.odr_len = 7,
1041 			},
1042 		},
1043 		.fs_table = {
1044 			[ST_LSM6DSX_ID_ACC] = {
1045 				.reg = {
1046 					.addr = 0x10,
1047 					.mask = GENMASK(3, 2),
1048 				},
1049 				.fs_avl[0] = {  IIO_G_TO_M_S_2(61000), 0x0 },
1050 				.fs_avl[1] = { IIO_G_TO_M_S_2(122000), 0x2 },
1051 				.fs_avl[2] = { IIO_G_TO_M_S_2(244000), 0x3 },
1052 				.fs_avl[3] = { IIO_G_TO_M_S_2(488000), 0x1 },
1053 				.fs_len = 4,
1054 			},
1055 			[ST_LSM6DSX_ID_GYRO] = {
1056 				.reg = {
1057 					.addr = 0x11,
1058 					.mask = GENMASK(3, 2),
1059 				},
1060 				.fs_avl[0] = {  IIO_DEGREE_TO_RAD(8750000), 0x0 },
1061 				.fs_avl[1] = { IIO_DEGREE_TO_RAD(17500000), 0x1 },
1062 				.fs_avl[2] = { IIO_DEGREE_TO_RAD(35000000), 0x2 },
1063 				.fs_avl[3] = { IIO_DEGREE_TO_RAD(70000000), 0x3 },
1064 				.fs_len = 4,
1065 			},
1066 		},
1067 		.irq_config = {
1068 			.irq1 = {
1069 				.addr = 0x0d,
1070 				.mask = BIT(3),
1071 			},
1072 			.irq2 = {
1073 				.addr = 0x0e,
1074 				.mask = BIT(3),
1075 			},
1076 			.lir = {
1077 				.addr = 0x56,
1078 				.mask = BIT(0),
1079 			},
1080 			.clear_on_read = {
1081 				.addr = 0x56,
1082 				.mask = BIT(6),
1083 			},
1084 			.irq1_func = {
1085 				.addr = 0x5e,
1086 				.mask = BIT(5),
1087 			},
1088 			.irq2_func = {
1089 				.addr = 0x5f,
1090 				.mask = BIT(5),
1091 			},
1092 			.hla = {
1093 				.addr = 0x12,
1094 				.mask = BIT(5),
1095 			},
1096 			.od = {
1097 				.addr = 0x12,
1098 				.mask = BIT(4),
1099 			},
1100 		},
1101 		.batch = {
1102 			[ST_LSM6DSX_ID_ACC] = {
1103 				.addr = 0x09,
1104 				.mask = GENMASK(3, 0),
1105 			},
1106 			[ST_LSM6DSX_ID_GYRO] = {
1107 				.addr = 0x09,
1108 				.mask = GENMASK(7, 4),
1109 			},
1110 		},
1111 		.fifo_ops = {
1112 			.update_fifo = st_lsm6dsx_update_fifo,
1113 			.read_fifo = st_lsm6dsx_read_tagged_fifo,
1114 			.fifo_th = {
1115 				.addr = 0x07,
1116 				.mask = GENMASK(8, 0),
1117 			},
1118 			.fifo_diff = {
1119 				.addr = 0x3a,
1120 				.mask = GENMASK(9, 0),
1121 			},
1122 			.th_wl = 1,
1123 		},
1124 		.ts_settings = {
1125 			.timer_en = {
1126 				.addr = 0x19,
1127 				.mask = BIT(5),
1128 			},
1129 			.decimator = {
1130 				.addr = 0x0a,
1131 				.mask = GENMASK(7, 6),
1132 			},
1133 			.freq_fine = 0x63,
1134 		},
1135 		.event_settings = {
1136 			.enable_reg = {
1137 				.addr = 0x58,
1138 				.mask = BIT(7),
1139 			},
1140 			.wakeup_reg = {
1141 				.addr = 0x5B,
1142 				.mask = GENMASK(5, 0),
1143 			},
1144 			.wakeup_src_reg = 0x1b,
1145 			.wakeup_src_status_mask = BIT(3),
1146 			.wakeup_src_z_mask = BIT(0),
1147 			.wakeup_src_y_mask = BIT(1),
1148 			.wakeup_src_x_mask = BIT(2),
1149 		},
1150 	},
1151 };
1152 
1153 int st_lsm6dsx_set_page(struct st_lsm6dsx_hw *hw, bool enable)
1154 {
1155 	const struct st_lsm6dsx_shub_settings *hub_settings;
1156 	unsigned int data;
1157 	int err;
1158 
1159 	hub_settings = &hw->settings->shub_settings;
1160 	data = ST_LSM6DSX_SHIFT_VAL(enable, hub_settings->page_mux.mask);
1161 	err = regmap_update_bits(hw->regmap, hub_settings->page_mux.addr,
1162 				 hub_settings->page_mux.mask, data);
1163 	usleep_range(100, 150);
1164 
1165 	return err;
1166 }
1167 
1168 static int st_lsm6dsx_check_whoami(struct st_lsm6dsx_hw *hw, int id,
1169 				   const char **name)
1170 {
1171 	int err, i, j, data;
1172 
1173 	for (i = 0; i < ARRAY_SIZE(st_lsm6dsx_sensor_settings); i++) {
1174 		for (j = 0; j < ST_LSM6DSX_MAX_ID; j++) {
1175 			if (st_lsm6dsx_sensor_settings[i].id[j].name &&
1176 			    id == st_lsm6dsx_sensor_settings[i].id[j].hw_id)
1177 				break;
1178 		}
1179 		if (j < ST_LSM6DSX_MAX_ID)
1180 			break;
1181 	}
1182 
1183 	if (i == ARRAY_SIZE(st_lsm6dsx_sensor_settings)) {
1184 		dev_err(hw->dev, "unsupported hw id [%02x]\n", id);
1185 		return -ENODEV;
1186 	}
1187 
1188 	err = regmap_read(hw->regmap, ST_LSM6DSX_REG_WHOAMI_ADDR, &data);
1189 	if (err < 0) {
1190 		dev_err(hw->dev, "failed to read whoami register\n");
1191 		return err;
1192 	}
1193 
1194 	if (data != st_lsm6dsx_sensor_settings[i].id[j].wai) {
1195 		dev_err(hw->dev, "unsupported whoami [%02x]\n", data);
1196 		return -ENODEV;
1197 	}
1198 
1199 	*name = st_lsm6dsx_sensor_settings[i].id[j].name;
1200 	hw->settings = &st_lsm6dsx_sensor_settings[i];
1201 
1202 	return 0;
1203 }
1204 
1205 static int st_lsm6dsx_set_full_scale(struct st_lsm6dsx_sensor *sensor,
1206 				     u32 gain)
1207 {
1208 	const struct st_lsm6dsx_fs_table_entry *fs_table;
1209 	unsigned int data;
1210 	int i, err;
1211 
1212 	fs_table = &sensor->hw->settings->fs_table[sensor->id];
1213 	for (i = 0; i < fs_table->fs_len; i++) {
1214 		if (fs_table->fs_avl[i].gain == gain)
1215 			break;
1216 	}
1217 
1218 	if (i == fs_table->fs_len)
1219 		return -EINVAL;
1220 
1221 	data = ST_LSM6DSX_SHIFT_VAL(fs_table->fs_avl[i].val,
1222 				    fs_table->reg.mask);
1223 	err = st_lsm6dsx_update_bits_locked(sensor->hw, fs_table->reg.addr,
1224 					    fs_table->reg.mask, data);
1225 	if (err < 0)
1226 		return err;
1227 
1228 	sensor->gain = gain;
1229 
1230 	return 0;
1231 }
1232 
1233 int st_lsm6dsx_check_odr(struct st_lsm6dsx_sensor *sensor, u32 odr, u8 *val)
1234 {
1235 	const struct st_lsm6dsx_odr_table_entry *odr_table;
1236 	int i;
1237 
1238 	odr_table = &sensor->hw->settings->odr_table[sensor->id];
1239 	for (i = 0; i < odr_table->odr_len; i++) {
1240 		/*
1241 		 * ext devices can run at different odr respect to
1242 		 * accel sensor
1243 		 */
1244 		if (odr_table->odr_avl[i].milli_hz >= odr)
1245 			break;
1246 	}
1247 
1248 	if (i == odr_table->odr_len)
1249 		return -EINVAL;
1250 
1251 	*val = odr_table->odr_avl[i].val;
1252 	return odr_table->odr_avl[i].milli_hz;
1253 }
1254 
1255 static int
1256 st_lsm6dsx_check_odr_dependency(struct st_lsm6dsx_hw *hw, u32 odr,
1257 				enum st_lsm6dsx_sensor_id id)
1258 {
1259 	struct st_lsm6dsx_sensor *ref = iio_priv(hw->iio_devs[id]);
1260 
1261 	if (odr > 0) {
1262 		if (hw->enable_mask & BIT(id))
1263 			return max_t(u32, ref->odr, odr);
1264 		else
1265 			return odr;
1266 	} else {
1267 		return (hw->enable_mask & BIT(id)) ? ref->odr : 0;
1268 	}
1269 }
1270 
1271 static int
1272 st_lsm6dsx_set_odr(struct st_lsm6dsx_sensor *sensor, u32 req_odr)
1273 {
1274 	struct st_lsm6dsx_sensor *ref_sensor = sensor;
1275 	struct st_lsm6dsx_hw *hw = sensor->hw;
1276 	const struct st_lsm6dsx_reg *reg;
1277 	unsigned int data;
1278 	u8 val = 0;
1279 	int err;
1280 
1281 	switch (sensor->id) {
1282 	case ST_LSM6DSX_ID_EXT0:
1283 	case ST_LSM6DSX_ID_EXT1:
1284 	case ST_LSM6DSX_ID_EXT2:
1285 	case ST_LSM6DSX_ID_ACC: {
1286 		u32 odr;
1287 		int i;
1288 
1289 		/*
1290 		 * i2c embedded controller relies on the accelerometer sensor as
1291 		 * bus read/write trigger so we need to enable accel device
1292 		 * at odr = max(accel_odr, ext_odr) in order to properly
1293 		 * communicate with i2c slave devices
1294 		 */
1295 		ref_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]);
1296 		for (i = ST_LSM6DSX_ID_ACC; i < ST_LSM6DSX_ID_MAX; i++) {
1297 			if (!hw->iio_devs[i] || i == sensor->id)
1298 				continue;
1299 
1300 			odr = st_lsm6dsx_check_odr_dependency(hw, req_odr, i);
1301 			if (odr != req_odr)
1302 				/* device already configured */
1303 				return 0;
1304 		}
1305 		break;
1306 	}
1307 	default:
1308 		break;
1309 	}
1310 
1311 	if (req_odr > 0) {
1312 		err = st_lsm6dsx_check_odr(ref_sensor, req_odr, &val);
1313 		if (err < 0)
1314 			return err;
1315 	}
1316 
1317 	reg = &hw->settings->odr_table[ref_sensor->id].reg;
1318 	data = ST_LSM6DSX_SHIFT_VAL(val, reg->mask);
1319 	return st_lsm6dsx_update_bits_locked(hw, reg->addr, reg->mask, data);
1320 }
1321 
1322 static int
1323 __st_lsm6dsx_sensor_set_enable(struct st_lsm6dsx_sensor *sensor,
1324 			       bool enable)
1325 {
1326 	struct st_lsm6dsx_hw *hw = sensor->hw;
1327 	u32 odr = enable ? sensor->odr : 0;
1328 	int err;
1329 
1330 	err = st_lsm6dsx_set_odr(sensor, odr);
1331 	if (err < 0)
1332 		return err;
1333 
1334 	if (enable)
1335 		hw->enable_mask |= BIT(sensor->id);
1336 	else
1337 		hw->enable_mask &= ~BIT(sensor->id);
1338 
1339 	return 0;
1340 }
1341 
1342 static int
1343 st_lsm6dsx_check_events(struct st_lsm6dsx_sensor *sensor, bool enable)
1344 {
1345 	struct st_lsm6dsx_hw *hw = sensor->hw;
1346 
1347 	if (sensor->id == ST_LSM6DSX_ID_GYRO || enable)
1348 		return 0;
1349 
1350 	return hw->enable_event;
1351 }
1352 
1353 int st_lsm6dsx_sensor_set_enable(struct st_lsm6dsx_sensor *sensor,
1354 				 bool enable)
1355 {
1356 	if (st_lsm6dsx_check_events(sensor, enable))
1357 		return 0;
1358 
1359 	return __st_lsm6dsx_sensor_set_enable(sensor, enable);
1360 }
1361 
1362 static int st_lsm6dsx_read_oneshot(struct st_lsm6dsx_sensor *sensor,
1363 				   u8 addr, int *val)
1364 {
1365 	struct st_lsm6dsx_hw *hw = sensor->hw;
1366 	int err, delay;
1367 	__le16 data;
1368 
1369 	err = st_lsm6dsx_sensor_set_enable(sensor, true);
1370 	if (err < 0)
1371 		return err;
1372 
1373 	delay = 1000000000 / sensor->odr;
1374 	usleep_range(delay, 2 * delay);
1375 
1376 	err = st_lsm6dsx_read_locked(hw, addr, &data, sizeof(data));
1377 	if (err < 0)
1378 		return err;
1379 
1380 	if (!hw->enable_event) {
1381 		err = st_lsm6dsx_sensor_set_enable(sensor, false);
1382 		if (err < 0)
1383 			return err;
1384 	}
1385 
1386 	*val = (s16)le16_to_cpu(data);
1387 
1388 	return IIO_VAL_INT;
1389 }
1390 
1391 static int st_lsm6dsx_read_raw(struct iio_dev *iio_dev,
1392 			       struct iio_chan_spec const *ch,
1393 			       int *val, int *val2, long mask)
1394 {
1395 	struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
1396 	int ret;
1397 
1398 	switch (mask) {
1399 	case IIO_CHAN_INFO_RAW:
1400 		ret = iio_device_claim_direct_mode(iio_dev);
1401 		if (ret)
1402 			break;
1403 
1404 		ret = st_lsm6dsx_read_oneshot(sensor, ch->address, val);
1405 		iio_device_release_direct_mode(iio_dev);
1406 		break;
1407 	case IIO_CHAN_INFO_SAMP_FREQ:
1408 		*val = sensor->odr / 1000;
1409 		*val2 = (sensor->odr % 1000) * 1000;
1410 		ret = IIO_VAL_INT_PLUS_MICRO;
1411 		break;
1412 	case IIO_CHAN_INFO_SCALE:
1413 		*val = 0;
1414 		*val2 = sensor->gain;
1415 		ret = IIO_VAL_INT_PLUS_NANO;
1416 		break;
1417 	default:
1418 		ret = -EINVAL;
1419 		break;
1420 	}
1421 
1422 	return ret;
1423 }
1424 
1425 static int st_lsm6dsx_write_raw(struct iio_dev *iio_dev,
1426 				struct iio_chan_spec const *chan,
1427 				int val, int val2, long mask)
1428 {
1429 	struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
1430 	int err;
1431 
1432 	err = iio_device_claim_direct_mode(iio_dev);
1433 	if (err)
1434 		return err;
1435 
1436 	switch (mask) {
1437 	case IIO_CHAN_INFO_SCALE:
1438 		err = st_lsm6dsx_set_full_scale(sensor, val2);
1439 		break;
1440 	case IIO_CHAN_INFO_SAMP_FREQ: {
1441 		u8 data;
1442 
1443 		val = val * 1000 + val2 / 1000;
1444 		val = st_lsm6dsx_check_odr(sensor, val, &data);
1445 		if (val < 0)
1446 			err = val;
1447 		else
1448 			sensor->odr = val;
1449 		break;
1450 	}
1451 	default:
1452 		err = -EINVAL;
1453 		break;
1454 	}
1455 
1456 	iio_device_release_direct_mode(iio_dev);
1457 
1458 	return err;
1459 }
1460 
1461 static int st_lsm6dsx_event_setup(struct st_lsm6dsx_hw *hw, int state)
1462 {
1463 	const struct st_lsm6dsx_reg *reg;
1464 	unsigned int data;
1465 	int err;
1466 
1467 	if (!hw->settings->irq_config.irq1_func.addr)
1468 		return -ENOTSUPP;
1469 
1470 	reg = &hw->settings->event_settings.enable_reg;
1471 	if (reg->addr) {
1472 		data = ST_LSM6DSX_SHIFT_VAL(state, reg->mask);
1473 		err = st_lsm6dsx_update_bits_locked(hw, reg->addr,
1474 						    reg->mask, data);
1475 		if (err < 0)
1476 			return err;
1477 	}
1478 
1479 	/* Enable wakeup interrupt */
1480 	data = ST_LSM6DSX_SHIFT_VAL(state, hw->irq_routing->mask);
1481 	return st_lsm6dsx_update_bits_locked(hw, hw->irq_routing->addr,
1482 					     hw->irq_routing->mask, data);
1483 }
1484 
1485 static int st_lsm6dsx_read_event(struct iio_dev *iio_dev,
1486 				 const struct iio_chan_spec *chan,
1487 				 enum iio_event_type type,
1488 				 enum iio_event_direction dir,
1489 				 enum iio_event_info info,
1490 				 int *val, int *val2)
1491 {
1492 	struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
1493 	struct st_lsm6dsx_hw *hw = sensor->hw;
1494 
1495 	if (type != IIO_EV_TYPE_THRESH)
1496 		return -EINVAL;
1497 
1498 	*val2 = 0;
1499 	*val = hw->event_threshold;
1500 
1501 	return IIO_VAL_INT;
1502 }
1503 
1504 static int
1505 st_lsm6dsx_write_event(struct iio_dev *iio_dev,
1506 		       const struct iio_chan_spec *chan,
1507 		       enum iio_event_type type,
1508 		       enum iio_event_direction dir,
1509 		       enum iio_event_info info,
1510 		       int val, int val2)
1511 {
1512 	struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
1513 	struct st_lsm6dsx_hw *hw = sensor->hw;
1514 	const struct st_lsm6dsx_reg *reg;
1515 	unsigned int data;
1516 	int err;
1517 
1518 	if (type != IIO_EV_TYPE_THRESH)
1519 		return -EINVAL;
1520 
1521 	if (val < 0 || val > 31)
1522 		return -EINVAL;
1523 
1524 	reg = &hw->settings->event_settings.wakeup_reg;
1525 	data = ST_LSM6DSX_SHIFT_VAL(val, reg->mask);
1526 	err = st_lsm6dsx_update_bits_locked(hw, reg->addr,
1527 					    reg->mask, data);
1528 	if (err < 0)
1529 		return -EINVAL;
1530 
1531 	hw->event_threshold = val;
1532 
1533 	return 0;
1534 }
1535 
1536 static int
1537 st_lsm6dsx_read_event_config(struct iio_dev *iio_dev,
1538 			     const struct iio_chan_spec *chan,
1539 			     enum iio_event_type type,
1540 			     enum iio_event_direction dir)
1541 {
1542 	struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
1543 	struct st_lsm6dsx_hw *hw = sensor->hw;
1544 
1545 	if (type != IIO_EV_TYPE_THRESH)
1546 		return -EINVAL;
1547 
1548 	return !!(hw->enable_event & BIT(chan->channel2));
1549 }
1550 
1551 static int
1552 st_lsm6dsx_write_event_config(struct iio_dev *iio_dev,
1553 			      const struct iio_chan_spec *chan,
1554 			      enum iio_event_type type,
1555 			      enum iio_event_direction dir, int state)
1556 {
1557 	struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
1558 	struct st_lsm6dsx_hw *hw = sensor->hw;
1559 	u8 enable_event;
1560 	int err;
1561 
1562 	if (type != IIO_EV_TYPE_THRESH)
1563 		return -EINVAL;
1564 
1565 	if (state) {
1566 		enable_event = hw->enable_event | BIT(chan->channel2);
1567 
1568 		/* do not enable events if they are already enabled */
1569 		if (hw->enable_event)
1570 			goto out;
1571 	} else {
1572 		enable_event = hw->enable_event & ~BIT(chan->channel2);
1573 
1574 		/* only turn off sensor if no events is enabled */
1575 		if (enable_event)
1576 			goto out;
1577 	}
1578 
1579 	/* stop here if no changes have been made */
1580 	if (hw->enable_event == enable_event)
1581 		return 0;
1582 
1583 	err = st_lsm6dsx_event_setup(hw, state);
1584 	if (err < 0)
1585 		return err;
1586 
1587 	mutex_lock(&hw->conf_lock);
1588 	if (enable_event || !(hw->fifo_mask & BIT(sensor->id)))
1589 		err = __st_lsm6dsx_sensor_set_enable(sensor, state);
1590 	mutex_unlock(&hw->conf_lock);
1591 	if (err < 0)
1592 		return err;
1593 
1594 out:
1595 	hw->enable_event = enable_event;
1596 
1597 	return 0;
1598 }
1599 
1600 int st_lsm6dsx_set_watermark(struct iio_dev *iio_dev, unsigned int val)
1601 {
1602 	struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
1603 	struct st_lsm6dsx_hw *hw = sensor->hw;
1604 	int err;
1605 
1606 	if (val < 1 || val > hw->settings->max_fifo_size)
1607 		return -EINVAL;
1608 
1609 	mutex_lock(&hw->conf_lock);
1610 
1611 	err = st_lsm6dsx_update_watermark(sensor, val);
1612 
1613 	mutex_unlock(&hw->conf_lock);
1614 
1615 	if (err < 0)
1616 		return err;
1617 
1618 	sensor->watermark = val;
1619 
1620 	return 0;
1621 }
1622 
1623 static ssize_t
1624 st_lsm6dsx_sysfs_sampling_frequency_avail(struct device *dev,
1625 					  struct device_attribute *attr,
1626 					  char *buf)
1627 {
1628 	struct st_lsm6dsx_sensor *sensor = iio_priv(dev_get_drvdata(dev));
1629 	const struct st_lsm6dsx_odr_table_entry *odr_table;
1630 	int i, len = 0;
1631 
1632 	odr_table = &sensor->hw->settings->odr_table[sensor->id];
1633 	for (i = 0; i < odr_table->odr_len; i++)
1634 		len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%03d ",
1635 				 odr_table->odr_avl[i].milli_hz / 1000,
1636 				 odr_table->odr_avl[i].milli_hz % 1000);
1637 	buf[len - 1] = '\n';
1638 
1639 	return len;
1640 }
1641 
1642 static ssize_t st_lsm6dsx_sysfs_scale_avail(struct device *dev,
1643 					    struct device_attribute *attr,
1644 					    char *buf)
1645 {
1646 	struct st_lsm6dsx_sensor *sensor = iio_priv(dev_get_drvdata(dev));
1647 	const struct st_lsm6dsx_fs_table_entry *fs_table;
1648 	struct st_lsm6dsx_hw *hw = sensor->hw;
1649 	int i, len = 0;
1650 
1651 	fs_table = &hw->settings->fs_table[sensor->id];
1652 	for (i = 0; i < fs_table->fs_len; i++)
1653 		len += scnprintf(buf + len, PAGE_SIZE - len, "0.%09u ",
1654 				 fs_table->fs_avl[i].gain);
1655 	buf[len - 1] = '\n';
1656 
1657 	return len;
1658 }
1659 
1660 static int st_lsm6dsx_write_raw_get_fmt(struct iio_dev *indio_dev,
1661 					struct iio_chan_spec const *chan,
1662 					long mask)
1663 {
1664 	switch (mask) {
1665 	case IIO_CHAN_INFO_SCALE:
1666 		switch (chan->type) {
1667 		case IIO_ANGL_VEL:
1668 		case IIO_ACCEL:
1669 			return IIO_VAL_INT_PLUS_NANO;
1670 		default:
1671 			return IIO_VAL_INT_PLUS_MICRO;
1672 		}
1673 	default:
1674 		return IIO_VAL_INT_PLUS_MICRO;
1675 	}
1676 }
1677 
1678 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(st_lsm6dsx_sysfs_sampling_frequency_avail);
1679 static IIO_DEVICE_ATTR(in_accel_scale_available, 0444,
1680 		       st_lsm6dsx_sysfs_scale_avail, NULL, 0);
1681 static IIO_DEVICE_ATTR(in_anglvel_scale_available, 0444,
1682 		       st_lsm6dsx_sysfs_scale_avail, NULL, 0);
1683 
1684 static struct attribute *st_lsm6dsx_acc_attributes[] = {
1685 	&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
1686 	&iio_dev_attr_in_accel_scale_available.dev_attr.attr,
1687 	NULL,
1688 };
1689 
1690 static const struct attribute_group st_lsm6dsx_acc_attribute_group = {
1691 	.attrs = st_lsm6dsx_acc_attributes,
1692 };
1693 
1694 static const struct iio_info st_lsm6dsx_acc_info = {
1695 	.attrs = &st_lsm6dsx_acc_attribute_group,
1696 	.read_raw = st_lsm6dsx_read_raw,
1697 	.write_raw = st_lsm6dsx_write_raw,
1698 	.read_event_value = st_lsm6dsx_read_event,
1699 	.write_event_value = st_lsm6dsx_write_event,
1700 	.read_event_config = st_lsm6dsx_read_event_config,
1701 	.write_event_config = st_lsm6dsx_write_event_config,
1702 	.hwfifo_set_watermark = st_lsm6dsx_set_watermark,
1703 	.write_raw_get_fmt = st_lsm6dsx_write_raw_get_fmt,
1704 };
1705 
1706 static struct attribute *st_lsm6dsx_gyro_attributes[] = {
1707 	&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
1708 	&iio_dev_attr_in_anglvel_scale_available.dev_attr.attr,
1709 	NULL,
1710 };
1711 
1712 static const struct attribute_group st_lsm6dsx_gyro_attribute_group = {
1713 	.attrs = st_lsm6dsx_gyro_attributes,
1714 };
1715 
1716 static const struct iio_info st_lsm6dsx_gyro_info = {
1717 	.attrs = &st_lsm6dsx_gyro_attribute_group,
1718 	.read_raw = st_lsm6dsx_read_raw,
1719 	.write_raw = st_lsm6dsx_write_raw,
1720 	.hwfifo_set_watermark = st_lsm6dsx_set_watermark,
1721 	.write_raw_get_fmt = st_lsm6dsx_write_raw_get_fmt,
1722 };
1723 
1724 static int st_lsm6dsx_get_drdy_pin(struct st_lsm6dsx_hw *hw, int *drdy_pin)
1725 {
1726 	struct device *dev = hw->dev;
1727 
1728 	if (!dev_fwnode(dev))
1729 		return -EINVAL;
1730 
1731 	return device_property_read_u32(dev, "st,drdy-int-pin", drdy_pin);
1732 }
1733 
1734 static int
1735 st_lsm6dsx_get_drdy_reg(struct st_lsm6dsx_hw *hw,
1736 			const struct st_lsm6dsx_reg **drdy_reg)
1737 {
1738 	int err = 0, drdy_pin;
1739 
1740 	if (st_lsm6dsx_get_drdy_pin(hw, &drdy_pin) < 0) {
1741 		struct st_sensors_platform_data *pdata;
1742 		struct device *dev = hw->dev;
1743 
1744 		pdata = (struct st_sensors_platform_data *)dev->platform_data;
1745 		drdy_pin = pdata ? pdata->drdy_int_pin : 1;
1746 	}
1747 
1748 	switch (drdy_pin) {
1749 	case 1:
1750 		hw->irq_routing = &hw->settings->irq_config.irq1_func;
1751 		*drdy_reg = &hw->settings->irq_config.irq1;
1752 		break;
1753 	case 2:
1754 		hw->irq_routing = &hw->settings->irq_config.irq2_func;
1755 		*drdy_reg = &hw->settings->irq_config.irq2;
1756 		break;
1757 	default:
1758 		dev_err(hw->dev, "unsupported data ready pin\n");
1759 		err = -EINVAL;
1760 		break;
1761 	}
1762 
1763 	return err;
1764 }
1765 
1766 static int st_lsm6dsx_init_shub(struct st_lsm6dsx_hw *hw)
1767 {
1768 	const struct st_lsm6dsx_shub_settings *hub_settings;
1769 	struct st_sensors_platform_data *pdata;
1770 	struct device *dev = hw->dev;
1771 	unsigned int data;
1772 	int err = 0;
1773 
1774 	hub_settings = &hw->settings->shub_settings;
1775 
1776 	pdata = (struct st_sensors_platform_data *)dev->platform_data;
1777 	if ((dev_fwnode(dev) && device_property_read_bool(dev, "st,pullups")) ||
1778 	    (pdata && pdata->pullups)) {
1779 		if (hub_settings->pullup_en.sec_page) {
1780 			err = st_lsm6dsx_set_page(hw, true);
1781 			if (err < 0)
1782 				return err;
1783 		}
1784 
1785 		data = ST_LSM6DSX_SHIFT_VAL(1, hub_settings->pullup_en.mask);
1786 		err = regmap_update_bits(hw->regmap,
1787 					 hub_settings->pullup_en.addr,
1788 					 hub_settings->pullup_en.mask, data);
1789 
1790 		if (hub_settings->pullup_en.sec_page)
1791 			st_lsm6dsx_set_page(hw, false);
1792 
1793 		if (err < 0)
1794 			return err;
1795 	}
1796 
1797 	if (hub_settings->aux_sens.addr) {
1798 		/* configure aux sensors */
1799 		err = st_lsm6dsx_set_page(hw, true);
1800 		if (err < 0)
1801 			return err;
1802 
1803 		data = ST_LSM6DSX_SHIFT_VAL(3, hub_settings->aux_sens.mask);
1804 		err = regmap_update_bits(hw->regmap,
1805 					 hub_settings->aux_sens.addr,
1806 					 hub_settings->aux_sens.mask, data);
1807 
1808 		st_lsm6dsx_set_page(hw, false);
1809 
1810 		if (err < 0)
1811 			return err;
1812 	}
1813 
1814 	if (hub_settings->emb_func.addr) {
1815 		data = ST_LSM6DSX_SHIFT_VAL(1, hub_settings->emb_func.mask);
1816 		err = regmap_update_bits(hw->regmap,
1817 					 hub_settings->emb_func.addr,
1818 					 hub_settings->emb_func.mask, data);
1819 	}
1820 
1821 	return err;
1822 }
1823 
1824 static int st_lsm6dsx_init_hw_timer(struct st_lsm6dsx_hw *hw)
1825 {
1826 	const struct st_lsm6dsx_hw_ts_settings *ts_settings;
1827 	int err, val;
1828 
1829 	ts_settings = &hw->settings->ts_settings;
1830 	/* enable hw timestamp generation if necessary */
1831 	if (ts_settings->timer_en.addr) {
1832 		val = ST_LSM6DSX_SHIFT_VAL(1, ts_settings->timer_en.mask);
1833 		err = regmap_update_bits(hw->regmap,
1834 					 ts_settings->timer_en.addr,
1835 					 ts_settings->timer_en.mask, val);
1836 		if (err < 0)
1837 			return err;
1838 	}
1839 
1840 	/* enable high resolution for hw ts timer if necessary */
1841 	if (ts_settings->hr_timer.addr) {
1842 		val = ST_LSM6DSX_SHIFT_VAL(1, ts_settings->hr_timer.mask);
1843 		err = regmap_update_bits(hw->regmap,
1844 					 ts_settings->hr_timer.addr,
1845 					 ts_settings->hr_timer.mask, val);
1846 		if (err < 0)
1847 			return err;
1848 	}
1849 
1850 	/* enable ts queueing in FIFO if necessary */
1851 	if (ts_settings->fifo_en.addr) {
1852 		val = ST_LSM6DSX_SHIFT_VAL(1, ts_settings->fifo_en.mask);
1853 		err = regmap_update_bits(hw->regmap,
1854 					 ts_settings->fifo_en.addr,
1855 					 ts_settings->fifo_en.mask, val);
1856 		if (err < 0)
1857 			return err;
1858 	}
1859 
1860 	/* calibrate timestamp sensitivity */
1861 	hw->ts_gain = ST_LSM6DSX_TS_SENSITIVITY;
1862 	if (ts_settings->freq_fine) {
1863 		err = regmap_read(hw->regmap, ts_settings->freq_fine, &val);
1864 		if (err < 0)
1865 			return err;
1866 
1867 		/*
1868 		 * linearize the AN5192 formula:
1869 		 * 1 / (1 + x) ~= 1 - x (Taylor’s Series)
1870 		 * ttrim[s] = 1 / (40000 * (1 + 0.0015 * val))
1871 		 * ttrim[ns] ~= 25000 - 37.5 * val
1872 		 * ttrim[ns] ~= 25000 - (37500 * val) / 1000
1873 		 */
1874 		hw->ts_gain -= ((s8)val * 37500) / 1000;
1875 	}
1876 
1877 	return 0;
1878 }
1879 
1880 static int st_lsm6dsx_reset_device(struct st_lsm6dsx_hw *hw)
1881 {
1882 	const struct st_lsm6dsx_reg *reg;
1883 	int err;
1884 
1885 	/*
1886 	 * flush hw FIFO before device reset in order to avoid
1887 	 * possible races on interrupt line 1. If the first interrupt
1888 	 * line is asserted during hw reset the device will work in
1889 	 * I3C-only mode (if it is supported)
1890 	 */
1891 	err = st_lsm6dsx_flush_fifo(hw);
1892 	if (err < 0 && err != -ENOTSUPP)
1893 		return err;
1894 
1895 	/* device sw reset */
1896 	reg = &hw->settings->reset;
1897 	err = regmap_update_bits(hw->regmap, reg->addr, reg->mask,
1898 				 ST_LSM6DSX_SHIFT_VAL(1, reg->mask));
1899 	if (err < 0)
1900 		return err;
1901 
1902 	msleep(50);
1903 
1904 	/* reload trimming parameter */
1905 	reg = &hw->settings->boot;
1906 	err = regmap_update_bits(hw->regmap, reg->addr, reg->mask,
1907 				 ST_LSM6DSX_SHIFT_VAL(1, reg->mask));
1908 	if (err < 0)
1909 		return err;
1910 
1911 	msleep(50);
1912 
1913 	return 0;
1914 }
1915 
1916 static int st_lsm6dsx_init_device(struct st_lsm6dsx_hw *hw)
1917 {
1918 	const struct st_lsm6dsx_reg *reg;
1919 	int err;
1920 
1921 	err = st_lsm6dsx_reset_device(hw);
1922 	if (err < 0)
1923 		return err;
1924 
1925 	/* enable Block Data Update */
1926 	reg = &hw->settings->bdu;
1927 	err = regmap_update_bits(hw->regmap, reg->addr, reg->mask,
1928 				 ST_LSM6DSX_SHIFT_VAL(1, reg->mask));
1929 	if (err < 0)
1930 		return err;
1931 
1932 	/* enable FIFO watermak interrupt */
1933 	err = st_lsm6dsx_get_drdy_reg(hw, &reg);
1934 	if (err < 0)
1935 		return err;
1936 
1937 	err = regmap_update_bits(hw->regmap, reg->addr, reg->mask,
1938 				 ST_LSM6DSX_SHIFT_VAL(1, reg->mask));
1939 	if (err < 0)
1940 		return err;
1941 
1942 	/* enable Latched interrupts for device events */
1943 	if (hw->settings->irq_config.lir.addr) {
1944 		reg = &hw->settings->irq_config.lir;
1945 		err = regmap_update_bits(hw->regmap, reg->addr, reg->mask,
1946 					 ST_LSM6DSX_SHIFT_VAL(1, reg->mask));
1947 		if (err < 0)
1948 			return err;
1949 
1950 		/* enable clear on read for latched interrupts */
1951 		if (hw->settings->irq_config.clear_on_read.addr) {
1952 			reg = &hw->settings->irq_config.clear_on_read;
1953 			err = regmap_update_bits(hw->regmap,
1954 					reg->addr, reg->mask,
1955 					ST_LSM6DSX_SHIFT_VAL(1, reg->mask));
1956 			if (err < 0)
1957 				return err;
1958 		}
1959 	}
1960 
1961 	/* enable drdy-mas if available */
1962 	if (hw->settings->drdy_mask.addr) {
1963 		reg = &hw->settings->drdy_mask;
1964 		err = regmap_update_bits(hw->regmap, reg->addr, reg->mask,
1965 					 ST_LSM6DSX_SHIFT_VAL(1, reg->mask));
1966 		if (err < 0)
1967 			return err;
1968 	}
1969 
1970 	err = st_lsm6dsx_init_shub(hw);
1971 	if (err < 0)
1972 		return err;
1973 
1974 	return st_lsm6dsx_init_hw_timer(hw);
1975 }
1976 
1977 static struct iio_dev *st_lsm6dsx_alloc_iiodev(struct st_lsm6dsx_hw *hw,
1978 					       enum st_lsm6dsx_sensor_id id,
1979 					       const char *name)
1980 {
1981 	struct st_lsm6dsx_sensor *sensor;
1982 	struct iio_dev *iio_dev;
1983 
1984 	iio_dev = devm_iio_device_alloc(hw->dev, sizeof(*sensor));
1985 	if (!iio_dev)
1986 		return NULL;
1987 
1988 	iio_dev->modes = INDIO_DIRECT_MODE;
1989 	iio_dev->available_scan_masks = st_lsm6dsx_available_scan_masks;
1990 	iio_dev->channels = hw->settings->channels[id].chan;
1991 	iio_dev->num_channels = hw->settings->channels[id].len;
1992 
1993 	sensor = iio_priv(iio_dev);
1994 	sensor->id = id;
1995 	sensor->hw = hw;
1996 	sensor->odr = hw->settings->odr_table[id].odr_avl[0].milli_hz;
1997 	sensor->gain = hw->settings->fs_table[id].fs_avl[0].gain;
1998 	sensor->watermark = 1;
1999 
2000 	switch (id) {
2001 	case ST_LSM6DSX_ID_ACC:
2002 		iio_dev->info = &st_lsm6dsx_acc_info;
2003 		scnprintf(sensor->name, sizeof(sensor->name), "%s_accel",
2004 			  name);
2005 		break;
2006 	case ST_LSM6DSX_ID_GYRO:
2007 		iio_dev->info = &st_lsm6dsx_gyro_info;
2008 		scnprintf(sensor->name, sizeof(sensor->name), "%s_gyro",
2009 			  name);
2010 		break;
2011 	default:
2012 		return NULL;
2013 	}
2014 	iio_dev->name = sensor->name;
2015 
2016 	return iio_dev;
2017 }
2018 
2019 static bool
2020 st_lsm6dsx_report_motion_event(struct st_lsm6dsx_hw *hw)
2021 {
2022 	const struct st_lsm6dsx_event_settings *event_settings;
2023 	int err, data;
2024 	s64 timestamp;
2025 
2026 	if (!hw->enable_event)
2027 		return false;
2028 
2029 	event_settings = &hw->settings->event_settings;
2030 	err = st_lsm6dsx_read_locked(hw, event_settings->wakeup_src_reg,
2031 				     &data, sizeof(data));
2032 	if (err < 0)
2033 		return false;
2034 
2035 	timestamp = iio_get_time_ns(hw->iio_devs[ST_LSM6DSX_ID_ACC]);
2036 	if ((data & hw->settings->event_settings.wakeup_src_z_mask) &&
2037 	    (hw->enable_event & BIT(IIO_MOD_Z)))
2038 		iio_push_event(hw->iio_devs[ST_LSM6DSX_ID_ACC],
2039 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
2040 						  0,
2041 						  IIO_MOD_Z,
2042 						  IIO_EV_TYPE_THRESH,
2043 						  IIO_EV_DIR_EITHER),
2044 						  timestamp);
2045 
2046 	if ((data & hw->settings->event_settings.wakeup_src_y_mask) &&
2047 	    (hw->enable_event & BIT(IIO_MOD_Y)))
2048 		iio_push_event(hw->iio_devs[ST_LSM6DSX_ID_ACC],
2049 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
2050 						  0,
2051 						  IIO_MOD_Y,
2052 						  IIO_EV_TYPE_THRESH,
2053 						  IIO_EV_DIR_EITHER),
2054 						  timestamp);
2055 
2056 	if ((data & hw->settings->event_settings.wakeup_src_x_mask) &&
2057 	    (hw->enable_event & BIT(IIO_MOD_X)))
2058 		iio_push_event(hw->iio_devs[ST_LSM6DSX_ID_ACC],
2059 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
2060 						  0,
2061 						  IIO_MOD_X,
2062 						  IIO_EV_TYPE_THRESH,
2063 						  IIO_EV_DIR_EITHER),
2064 						  timestamp);
2065 
2066 	return data & event_settings->wakeup_src_status_mask;
2067 }
2068 
2069 static irqreturn_t st_lsm6dsx_handler_thread(int irq, void *private)
2070 {
2071 	struct st_lsm6dsx_hw *hw = private;
2072 	int fifo_len = 0, len;
2073 	bool event;
2074 
2075 	event = st_lsm6dsx_report_motion_event(hw);
2076 
2077 	if (!hw->settings->fifo_ops.read_fifo)
2078 		return event ? IRQ_HANDLED : IRQ_NONE;
2079 
2080 	/*
2081 	 * If we are using edge IRQs, new samples can arrive while
2082 	 * processing current interrupt since there are no hw
2083 	 * guarantees the irq line stays "low" long enough to properly
2084 	 * detect the new interrupt. In this case the new sample will
2085 	 * be missed.
2086 	 * Polling FIFO status register allow us to read new
2087 	 * samples even if the interrupt arrives while processing
2088 	 * previous data and the timeslot where the line is "low" is
2089 	 * too short to be properly detected.
2090 	 */
2091 	do {
2092 		mutex_lock(&hw->fifo_lock);
2093 		len = hw->settings->fifo_ops.read_fifo(hw);
2094 		mutex_unlock(&hw->fifo_lock);
2095 
2096 		if (len > 0)
2097 			fifo_len += len;
2098 	} while (len > 0);
2099 
2100 	return fifo_len || event ? IRQ_HANDLED : IRQ_NONE;
2101 }
2102 
2103 static int st_lsm6dsx_irq_setup(struct st_lsm6dsx_hw *hw)
2104 {
2105 	struct st_sensors_platform_data *pdata;
2106 	const struct st_lsm6dsx_reg *reg;
2107 	struct device *dev = hw->dev;
2108 	unsigned long irq_type;
2109 	bool irq_active_low;
2110 	int err;
2111 
2112 	irq_type = irqd_get_trigger_type(irq_get_irq_data(hw->irq));
2113 
2114 	switch (irq_type) {
2115 	case IRQF_TRIGGER_HIGH:
2116 	case IRQF_TRIGGER_RISING:
2117 		irq_active_low = false;
2118 		break;
2119 	case IRQF_TRIGGER_LOW:
2120 	case IRQF_TRIGGER_FALLING:
2121 		irq_active_low = true;
2122 		break;
2123 	default:
2124 		dev_info(hw->dev, "mode %lx unsupported\n", irq_type);
2125 		return -EINVAL;
2126 	}
2127 
2128 	reg = &hw->settings->irq_config.hla;
2129 	err = regmap_update_bits(hw->regmap, reg->addr, reg->mask,
2130 				 ST_LSM6DSX_SHIFT_VAL(irq_active_low,
2131 						      reg->mask));
2132 	if (err < 0)
2133 		return err;
2134 
2135 	pdata = (struct st_sensors_platform_data *)dev->platform_data;
2136 	if ((dev_fwnode(dev) && device_property_read_bool(dev, "drive-open-drain")) ||
2137 	    (pdata && pdata->open_drain)) {
2138 		reg = &hw->settings->irq_config.od;
2139 		err = regmap_update_bits(hw->regmap, reg->addr, reg->mask,
2140 					 ST_LSM6DSX_SHIFT_VAL(1, reg->mask));
2141 		if (err < 0)
2142 			return err;
2143 
2144 		irq_type |= IRQF_SHARED;
2145 	}
2146 
2147 	err = devm_request_threaded_irq(hw->dev, hw->irq,
2148 					NULL,
2149 					st_lsm6dsx_handler_thread,
2150 					irq_type | IRQF_ONESHOT,
2151 					"lsm6dsx", hw);
2152 	if (err) {
2153 		dev_err(hw->dev, "failed to request trigger irq %d\n",
2154 			hw->irq);
2155 		return err;
2156 	}
2157 
2158 	return 0;
2159 }
2160 
2161 static int st_lsm6dsx_init_regulators(struct device *dev)
2162 {
2163 	struct st_lsm6dsx_hw *hw = dev_get_drvdata(dev);
2164 	int err;
2165 
2166 	/* vdd-vddio power regulators */
2167 	hw->regulators[0].supply = "vdd";
2168 	hw->regulators[1].supply = "vddio";
2169 	err = devm_regulator_bulk_get(dev, ARRAY_SIZE(hw->regulators),
2170 				      hw->regulators);
2171 	if (err)
2172 		return dev_err_probe(dev, err, "failed to get regulators\n");
2173 
2174 	err = regulator_bulk_enable(ARRAY_SIZE(hw->regulators),
2175 				    hw->regulators);
2176 	if (err) {
2177 		dev_err(dev, "failed to enable regulators: %d\n", err);
2178 		return err;
2179 	}
2180 
2181 	msleep(50);
2182 
2183 	return 0;
2184 }
2185 
2186 static void st_lsm6dsx_chip_uninit(void *data)
2187 {
2188 	struct st_lsm6dsx_hw *hw = data;
2189 
2190 	regulator_bulk_disable(ARRAY_SIZE(hw->regulators), hw->regulators);
2191 }
2192 
2193 int st_lsm6dsx_probe(struct device *dev, int irq, int hw_id,
2194 		     struct regmap *regmap)
2195 {
2196 	struct st_sensors_platform_data *pdata = dev->platform_data;
2197 	const struct st_lsm6dsx_shub_settings *hub_settings;
2198 	struct st_lsm6dsx_hw *hw;
2199 	const char *name = NULL;
2200 	int i, err;
2201 
2202 	hw = devm_kzalloc(dev, sizeof(*hw), GFP_KERNEL);
2203 	if (!hw)
2204 		return -ENOMEM;
2205 
2206 	dev_set_drvdata(dev, (void *)hw);
2207 
2208 	mutex_init(&hw->fifo_lock);
2209 	mutex_init(&hw->conf_lock);
2210 	mutex_init(&hw->page_lock);
2211 
2212 	err = st_lsm6dsx_init_regulators(dev);
2213 	if (err)
2214 		return err;
2215 
2216 	err = devm_add_action_or_reset(dev, st_lsm6dsx_chip_uninit, hw);
2217 	if (err)
2218 		return err;
2219 
2220 	hw->buff = devm_kzalloc(dev, ST_LSM6DSX_BUFF_SIZE, GFP_KERNEL);
2221 	if (!hw->buff)
2222 		return -ENOMEM;
2223 
2224 	hw->dev = dev;
2225 	hw->irq = irq;
2226 	hw->regmap = regmap;
2227 
2228 	err = st_lsm6dsx_check_whoami(hw, hw_id, &name);
2229 	if (err < 0)
2230 		return err;
2231 
2232 	for (i = 0; i < ST_LSM6DSX_ID_EXT0; i++) {
2233 		hw->iio_devs[i] = st_lsm6dsx_alloc_iiodev(hw, i, name);
2234 		if (!hw->iio_devs[i])
2235 			return -ENOMEM;
2236 	}
2237 
2238 	err = st_lsm6dsx_init_device(hw);
2239 	if (err < 0)
2240 		return err;
2241 
2242 	hub_settings = &hw->settings->shub_settings;
2243 	if (hub_settings->master_en.addr) {
2244 		err = st_lsm6dsx_shub_probe(hw, name);
2245 		if (err < 0)
2246 			return err;
2247 	}
2248 
2249 	if (hw->irq > 0) {
2250 		err = st_lsm6dsx_irq_setup(hw);
2251 		if (err < 0)
2252 			return err;
2253 
2254 		err = st_lsm6dsx_fifo_setup(hw);
2255 		if (err < 0)
2256 			return err;
2257 	}
2258 
2259 	err = iio_read_mount_matrix(hw->dev, "mount-matrix", &hw->orientation);
2260 	if (err)
2261 		return err;
2262 
2263 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
2264 		if (!hw->iio_devs[i])
2265 			continue;
2266 
2267 		err = devm_iio_device_register(hw->dev, hw->iio_devs[i]);
2268 		if (err)
2269 			return err;
2270 	}
2271 
2272 	if ((dev_fwnode(dev) && device_property_read_bool(dev, "wakeup-source")) ||
2273 	    (pdata && pdata->wakeup_source))
2274 		device_init_wakeup(dev, true);
2275 
2276 	return 0;
2277 }
2278 EXPORT_SYMBOL(st_lsm6dsx_probe);
2279 
2280 static int __maybe_unused st_lsm6dsx_suspend(struct device *dev)
2281 {
2282 	struct st_lsm6dsx_hw *hw = dev_get_drvdata(dev);
2283 	struct st_lsm6dsx_sensor *sensor;
2284 	int i, err = 0;
2285 
2286 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
2287 		if (!hw->iio_devs[i])
2288 			continue;
2289 
2290 		sensor = iio_priv(hw->iio_devs[i]);
2291 		if (!(hw->enable_mask & BIT(sensor->id)))
2292 			continue;
2293 
2294 		if (device_may_wakeup(dev) &&
2295 		    sensor->id == ST_LSM6DSX_ID_ACC && hw->enable_event) {
2296 			/* Enable wake from IRQ */
2297 			enable_irq_wake(hw->irq);
2298 			continue;
2299 		}
2300 
2301 		if (sensor->id == ST_LSM6DSX_ID_EXT0 ||
2302 		    sensor->id == ST_LSM6DSX_ID_EXT1 ||
2303 		    sensor->id == ST_LSM6DSX_ID_EXT2)
2304 			err = st_lsm6dsx_shub_set_enable(sensor, false);
2305 		else
2306 			err = st_lsm6dsx_sensor_set_enable(sensor, false);
2307 		if (err < 0)
2308 			return err;
2309 
2310 		hw->suspend_mask |= BIT(sensor->id);
2311 	}
2312 
2313 	if (hw->fifo_mask)
2314 		err = st_lsm6dsx_flush_fifo(hw);
2315 
2316 	return err;
2317 }
2318 
2319 static int __maybe_unused st_lsm6dsx_resume(struct device *dev)
2320 {
2321 	struct st_lsm6dsx_hw *hw = dev_get_drvdata(dev);
2322 	struct st_lsm6dsx_sensor *sensor;
2323 	int i, err = 0;
2324 
2325 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
2326 		if (!hw->iio_devs[i])
2327 			continue;
2328 
2329 		sensor = iio_priv(hw->iio_devs[i]);
2330 		if (device_may_wakeup(dev) &&
2331 		    sensor->id == ST_LSM6DSX_ID_ACC && hw->enable_event)
2332 			disable_irq_wake(hw->irq);
2333 
2334 		if (!(hw->suspend_mask & BIT(sensor->id)))
2335 			continue;
2336 
2337 		if (sensor->id == ST_LSM6DSX_ID_EXT0 ||
2338 		    sensor->id == ST_LSM6DSX_ID_EXT1 ||
2339 		    sensor->id == ST_LSM6DSX_ID_EXT2)
2340 			err = st_lsm6dsx_shub_set_enable(sensor, true);
2341 		else
2342 			err = st_lsm6dsx_sensor_set_enable(sensor, true);
2343 		if (err < 0)
2344 			return err;
2345 
2346 		hw->suspend_mask &= ~BIT(sensor->id);
2347 	}
2348 
2349 	if (hw->fifo_mask)
2350 		err = st_lsm6dsx_resume_fifo(hw);
2351 
2352 	return err;
2353 }
2354 
2355 const struct dev_pm_ops st_lsm6dsx_pm_ops = {
2356 	SET_SYSTEM_SLEEP_PM_OPS(st_lsm6dsx_suspend, st_lsm6dsx_resume)
2357 };
2358 EXPORT_SYMBOL(st_lsm6dsx_pm_ops);
2359 
2360 MODULE_AUTHOR("Lorenzo Bianconi <lorenzo.bianconi@st.com>");
2361 MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>");
2362 MODULE_DESCRIPTION("STMicroelectronics st_lsm6dsx driver");
2363 MODULE_LICENSE("GPL v2");
2364