1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * STMicroelectronics st_lsm6dsx sensor driver
4  *
5  * The ST LSM6DSx IMU MEMS series consists of 3D digital accelerometer
6  * and 3D digital gyroscope system-in-package with a digital I2C/SPI serial
7  * interface standard output.
8  * LSM6DSx IMU MEMS series has a dynamic user-selectable full-scale
9  * acceleration range of +-2/+-4/+-8/+-16 g and an angular rate range of
10  * +-125/+-245/+-500/+-1000/+-2000 dps
11  * LSM6DSx series has an integrated First-In-First-Out (FIFO) buffer
12  * allowing dynamic batching of sensor data.
13  * LSM9DSx series is similar but includes an additional magnetometer, handled
14  * by a different driver.
15  *
16  * Supported sensors:
17  * - LSM6DS3:
18  *   - Accelerometer/Gyroscope supported ODR [Hz]: 12.5, 26, 52, 104, 208, 416
19  *   - Accelerometer supported full-scale [g]: +-2/+-4/+-8/+-16
20  *   - Gyroscope supported full-scale [dps]: +-125/+-245/+-500/+-1000/+-2000
21  *   - FIFO size: 8KB
22  *
23  * - LSM6DS3H/LSM6DSL/LSM6DSM/ISM330DLC/LSM6DS3TR-C:
24  *   - Accelerometer/Gyroscope supported ODR [Hz]: 12.5, 26, 52, 104, 208, 416
25  *   - Accelerometer supported full-scale [g]: +-2/+-4/+-8/+-16
26  *   - Gyroscope supported full-scale [dps]: +-125/+-245/+-500/+-1000/+-2000
27  *   - FIFO size: 4KB
28  *
29  * - LSM6DSO/LSM6DSOX/ASM330LHH/ASM330LHHX/LSM6DSR/ISM330DHCX/LSM6DST/LSM6DSOP:
30  *   - Accelerometer/Gyroscope supported ODR [Hz]: 12.5, 26, 52, 104, 208, 416,
31  *     833
32  *   - Accelerometer supported full-scale [g]: +-2/+-4/+-8/+-16
33  *   - Gyroscope supported full-scale [dps]: +-125/+-245/+-500/+-1000/+-2000
34  *   - FIFO size: 3KB
35  *
36  * - LSM9DS1/LSM6DS0:
37  *   - Accelerometer supported ODR [Hz]: 10, 50, 119, 238, 476, 952
38  *   - Accelerometer supported full-scale [g]: +-2/+-4/+-8/+-16
39  *   - Gyroscope supported ODR [Hz]: 15, 60, 119, 238, 476, 952
40  *   - Gyroscope supported full-scale [dps]: +-245/+-500/+-2000
41  *   - FIFO size: 32
42  *
43  * Copyright 2016 STMicroelectronics Inc.
44  *
45  * Lorenzo Bianconi <lorenzo.bianconi@st.com>
46  * Denis Ciocca <denis.ciocca@st.com>
47  */
48 
49 #include <linux/kernel.h>
50 #include <linux/module.h>
51 #include <linux/delay.h>
52 #include <linux/iio/events.h>
53 #include <linux/iio/iio.h>
54 #include <linux/iio/sysfs.h>
55 #include <linux/interrupt.h>
56 #include <linux/irq.h>
57 #include <linux/pm.h>
58 #include <linux/property.h>
59 #include <linux/regmap.h>
60 #include <linux/bitfield.h>
61 
62 #include <linux/platform_data/st_sensors_pdata.h>
63 
64 #include "st_lsm6dsx.h"
65 
66 #define ST_LSM6DSX_REG_WHOAMI_ADDR		0x0f
67 
68 #define ST_LSM6DSX_TS_SENSITIVITY		25000UL /* 25us */
69 
70 static const struct iio_chan_spec st_lsm6dsx_acc_channels[] = {
71 	ST_LSM6DSX_CHANNEL_ACC(IIO_ACCEL, 0x28, IIO_MOD_X, 0),
72 	ST_LSM6DSX_CHANNEL_ACC(IIO_ACCEL, 0x2a, IIO_MOD_Y, 1),
73 	ST_LSM6DSX_CHANNEL_ACC(IIO_ACCEL, 0x2c, IIO_MOD_Z, 2),
74 	IIO_CHAN_SOFT_TIMESTAMP(3),
75 };
76 
77 static const struct iio_chan_spec st_lsm6dsx_gyro_channels[] = {
78 	ST_LSM6DSX_CHANNEL(IIO_ANGL_VEL, 0x22, IIO_MOD_X, 0),
79 	ST_LSM6DSX_CHANNEL(IIO_ANGL_VEL, 0x24, IIO_MOD_Y, 1),
80 	ST_LSM6DSX_CHANNEL(IIO_ANGL_VEL, 0x26, IIO_MOD_Z, 2),
81 	IIO_CHAN_SOFT_TIMESTAMP(3),
82 };
83 
84 static const struct iio_chan_spec st_lsm6ds0_gyro_channels[] = {
85 	ST_LSM6DSX_CHANNEL(IIO_ANGL_VEL, 0x18, IIO_MOD_X, 0),
86 	ST_LSM6DSX_CHANNEL(IIO_ANGL_VEL, 0x1a, IIO_MOD_Y, 1),
87 	ST_LSM6DSX_CHANNEL(IIO_ANGL_VEL, 0x1c, IIO_MOD_Z, 2),
88 	IIO_CHAN_SOFT_TIMESTAMP(3),
89 };
90 
91 static const struct st_lsm6dsx_settings st_lsm6dsx_sensor_settings[] = {
92 	{
93 		.reset = {
94 			.addr = 0x22,
95 			.mask = BIT(0),
96 		},
97 		.boot = {
98 			.addr = 0x22,
99 			.mask = BIT(7),
100 		},
101 		.bdu = {
102 			.addr = 0x22,
103 			.mask = BIT(6),
104 		},
105 		.id = {
106 			{
107 				.hw_id = ST_LSM9DS1_ID,
108 				.name = ST_LSM9DS1_DEV_NAME,
109 				.wai = 0x68,
110 			}, {
111 				.hw_id = ST_LSM6DS0_ID,
112 				.name = ST_LSM6DS0_DEV_NAME,
113 				.wai = 0x68,
114 			},
115 		},
116 		.channels = {
117 			[ST_LSM6DSX_ID_ACC] = {
118 				.chan = st_lsm6dsx_acc_channels,
119 				.len = ARRAY_SIZE(st_lsm6dsx_acc_channels),
120 			},
121 			[ST_LSM6DSX_ID_GYRO] = {
122 				.chan = st_lsm6ds0_gyro_channels,
123 				.len = ARRAY_SIZE(st_lsm6ds0_gyro_channels),
124 			},
125 		},
126 		.odr_table = {
127 			[ST_LSM6DSX_ID_ACC] = {
128 				.reg = {
129 					.addr = 0x20,
130 					.mask = GENMASK(7, 5),
131 				},
132 				.odr_avl[0] = {  10000, 0x01 },
133 				.odr_avl[1] = {  50000, 0x02 },
134 				.odr_avl[2] = { 119000, 0x03 },
135 				.odr_avl[3] = { 238000, 0x04 },
136 				.odr_avl[4] = { 476000, 0x05 },
137 				.odr_avl[5] = { 952000, 0x06 },
138 				.odr_len = 6,
139 			},
140 			[ST_LSM6DSX_ID_GYRO] = {
141 				.reg = {
142 					.addr = 0x10,
143 					.mask = GENMASK(7, 5),
144 				},
145 				.odr_avl[0] = {  14900, 0x01 },
146 				.odr_avl[1] = {  59500, 0x02 },
147 				.odr_avl[2] = { 119000, 0x03 },
148 				.odr_avl[3] = { 238000, 0x04 },
149 				.odr_avl[4] = { 476000, 0x05 },
150 				.odr_avl[5] = { 952000, 0x06 },
151 				.odr_len = 6,
152 			},
153 		},
154 		.fs_table = {
155 			[ST_LSM6DSX_ID_ACC] = {
156 				.reg = {
157 					.addr = 0x20,
158 					.mask = GENMASK(4, 3),
159 				},
160 				.fs_avl[0] = {  IIO_G_TO_M_S_2(61000), 0x0 },
161 				.fs_avl[1] = { IIO_G_TO_M_S_2(122000), 0x2 },
162 				.fs_avl[2] = { IIO_G_TO_M_S_2(244000), 0x3 },
163 				.fs_avl[3] = { IIO_G_TO_M_S_2(732000), 0x1 },
164 				.fs_len = 4,
165 			},
166 			[ST_LSM6DSX_ID_GYRO] = {
167 				.reg = {
168 					.addr = 0x10,
169 					.mask = GENMASK(4, 3),
170 				},
171 
172 				.fs_avl[0] = {  IIO_DEGREE_TO_RAD(8750000), 0x0 },
173 				.fs_avl[1] = { IIO_DEGREE_TO_RAD(17500000), 0x1 },
174 				.fs_avl[2] = { IIO_DEGREE_TO_RAD(70000000), 0x3 },
175 				.fs_len = 3,
176 			},
177 		},
178 		.irq_config = {
179 			.irq1 = {
180 				.addr = 0x0c,
181 				.mask = BIT(3),
182 			},
183 			.irq2 = {
184 				.addr = 0x0d,
185 				.mask = BIT(3),
186 			},
187 			.hla = {
188 				.addr = 0x22,
189 				.mask = BIT(5),
190 			},
191 			.od = {
192 				.addr = 0x22,
193 				.mask = BIT(4),
194 			},
195 		},
196 		.fifo_ops = {
197 			.max_size = 32,
198 		},
199 	},
200 	{
201 		.reset = {
202 			.addr = 0x12,
203 			.mask = BIT(0),
204 		},
205 		.boot = {
206 			.addr = 0x12,
207 			.mask = BIT(7),
208 		},
209 		.bdu = {
210 			.addr = 0x12,
211 			.mask = BIT(6),
212 		},
213 		.id = {
214 			{
215 				.hw_id = ST_LSM6DS3_ID,
216 				.name = ST_LSM6DS3_DEV_NAME,
217 				.wai = 0x69,
218 			},
219 		},
220 		.channels = {
221 			[ST_LSM6DSX_ID_ACC] = {
222 				.chan = st_lsm6dsx_acc_channels,
223 				.len = ARRAY_SIZE(st_lsm6dsx_acc_channels),
224 			},
225 			[ST_LSM6DSX_ID_GYRO] = {
226 				.chan = st_lsm6dsx_gyro_channels,
227 				.len = ARRAY_SIZE(st_lsm6dsx_gyro_channels),
228 			},
229 		},
230 		.odr_table = {
231 			[ST_LSM6DSX_ID_ACC] = {
232 				.reg = {
233 					.addr = 0x10,
234 					.mask = GENMASK(7, 4),
235 				},
236 				.odr_avl[0] = {  12500, 0x01 },
237 				.odr_avl[1] = {  26000, 0x02 },
238 				.odr_avl[2] = {  52000, 0x03 },
239 				.odr_avl[3] = { 104000, 0x04 },
240 				.odr_avl[4] = { 208000, 0x05 },
241 				.odr_avl[5] = { 416000, 0x06 },
242 				.odr_len = 6,
243 			},
244 			[ST_LSM6DSX_ID_GYRO] = {
245 				.reg = {
246 					.addr = 0x11,
247 					.mask = GENMASK(7, 4),
248 				},
249 				.odr_avl[0] = {  12500, 0x01 },
250 				.odr_avl[1] = {  26000, 0x02 },
251 				.odr_avl[2] = {  52000, 0x03 },
252 				.odr_avl[3] = { 104000, 0x04 },
253 				.odr_avl[4] = { 208000, 0x05 },
254 				.odr_avl[5] = { 416000, 0x06 },
255 				.odr_len = 6,
256 			},
257 		},
258 		.fs_table = {
259 			[ST_LSM6DSX_ID_ACC] = {
260 				.reg = {
261 					.addr = 0x10,
262 					.mask = GENMASK(3, 2),
263 				},
264 				.fs_avl[0] = {  IIO_G_TO_M_S_2(61000), 0x0 },
265 				.fs_avl[1] = { IIO_G_TO_M_S_2(122000), 0x2 },
266 				.fs_avl[2] = { IIO_G_TO_M_S_2(244000), 0x3 },
267 				.fs_avl[3] = { IIO_G_TO_M_S_2(488000), 0x1 },
268 				.fs_len = 4,
269 			},
270 			[ST_LSM6DSX_ID_GYRO] = {
271 				.reg = {
272 					.addr = 0x11,
273 					.mask = GENMASK(3, 2),
274 				},
275 				.fs_avl[0] = {  IIO_DEGREE_TO_RAD(8750000), 0x0 },
276 				.fs_avl[1] = { IIO_DEGREE_TO_RAD(17500000), 0x1 },
277 				.fs_avl[2] = { IIO_DEGREE_TO_RAD(35000000), 0x2 },
278 				.fs_avl[3] = { IIO_DEGREE_TO_RAD(70000000), 0x3 },
279 				.fs_len = 4,
280 			},
281 		},
282 		.irq_config = {
283 			.irq1 = {
284 				.addr = 0x0d,
285 				.mask = BIT(3),
286 			},
287 			.irq2 = {
288 				.addr = 0x0e,
289 				.mask = BIT(3),
290 			},
291 			.lir = {
292 				.addr = 0x58,
293 				.mask = BIT(0),
294 			},
295 			.irq1_func = {
296 				.addr = 0x5e,
297 				.mask = BIT(5),
298 			},
299 			.irq2_func = {
300 				.addr = 0x5f,
301 				.mask = BIT(5),
302 			},
303 			.hla = {
304 				.addr = 0x12,
305 				.mask = BIT(5),
306 			},
307 			.od = {
308 				.addr = 0x12,
309 				.mask = BIT(4),
310 			},
311 		},
312 		.decimator = {
313 			[ST_LSM6DSX_ID_ACC] = {
314 				.addr = 0x08,
315 				.mask = GENMASK(2, 0),
316 			},
317 			[ST_LSM6DSX_ID_GYRO] = {
318 				.addr = 0x08,
319 				.mask = GENMASK(5, 3),
320 			},
321 		},
322 		.fifo_ops = {
323 			.update_fifo = st_lsm6dsx_update_fifo,
324 			.read_fifo = st_lsm6dsx_read_fifo,
325 			.fifo_th = {
326 				.addr = 0x06,
327 				.mask = GENMASK(11, 0),
328 			},
329 			.fifo_diff = {
330 				.addr = 0x3a,
331 				.mask = GENMASK(11, 0),
332 			},
333 			.max_size = 1365,
334 			.th_wl = 3, /* 1LSB = 2B */
335 		},
336 		.ts_settings = {
337 			.timer_en = {
338 				.addr = 0x58,
339 				.mask = BIT(7),
340 			},
341 			.hr_timer = {
342 				.addr = 0x5c,
343 				.mask = BIT(4),
344 			},
345 			.fifo_en = {
346 				.addr = 0x07,
347 				.mask = BIT(7),
348 			},
349 			.decimator = {
350 				.addr = 0x09,
351 				.mask = GENMASK(5, 3),
352 			},
353 		},
354 		.event_settings = {
355 			.wakeup_reg = {
356 				.addr = 0x5B,
357 				.mask = GENMASK(5, 0),
358 			},
359 			.wakeup_src_reg = 0x1b,
360 			.wakeup_src_status_mask = BIT(3),
361 			.wakeup_src_z_mask = BIT(0),
362 			.wakeup_src_y_mask = BIT(1),
363 			.wakeup_src_x_mask = BIT(2),
364 		},
365 	},
366 	{
367 		.reset = {
368 			.addr = 0x12,
369 			.mask = BIT(0),
370 		},
371 		.boot = {
372 			.addr = 0x12,
373 			.mask = BIT(7),
374 		},
375 		.bdu = {
376 			.addr = 0x12,
377 			.mask = BIT(6),
378 		},
379 		.id = {
380 			{
381 				.hw_id = ST_LSM6DS3H_ID,
382 				.name = ST_LSM6DS3H_DEV_NAME,
383 				.wai = 0x69,
384 			},
385 		},
386 		.channels = {
387 			[ST_LSM6DSX_ID_ACC] = {
388 				.chan = st_lsm6dsx_acc_channels,
389 				.len = ARRAY_SIZE(st_lsm6dsx_acc_channels),
390 			},
391 			[ST_LSM6DSX_ID_GYRO] = {
392 				.chan = st_lsm6dsx_gyro_channels,
393 				.len = ARRAY_SIZE(st_lsm6dsx_gyro_channels),
394 			},
395 		},
396 		.odr_table = {
397 			[ST_LSM6DSX_ID_ACC] = {
398 				.reg = {
399 					.addr = 0x10,
400 					.mask = GENMASK(7, 4),
401 				},
402 				.odr_avl[0] = {  12500, 0x01 },
403 				.odr_avl[1] = {  26000, 0x02 },
404 				.odr_avl[2] = {  52000, 0x03 },
405 				.odr_avl[3] = { 104000, 0x04 },
406 				.odr_avl[4] = { 208000, 0x05 },
407 				.odr_avl[5] = { 416000, 0x06 },
408 				.odr_len = 6,
409 			},
410 			[ST_LSM6DSX_ID_GYRO] = {
411 				.reg = {
412 					.addr = 0x11,
413 					.mask = GENMASK(7, 4),
414 				},
415 				.odr_avl[0] = {  12500, 0x01 },
416 				.odr_avl[1] = {  26000, 0x02 },
417 				.odr_avl[2] = {  52000, 0x03 },
418 				.odr_avl[3] = { 104000, 0x04 },
419 				.odr_avl[4] = { 208000, 0x05 },
420 				.odr_avl[5] = { 416000, 0x06 },
421 				.odr_len = 6,
422 			},
423 		},
424 		.fs_table = {
425 			[ST_LSM6DSX_ID_ACC] = {
426 				.reg = {
427 					.addr = 0x10,
428 					.mask = GENMASK(3, 2),
429 				},
430 				.fs_avl[0] = {  IIO_G_TO_M_S_2(61000), 0x0 },
431 				.fs_avl[1] = { IIO_G_TO_M_S_2(122000), 0x2 },
432 				.fs_avl[2] = { IIO_G_TO_M_S_2(244000), 0x3 },
433 				.fs_avl[3] = { IIO_G_TO_M_S_2(488000), 0x1 },
434 				.fs_len = 4,
435 			},
436 			[ST_LSM6DSX_ID_GYRO] = {
437 				.reg = {
438 					.addr = 0x11,
439 					.mask = GENMASK(3, 2),
440 				},
441 				.fs_avl[0] = {  IIO_DEGREE_TO_RAD(8750000), 0x0 },
442 				.fs_avl[1] = { IIO_DEGREE_TO_RAD(17500000), 0x1 },
443 				.fs_avl[2] = { IIO_DEGREE_TO_RAD(35000000), 0x2 },
444 				.fs_avl[3] = { IIO_DEGREE_TO_RAD(70000000), 0x3 },
445 				.fs_len = 4,
446 			},
447 		},
448 		.irq_config = {
449 			.irq1 = {
450 				.addr = 0x0d,
451 				.mask = BIT(3),
452 			},
453 			.irq2 = {
454 				.addr = 0x0e,
455 				.mask = BIT(3),
456 			},
457 			.lir = {
458 				.addr = 0x58,
459 				.mask = BIT(0),
460 			},
461 			.irq1_func = {
462 				.addr = 0x5e,
463 				.mask = BIT(5),
464 			},
465 			.irq2_func = {
466 				.addr = 0x5f,
467 				.mask = BIT(5),
468 			},
469 			.hla = {
470 				.addr = 0x12,
471 				.mask = BIT(5),
472 			},
473 			.od = {
474 				.addr = 0x12,
475 				.mask = BIT(4),
476 			},
477 		},
478 		.decimator = {
479 			[ST_LSM6DSX_ID_ACC] = {
480 				.addr = 0x08,
481 				.mask = GENMASK(2, 0),
482 			},
483 			[ST_LSM6DSX_ID_GYRO] = {
484 				.addr = 0x08,
485 				.mask = GENMASK(5, 3),
486 			},
487 		},
488 		.fifo_ops = {
489 			.update_fifo = st_lsm6dsx_update_fifo,
490 			.read_fifo = st_lsm6dsx_read_fifo,
491 			.fifo_th = {
492 				.addr = 0x06,
493 				.mask = GENMASK(11, 0),
494 			},
495 			.fifo_diff = {
496 				.addr = 0x3a,
497 				.mask = GENMASK(11, 0),
498 			},
499 			.max_size = 682,
500 			.th_wl = 3, /* 1LSB = 2B */
501 		},
502 		.ts_settings = {
503 			.timer_en = {
504 				.addr = 0x58,
505 				.mask = BIT(7),
506 			},
507 			.hr_timer = {
508 				.addr = 0x5c,
509 				.mask = BIT(4),
510 			},
511 			.fifo_en = {
512 				.addr = 0x07,
513 				.mask = BIT(7),
514 			},
515 			.decimator = {
516 				.addr = 0x09,
517 				.mask = GENMASK(5, 3),
518 			},
519 		},
520 		.event_settings = {
521 			.wakeup_reg = {
522 				.addr = 0x5B,
523 				.mask = GENMASK(5, 0),
524 			},
525 			.wakeup_src_reg = 0x1b,
526 			.wakeup_src_status_mask = BIT(3),
527 			.wakeup_src_z_mask = BIT(0),
528 			.wakeup_src_y_mask = BIT(1),
529 			.wakeup_src_x_mask = BIT(2),
530 		},
531 	},
532 	{
533 		.reset = {
534 			.addr = 0x12,
535 			.mask = BIT(0),
536 		},
537 		.boot = {
538 			.addr = 0x12,
539 			.mask = BIT(7),
540 		},
541 		.bdu = {
542 			.addr = 0x12,
543 			.mask = BIT(6),
544 		},
545 		.id = {
546 			{
547 				.hw_id = ST_LSM6DSL_ID,
548 				.name = ST_LSM6DSL_DEV_NAME,
549 				.wai = 0x6a,
550 			}, {
551 				.hw_id = ST_LSM6DSM_ID,
552 				.name = ST_LSM6DSM_DEV_NAME,
553 				.wai = 0x6a,
554 			}, {
555 				.hw_id = ST_ISM330DLC_ID,
556 				.name = ST_ISM330DLC_DEV_NAME,
557 				.wai = 0x6a,
558 			}, {
559 				.hw_id = ST_LSM6DS3TRC_ID,
560 				.name = ST_LSM6DS3TRC_DEV_NAME,
561 				.wai = 0x6a,
562 			},
563 		},
564 		.channels = {
565 			[ST_LSM6DSX_ID_ACC] = {
566 				.chan = st_lsm6dsx_acc_channels,
567 				.len = ARRAY_SIZE(st_lsm6dsx_acc_channels),
568 			},
569 			[ST_LSM6DSX_ID_GYRO] = {
570 				.chan = st_lsm6dsx_gyro_channels,
571 				.len = ARRAY_SIZE(st_lsm6dsx_gyro_channels),
572 			},
573 		},
574 		.odr_table = {
575 			[ST_LSM6DSX_ID_ACC] = {
576 				.reg = {
577 					.addr = 0x10,
578 					.mask = GENMASK(7, 4),
579 				},
580 				.odr_avl[0] = {  12500, 0x01 },
581 				.odr_avl[1] = {  26000, 0x02 },
582 				.odr_avl[2] = {  52000, 0x03 },
583 				.odr_avl[3] = { 104000, 0x04 },
584 				.odr_avl[4] = { 208000, 0x05 },
585 				.odr_avl[5] = { 416000, 0x06 },
586 				.odr_len = 6,
587 			},
588 			[ST_LSM6DSX_ID_GYRO] = {
589 				.reg = {
590 					.addr = 0x11,
591 					.mask = GENMASK(7, 4),
592 				},
593 				.odr_avl[0] = {  12500, 0x01 },
594 				.odr_avl[1] = {  26000, 0x02 },
595 				.odr_avl[2] = {  52000, 0x03 },
596 				.odr_avl[3] = { 104000, 0x04 },
597 				.odr_avl[4] = { 208000, 0x05 },
598 				.odr_avl[5] = { 416000, 0x06 },
599 				.odr_len = 6,
600 			},
601 		},
602 		.fs_table = {
603 			[ST_LSM6DSX_ID_ACC] = {
604 				.reg = {
605 					.addr = 0x10,
606 					.mask = GENMASK(3, 2),
607 				},
608 				.fs_avl[0] = {  IIO_G_TO_M_S_2(61000), 0x0 },
609 				.fs_avl[1] = { IIO_G_TO_M_S_2(122000), 0x2 },
610 				.fs_avl[2] = { IIO_G_TO_M_S_2(244000), 0x3 },
611 				.fs_avl[3] = { IIO_G_TO_M_S_2(488000), 0x1 },
612 				.fs_len = 4,
613 			},
614 			[ST_LSM6DSX_ID_GYRO] = {
615 				.reg = {
616 					.addr = 0x11,
617 					.mask = GENMASK(3, 2),
618 				},
619 				.fs_avl[0] = {  IIO_DEGREE_TO_RAD(8750000), 0x0 },
620 				.fs_avl[1] = { IIO_DEGREE_TO_RAD(17500000), 0x1 },
621 				.fs_avl[2] = { IIO_DEGREE_TO_RAD(35000000), 0x2 },
622 				.fs_avl[3] = { IIO_DEGREE_TO_RAD(70000000), 0x3 },
623 				.fs_len = 4,
624 			},
625 		},
626 		.irq_config = {
627 			.irq1 = {
628 				.addr = 0x0d,
629 				.mask = BIT(3),
630 			},
631 			.irq2 = {
632 				.addr = 0x0e,
633 				.mask = BIT(3),
634 			},
635 			.lir = {
636 				.addr = 0x58,
637 				.mask = BIT(0),
638 			},
639 			.irq1_func = {
640 				.addr = 0x5e,
641 				.mask = BIT(5),
642 			},
643 			.irq2_func = {
644 				.addr = 0x5f,
645 				.mask = BIT(5),
646 			},
647 			.hla = {
648 				.addr = 0x12,
649 				.mask = BIT(5),
650 			},
651 			.od = {
652 				.addr = 0x12,
653 				.mask = BIT(4),
654 			},
655 		},
656 		.decimator = {
657 			[ST_LSM6DSX_ID_ACC] = {
658 				.addr = 0x08,
659 				.mask = GENMASK(2, 0),
660 			},
661 			[ST_LSM6DSX_ID_GYRO] = {
662 				.addr = 0x08,
663 				.mask = GENMASK(5, 3),
664 			},
665 			[ST_LSM6DSX_ID_EXT0] = {
666 				.addr = 0x09,
667 				.mask = GENMASK(2, 0),
668 			},
669 		},
670 		.fifo_ops = {
671 			.update_fifo = st_lsm6dsx_update_fifo,
672 			.read_fifo = st_lsm6dsx_read_fifo,
673 			.fifo_th = {
674 				.addr = 0x06,
675 				.mask = GENMASK(10, 0),
676 			},
677 			.fifo_diff = {
678 				.addr = 0x3a,
679 				.mask = GENMASK(10, 0),
680 			},
681 			.max_size = 682,
682 			.th_wl = 3, /* 1LSB = 2B */
683 		},
684 		.ts_settings = {
685 			.timer_en = {
686 				.addr = 0x19,
687 				.mask = BIT(5),
688 			},
689 			.hr_timer = {
690 				.addr = 0x5c,
691 				.mask = BIT(4),
692 			},
693 			.fifo_en = {
694 				.addr = 0x07,
695 				.mask = BIT(7),
696 			},
697 			.decimator = {
698 				.addr = 0x09,
699 				.mask = GENMASK(5, 3),
700 			},
701 		},
702 		.shub_settings = {
703 			.page_mux = {
704 				.addr = 0x01,
705 				.mask = BIT(7),
706 			},
707 			.master_en = {
708 				.addr = 0x1a,
709 				.mask = BIT(0),
710 			},
711 			.pullup_en = {
712 				.addr = 0x1a,
713 				.mask = BIT(3),
714 			},
715 			.aux_sens = {
716 				.addr = 0x04,
717 				.mask = GENMASK(5, 4),
718 			},
719 			.wr_once = {
720 				.addr = 0x07,
721 				.mask = BIT(5),
722 			},
723 			.emb_func = {
724 				.addr = 0x19,
725 				.mask = BIT(2),
726 			},
727 			.num_ext_dev = 1,
728 			.shub_out = {
729 				.addr = 0x2e,
730 			},
731 			.slv0_addr = 0x02,
732 			.dw_slv0_addr = 0x0e,
733 			.pause = 0x7,
734 		},
735 		.event_settings = {
736 			.enable_reg = {
737 				.addr = 0x58,
738 				.mask = BIT(7),
739 			},
740 			.wakeup_reg = {
741 				.addr = 0x5B,
742 				.mask = GENMASK(5, 0),
743 			},
744 			.wakeup_src_reg = 0x1b,
745 			.wakeup_src_status_mask = BIT(3),
746 			.wakeup_src_z_mask = BIT(0),
747 			.wakeup_src_y_mask = BIT(1),
748 			.wakeup_src_x_mask = BIT(2),
749 		},
750 	},
751 	{
752 		.reset = {
753 			.addr = 0x12,
754 			.mask = BIT(0),
755 		},
756 		.boot = {
757 			.addr = 0x12,
758 			.mask = BIT(7),
759 		},
760 		.bdu = {
761 			.addr = 0x12,
762 			.mask = BIT(6),
763 		},
764 		.id = {
765 			{
766 				.hw_id = ST_LSM6DSR_ID,
767 				.name = ST_LSM6DSR_DEV_NAME,
768 				.wai = 0x6b,
769 			}, {
770 				.hw_id = ST_ISM330DHCX_ID,
771 				.name = ST_ISM330DHCX_DEV_NAME,
772 				.wai = 0x6b,
773 			}, {
774 				.hw_id = ST_LSM6DSRX_ID,
775 				.name = ST_LSM6DSRX_DEV_NAME,
776 				.wai = 0x6b,
777 			}, {
778 				.hw_id = ST_LSM6DSO_ID,
779 				.name = ST_LSM6DSO_DEV_NAME,
780 				.wai = 0x6c,
781 			}, {
782 				.hw_id = ST_LSM6DSOX_ID,
783 				.name = ST_LSM6DSOX_DEV_NAME,
784 				.wai = 0x6c,
785 			}, {
786 				.hw_id = ST_LSM6DST_ID,
787 				.name = ST_LSM6DST_DEV_NAME,
788 				.wai = 0x6d,
789 			}, {
790 				.hw_id = ST_ASM330LHHX_ID,
791 				.name = ST_ASM330LHHX_DEV_NAME,
792 				.wai = 0x6b,
793 			},
794 		},
795 		.channels = {
796 			[ST_LSM6DSX_ID_ACC] = {
797 				.chan = st_lsm6dsx_acc_channels,
798 				.len = ARRAY_SIZE(st_lsm6dsx_acc_channels),
799 			},
800 			[ST_LSM6DSX_ID_GYRO] = {
801 				.chan = st_lsm6dsx_gyro_channels,
802 				.len = ARRAY_SIZE(st_lsm6dsx_gyro_channels),
803 			},
804 		},
805 		.drdy_mask = {
806 			.addr = 0x13,
807 			.mask = BIT(3),
808 		},
809 		.odr_table = {
810 			[ST_LSM6DSX_ID_ACC] = {
811 				.reg = {
812 					.addr = 0x10,
813 					.mask = GENMASK(7, 4),
814 				},
815 				.odr_avl[0] = {  12500, 0x01 },
816 				.odr_avl[1] = {  26000, 0x02 },
817 				.odr_avl[2] = {  52000, 0x03 },
818 				.odr_avl[3] = { 104000, 0x04 },
819 				.odr_avl[4] = { 208000, 0x05 },
820 				.odr_avl[5] = { 416000, 0x06 },
821 				.odr_avl[6] = { 833000, 0x07 },
822 				.odr_len = 7,
823 			},
824 			[ST_LSM6DSX_ID_GYRO] = {
825 				.reg = {
826 					.addr = 0x11,
827 					.mask = GENMASK(7, 4),
828 				},
829 				.odr_avl[0] = {  12500, 0x01 },
830 				.odr_avl[1] = {  26000, 0x02 },
831 				.odr_avl[2] = {  52000, 0x03 },
832 				.odr_avl[3] = { 104000, 0x04 },
833 				.odr_avl[4] = { 208000, 0x05 },
834 				.odr_avl[5] = { 416000, 0x06 },
835 				.odr_avl[6] = { 833000, 0x07 },
836 				.odr_len = 7,
837 			},
838 		},
839 		.fs_table = {
840 			[ST_LSM6DSX_ID_ACC] = {
841 				.reg = {
842 					.addr = 0x10,
843 					.mask = GENMASK(3, 2),
844 				},
845 				.fs_avl[0] = {  IIO_G_TO_M_S_2(61000), 0x0 },
846 				.fs_avl[1] = { IIO_G_TO_M_S_2(122000), 0x2 },
847 				.fs_avl[2] = { IIO_G_TO_M_S_2(244000), 0x3 },
848 				.fs_avl[3] = { IIO_G_TO_M_S_2(488000), 0x1 },
849 				.fs_len = 4,
850 			},
851 			[ST_LSM6DSX_ID_GYRO] = {
852 				.reg = {
853 					.addr = 0x11,
854 					.mask = GENMASK(3, 2),
855 				},
856 				.fs_avl[0] = {  IIO_DEGREE_TO_RAD(8750000), 0x0 },
857 				.fs_avl[1] = { IIO_DEGREE_TO_RAD(17500000), 0x1 },
858 				.fs_avl[2] = { IIO_DEGREE_TO_RAD(35000000), 0x2 },
859 				.fs_avl[3] = { IIO_DEGREE_TO_RAD(70000000), 0x3 },
860 				.fs_len = 4,
861 			},
862 		},
863 		.irq_config = {
864 			.irq1 = {
865 				.addr = 0x0d,
866 				.mask = BIT(3),
867 			},
868 			.irq2 = {
869 				.addr = 0x0e,
870 				.mask = BIT(3),
871 			},
872 			.lir = {
873 				.addr = 0x56,
874 				.mask = BIT(0),
875 			},
876 			.clear_on_read = {
877 				.addr = 0x56,
878 				.mask = BIT(6),
879 			},
880 			.irq1_func = {
881 				.addr = 0x5e,
882 				.mask = BIT(5),
883 			},
884 			.irq2_func = {
885 				.addr = 0x5f,
886 				.mask = BIT(5),
887 			},
888 			.hla = {
889 				.addr = 0x12,
890 				.mask = BIT(5),
891 			},
892 			.od = {
893 				.addr = 0x12,
894 				.mask = BIT(4),
895 			},
896 		},
897 		.batch = {
898 			[ST_LSM6DSX_ID_ACC] = {
899 				.addr = 0x09,
900 				.mask = GENMASK(3, 0),
901 			},
902 			[ST_LSM6DSX_ID_GYRO] = {
903 				.addr = 0x09,
904 				.mask = GENMASK(7, 4),
905 			},
906 		},
907 		.fifo_ops = {
908 			.update_fifo = st_lsm6dsx_update_fifo,
909 			.read_fifo = st_lsm6dsx_read_tagged_fifo,
910 			.fifo_th = {
911 				.addr = 0x07,
912 				.mask = GENMASK(8, 0),
913 			},
914 			.fifo_diff = {
915 				.addr = 0x3a,
916 				.mask = GENMASK(9, 0),
917 			},
918 			.max_size = 512,
919 			.th_wl = 1,
920 		},
921 		.ts_settings = {
922 			.timer_en = {
923 				.addr = 0x19,
924 				.mask = BIT(5),
925 			},
926 			.decimator = {
927 				.addr = 0x0a,
928 				.mask = GENMASK(7, 6),
929 			},
930 			.freq_fine = 0x63,
931 		},
932 		.shub_settings = {
933 			.page_mux = {
934 				.addr = 0x01,
935 				.mask = BIT(6),
936 			},
937 			.master_en = {
938 				.sec_page = true,
939 				.addr = 0x14,
940 				.mask = BIT(2),
941 			},
942 			.pullup_en = {
943 				.sec_page = true,
944 				.addr = 0x14,
945 				.mask = BIT(3),
946 			},
947 			.aux_sens = {
948 				.addr = 0x14,
949 				.mask = GENMASK(1, 0),
950 			},
951 			.wr_once = {
952 				.addr = 0x14,
953 				.mask = BIT(6),
954 			},
955 			.num_ext_dev = 3,
956 			.shub_out = {
957 				.sec_page = true,
958 				.addr = 0x02,
959 			},
960 			.slv0_addr = 0x15,
961 			.dw_slv0_addr = 0x21,
962 			.batch_en = BIT(3),
963 		},
964 		.event_settings = {
965 			.enable_reg = {
966 				.addr = 0x58,
967 				.mask = BIT(7),
968 			},
969 			.wakeup_reg = {
970 				.addr = 0x5b,
971 				.mask = GENMASK(5, 0),
972 			},
973 			.wakeup_src_reg = 0x1b,
974 			.wakeup_src_status_mask = BIT(3),
975 			.wakeup_src_z_mask = BIT(0),
976 			.wakeup_src_y_mask = BIT(1),
977 			.wakeup_src_x_mask = BIT(2),
978 		},
979 	},
980 	{
981 		.reset = {
982 			.addr = 0x12,
983 			.mask = BIT(0),
984 		},
985 		.boot = {
986 			.addr = 0x12,
987 			.mask = BIT(7),
988 		},
989 		.bdu = {
990 			.addr = 0x12,
991 			.mask = BIT(6),
992 		},
993 		.id = {
994 			{
995 				.hw_id = ST_ASM330LHH_ID,
996 				.name = ST_ASM330LHH_DEV_NAME,
997 				.wai = 0x6b,
998 			}, {
999 				.hw_id = ST_LSM6DSOP_ID,
1000 				.name = ST_LSM6DSOP_DEV_NAME,
1001 				.wai = 0x6c,
1002 			},
1003 		},
1004 		.channels = {
1005 			[ST_LSM6DSX_ID_ACC] = {
1006 				.chan = st_lsm6dsx_acc_channels,
1007 				.len = ARRAY_SIZE(st_lsm6dsx_acc_channels),
1008 			},
1009 			[ST_LSM6DSX_ID_GYRO] = {
1010 				.chan = st_lsm6dsx_gyro_channels,
1011 				.len = ARRAY_SIZE(st_lsm6dsx_gyro_channels),
1012 			},
1013 		},
1014 		.drdy_mask = {
1015 			.addr = 0x13,
1016 			.mask = BIT(3),
1017 		},
1018 		.odr_table = {
1019 			[ST_LSM6DSX_ID_ACC] = {
1020 				.reg = {
1021 					.addr = 0x10,
1022 					.mask = GENMASK(7, 4),
1023 				},
1024 				.odr_avl[0] = {  12500, 0x01 },
1025 				.odr_avl[1] = {  26000, 0x02 },
1026 				.odr_avl[2] = {  52000, 0x03 },
1027 				.odr_avl[3] = { 104000, 0x04 },
1028 				.odr_avl[4] = { 208000, 0x05 },
1029 				.odr_avl[5] = { 416000, 0x06 },
1030 				.odr_avl[6] = { 833000, 0x07 },
1031 				.odr_len = 7,
1032 			},
1033 			[ST_LSM6DSX_ID_GYRO] = {
1034 				.reg = {
1035 					.addr = 0x11,
1036 					.mask = GENMASK(7, 4),
1037 				},
1038 				.odr_avl[0] = {  12500, 0x01 },
1039 				.odr_avl[1] = {  26000, 0x02 },
1040 				.odr_avl[2] = {  52000, 0x03 },
1041 				.odr_avl[3] = { 104000, 0x04 },
1042 				.odr_avl[4] = { 208000, 0x05 },
1043 				.odr_avl[5] = { 416000, 0x06 },
1044 				.odr_avl[6] = { 833000, 0x07 },
1045 				.odr_len = 7,
1046 			},
1047 		},
1048 		.fs_table = {
1049 			[ST_LSM6DSX_ID_ACC] = {
1050 				.reg = {
1051 					.addr = 0x10,
1052 					.mask = GENMASK(3, 2),
1053 				},
1054 				.fs_avl[0] = {  IIO_G_TO_M_S_2(61000), 0x0 },
1055 				.fs_avl[1] = { IIO_G_TO_M_S_2(122000), 0x2 },
1056 				.fs_avl[2] = { IIO_G_TO_M_S_2(244000), 0x3 },
1057 				.fs_avl[3] = { IIO_G_TO_M_S_2(488000), 0x1 },
1058 				.fs_len = 4,
1059 			},
1060 			[ST_LSM6DSX_ID_GYRO] = {
1061 				.reg = {
1062 					.addr = 0x11,
1063 					.mask = GENMASK(3, 2),
1064 				},
1065 				.fs_avl[0] = {  IIO_DEGREE_TO_RAD(8750000), 0x0 },
1066 				.fs_avl[1] = { IIO_DEGREE_TO_RAD(17500000), 0x1 },
1067 				.fs_avl[2] = { IIO_DEGREE_TO_RAD(35000000), 0x2 },
1068 				.fs_avl[3] = { IIO_DEGREE_TO_RAD(70000000), 0x3 },
1069 				.fs_len = 4,
1070 			},
1071 		},
1072 		.irq_config = {
1073 			.irq1 = {
1074 				.addr = 0x0d,
1075 				.mask = BIT(3),
1076 			},
1077 			.irq2 = {
1078 				.addr = 0x0e,
1079 				.mask = BIT(3),
1080 			},
1081 			.lir = {
1082 				.addr = 0x56,
1083 				.mask = BIT(0),
1084 			},
1085 			.clear_on_read = {
1086 				.addr = 0x56,
1087 				.mask = BIT(6),
1088 			},
1089 			.irq1_func = {
1090 				.addr = 0x5e,
1091 				.mask = BIT(5),
1092 			},
1093 			.irq2_func = {
1094 				.addr = 0x5f,
1095 				.mask = BIT(5),
1096 			},
1097 			.hla = {
1098 				.addr = 0x12,
1099 				.mask = BIT(5),
1100 			},
1101 			.od = {
1102 				.addr = 0x12,
1103 				.mask = BIT(4),
1104 			},
1105 		},
1106 		.batch = {
1107 			[ST_LSM6DSX_ID_ACC] = {
1108 				.addr = 0x09,
1109 				.mask = GENMASK(3, 0),
1110 			},
1111 			[ST_LSM6DSX_ID_GYRO] = {
1112 				.addr = 0x09,
1113 				.mask = GENMASK(7, 4),
1114 			},
1115 		},
1116 		.fifo_ops = {
1117 			.update_fifo = st_lsm6dsx_update_fifo,
1118 			.read_fifo = st_lsm6dsx_read_tagged_fifo,
1119 			.fifo_th = {
1120 				.addr = 0x07,
1121 				.mask = GENMASK(8, 0),
1122 			},
1123 			.fifo_diff = {
1124 				.addr = 0x3a,
1125 				.mask = GENMASK(9, 0),
1126 			},
1127 			.max_size = 512,
1128 			.th_wl = 1,
1129 		},
1130 		.ts_settings = {
1131 			.timer_en = {
1132 				.addr = 0x19,
1133 				.mask = BIT(5),
1134 			},
1135 			.decimator = {
1136 				.addr = 0x0a,
1137 				.mask = GENMASK(7, 6),
1138 			},
1139 			.freq_fine = 0x63,
1140 		},
1141 		.event_settings = {
1142 			.enable_reg = {
1143 				.addr = 0x58,
1144 				.mask = BIT(7),
1145 			},
1146 			.wakeup_reg = {
1147 				.addr = 0x5B,
1148 				.mask = GENMASK(5, 0),
1149 			},
1150 			.wakeup_src_reg = 0x1b,
1151 			.wakeup_src_status_mask = BIT(3),
1152 			.wakeup_src_z_mask = BIT(0),
1153 			.wakeup_src_y_mask = BIT(1),
1154 			.wakeup_src_x_mask = BIT(2),
1155 		},
1156 	},
1157 };
1158 
1159 int st_lsm6dsx_set_page(struct st_lsm6dsx_hw *hw, bool enable)
1160 {
1161 	const struct st_lsm6dsx_shub_settings *hub_settings;
1162 	unsigned int data;
1163 	int err;
1164 
1165 	hub_settings = &hw->settings->shub_settings;
1166 	data = ST_LSM6DSX_SHIFT_VAL(enable, hub_settings->page_mux.mask);
1167 	err = regmap_update_bits(hw->regmap, hub_settings->page_mux.addr,
1168 				 hub_settings->page_mux.mask, data);
1169 	usleep_range(100, 150);
1170 
1171 	return err;
1172 }
1173 
1174 static int st_lsm6dsx_check_whoami(struct st_lsm6dsx_hw *hw, int id,
1175 				   const char **name)
1176 {
1177 	int err, i, j, data;
1178 
1179 	for (i = 0; i < ARRAY_SIZE(st_lsm6dsx_sensor_settings); i++) {
1180 		for (j = 0; j < ST_LSM6DSX_MAX_ID; j++) {
1181 			if (st_lsm6dsx_sensor_settings[i].id[j].name &&
1182 			    id == st_lsm6dsx_sensor_settings[i].id[j].hw_id)
1183 				break;
1184 		}
1185 		if (j < ST_LSM6DSX_MAX_ID)
1186 			break;
1187 	}
1188 
1189 	if (i == ARRAY_SIZE(st_lsm6dsx_sensor_settings)) {
1190 		dev_err(hw->dev, "unsupported hw id [%02x]\n", id);
1191 		return -ENODEV;
1192 	}
1193 
1194 	err = regmap_read(hw->regmap, ST_LSM6DSX_REG_WHOAMI_ADDR, &data);
1195 	if (err < 0) {
1196 		dev_err(hw->dev, "failed to read whoami register\n");
1197 		return err;
1198 	}
1199 
1200 	if (data != st_lsm6dsx_sensor_settings[i].id[j].wai) {
1201 		dev_err(hw->dev, "unsupported whoami [%02x]\n", data);
1202 		return -ENODEV;
1203 	}
1204 
1205 	*name = st_lsm6dsx_sensor_settings[i].id[j].name;
1206 	hw->settings = &st_lsm6dsx_sensor_settings[i];
1207 
1208 	return 0;
1209 }
1210 
1211 static int st_lsm6dsx_set_full_scale(struct st_lsm6dsx_sensor *sensor,
1212 				     u32 gain)
1213 {
1214 	const struct st_lsm6dsx_fs_table_entry *fs_table;
1215 	unsigned int data;
1216 	int i, err;
1217 
1218 	fs_table = &sensor->hw->settings->fs_table[sensor->id];
1219 	for (i = 0; i < fs_table->fs_len; i++) {
1220 		if (fs_table->fs_avl[i].gain == gain)
1221 			break;
1222 	}
1223 
1224 	if (i == fs_table->fs_len)
1225 		return -EINVAL;
1226 
1227 	data = ST_LSM6DSX_SHIFT_VAL(fs_table->fs_avl[i].val,
1228 				    fs_table->reg.mask);
1229 	err = st_lsm6dsx_update_bits_locked(sensor->hw, fs_table->reg.addr,
1230 					    fs_table->reg.mask, data);
1231 	if (err < 0)
1232 		return err;
1233 
1234 	sensor->gain = gain;
1235 
1236 	return 0;
1237 }
1238 
1239 int st_lsm6dsx_check_odr(struct st_lsm6dsx_sensor *sensor, u32 odr, u8 *val)
1240 {
1241 	const struct st_lsm6dsx_odr_table_entry *odr_table;
1242 	int i;
1243 
1244 	odr_table = &sensor->hw->settings->odr_table[sensor->id];
1245 	for (i = 0; i < odr_table->odr_len; i++) {
1246 		/*
1247 		 * ext devices can run at different odr respect to
1248 		 * accel sensor
1249 		 */
1250 		if (odr_table->odr_avl[i].milli_hz >= odr)
1251 			break;
1252 	}
1253 
1254 	if (i == odr_table->odr_len)
1255 		return -EINVAL;
1256 
1257 	*val = odr_table->odr_avl[i].val;
1258 	return odr_table->odr_avl[i].milli_hz;
1259 }
1260 
1261 static int
1262 st_lsm6dsx_check_odr_dependency(struct st_lsm6dsx_hw *hw, u32 odr,
1263 				enum st_lsm6dsx_sensor_id id)
1264 {
1265 	struct st_lsm6dsx_sensor *ref = iio_priv(hw->iio_devs[id]);
1266 
1267 	if (odr > 0) {
1268 		if (hw->enable_mask & BIT(id))
1269 			return max_t(u32, ref->odr, odr);
1270 		else
1271 			return odr;
1272 	} else {
1273 		return (hw->enable_mask & BIT(id)) ? ref->odr : 0;
1274 	}
1275 }
1276 
1277 static int
1278 st_lsm6dsx_set_odr(struct st_lsm6dsx_sensor *sensor, u32 req_odr)
1279 {
1280 	struct st_lsm6dsx_sensor *ref_sensor = sensor;
1281 	struct st_lsm6dsx_hw *hw = sensor->hw;
1282 	const struct st_lsm6dsx_reg *reg;
1283 	unsigned int data;
1284 	u8 val = 0;
1285 	int err;
1286 
1287 	switch (sensor->id) {
1288 	case ST_LSM6DSX_ID_GYRO:
1289 		break;
1290 	case ST_LSM6DSX_ID_EXT0:
1291 	case ST_LSM6DSX_ID_EXT1:
1292 	case ST_LSM6DSX_ID_EXT2:
1293 	case ST_LSM6DSX_ID_ACC: {
1294 		u32 odr;
1295 		int i;
1296 
1297 		/*
1298 		 * i2c embedded controller relies on the accelerometer sensor as
1299 		 * bus read/write trigger so we need to enable accel device
1300 		 * at odr = max(accel_odr, ext_odr) in order to properly
1301 		 * communicate with i2c slave devices
1302 		 */
1303 		ref_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]);
1304 		for (i = ST_LSM6DSX_ID_ACC; i < ST_LSM6DSX_ID_MAX; i++) {
1305 			if (!hw->iio_devs[i] || i == sensor->id)
1306 				continue;
1307 
1308 			odr = st_lsm6dsx_check_odr_dependency(hw, req_odr, i);
1309 			if (odr != req_odr)
1310 				/* device already configured */
1311 				return 0;
1312 		}
1313 		break;
1314 	}
1315 	default: /* should never occur */
1316 		return -EINVAL;
1317 	}
1318 
1319 	if (req_odr > 0) {
1320 		err = st_lsm6dsx_check_odr(ref_sensor, req_odr, &val);
1321 		if (err < 0)
1322 			return err;
1323 	}
1324 
1325 	reg = &hw->settings->odr_table[ref_sensor->id].reg;
1326 	data = ST_LSM6DSX_SHIFT_VAL(val, reg->mask);
1327 	return st_lsm6dsx_update_bits_locked(hw, reg->addr, reg->mask, data);
1328 }
1329 
1330 static int
1331 __st_lsm6dsx_sensor_set_enable(struct st_lsm6dsx_sensor *sensor,
1332 			       bool enable)
1333 {
1334 	struct st_lsm6dsx_hw *hw = sensor->hw;
1335 	u32 odr = enable ? sensor->odr : 0;
1336 	int err;
1337 
1338 	err = st_lsm6dsx_set_odr(sensor, odr);
1339 	if (err < 0)
1340 		return err;
1341 
1342 	if (enable)
1343 		hw->enable_mask |= BIT(sensor->id);
1344 	else
1345 		hw->enable_mask &= ~BIT(sensor->id);
1346 
1347 	return 0;
1348 }
1349 
1350 static int
1351 st_lsm6dsx_check_events(struct st_lsm6dsx_sensor *sensor, bool enable)
1352 {
1353 	struct st_lsm6dsx_hw *hw = sensor->hw;
1354 
1355 	if (sensor->id == ST_LSM6DSX_ID_GYRO || enable)
1356 		return 0;
1357 
1358 	return hw->enable_event;
1359 }
1360 
1361 int st_lsm6dsx_sensor_set_enable(struct st_lsm6dsx_sensor *sensor,
1362 				 bool enable)
1363 {
1364 	if (st_lsm6dsx_check_events(sensor, enable))
1365 		return 0;
1366 
1367 	return __st_lsm6dsx_sensor_set_enable(sensor, enable);
1368 }
1369 
1370 static int st_lsm6dsx_read_oneshot(struct st_lsm6dsx_sensor *sensor,
1371 				   u8 addr, int *val)
1372 {
1373 	struct st_lsm6dsx_hw *hw = sensor->hw;
1374 	int err, delay;
1375 	__le16 data;
1376 
1377 	err = st_lsm6dsx_sensor_set_enable(sensor, true);
1378 	if (err < 0)
1379 		return err;
1380 
1381 	/*
1382 	 * we need to wait for sensor settling time before
1383 	 * reading data in order to avoid corrupted samples
1384 	 */
1385 	delay = 1000000000 / sensor->odr;
1386 	usleep_range(3 * delay, 4 * delay);
1387 
1388 	err = st_lsm6dsx_read_locked(hw, addr, &data, sizeof(data));
1389 	if (err < 0)
1390 		return err;
1391 
1392 	if (!hw->enable_event) {
1393 		err = st_lsm6dsx_sensor_set_enable(sensor, false);
1394 		if (err < 0)
1395 			return err;
1396 	}
1397 
1398 	*val = (s16)le16_to_cpu(data);
1399 
1400 	return IIO_VAL_INT;
1401 }
1402 
1403 static int st_lsm6dsx_read_raw(struct iio_dev *iio_dev,
1404 			       struct iio_chan_spec const *ch,
1405 			       int *val, int *val2, long mask)
1406 {
1407 	struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
1408 	int ret;
1409 
1410 	switch (mask) {
1411 	case IIO_CHAN_INFO_RAW:
1412 		ret = iio_device_claim_direct_mode(iio_dev);
1413 		if (ret)
1414 			break;
1415 
1416 		ret = st_lsm6dsx_read_oneshot(sensor, ch->address, val);
1417 		iio_device_release_direct_mode(iio_dev);
1418 		break;
1419 	case IIO_CHAN_INFO_SAMP_FREQ:
1420 		*val = sensor->odr / 1000;
1421 		*val2 = (sensor->odr % 1000) * 1000;
1422 		ret = IIO_VAL_INT_PLUS_MICRO;
1423 		break;
1424 	case IIO_CHAN_INFO_SCALE:
1425 		*val = 0;
1426 		*val2 = sensor->gain;
1427 		ret = IIO_VAL_INT_PLUS_NANO;
1428 		break;
1429 	default:
1430 		ret = -EINVAL;
1431 		break;
1432 	}
1433 
1434 	return ret;
1435 }
1436 
1437 static int st_lsm6dsx_write_raw(struct iio_dev *iio_dev,
1438 				struct iio_chan_spec const *chan,
1439 				int val, int val2, long mask)
1440 {
1441 	struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
1442 	int err;
1443 
1444 	err = iio_device_claim_direct_mode(iio_dev);
1445 	if (err)
1446 		return err;
1447 
1448 	switch (mask) {
1449 	case IIO_CHAN_INFO_SCALE:
1450 		err = st_lsm6dsx_set_full_scale(sensor, val2);
1451 		break;
1452 	case IIO_CHAN_INFO_SAMP_FREQ: {
1453 		u8 data;
1454 
1455 		val = val * 1000 + val2 / 1000;
1456 		val = st_lsm6dsx_check_odr(sensor, val, &data);
1457 		if (val < 0)
1458 			err = val;
1459 		else
1460 			sensor->odr = val;
1461 		break;
1462 	}
1463 	default:
1464 		err = -EINVAL;
1465 		break;
1466 	}
1467 
1468 	iio_device_release_direct_mode(iio_dev);
1469 
1470 	return err;
1471 }
1472 
1473 static int st_lsm6dsx_event_setup(struct st_lsm6dsx_hw *hw, int state)
1474 {
1475 	const struct st_lsm6dsx_reg *reg;
1476 	unsigned int data;
1477 	int err;
1478 
1479 	if (!hw->settings->irq_config.irq1_func.addr)
1480 		return -ENOTSUPP;
1481 
1482 	reg = &hw->settings->event_settings.enable_reg;
1483 	if (reg->addr) {
1484 		data = ST_LSM6DSX_SHIFT_VAL(state, reg->mask);
1485 		err = st_lsm6dsx_update_bits_locked(hw, reg->addr,
1486 						    reg->mask, data);
1487 		if (err < 0)
1488 			return err;
1489 	}
1490 
1491 	/* Enable wakeup interrupt */
1492 	data = ST_LSM6DSX_SHIFT_VAL(state, hw->irq_routing->mask);
1493 	return st_lsm6dsx_update_bits_locked(hw, hw->irq_routing->addr,
1494 					     hw->irq_routing->mask, data);
1495 }
1496 
1497 static int st_lsm6dsx_read_event(struct iio_dev *iio_dev,
1498 				 const struct iio_chan_spec *chan,
1499 				 enum iio_event_type type,
1500 				 enum iio_event_direction dir,
1501 				 enum iio_event_info info,
1502 				 int *val, int *val2)
1503 {
1504 	struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
1505 	struct st_lsm6dsx_hw *hw = sensor->hw;
1506 
1507 	if (type != IIO_EV_TYPE_THRESH)
1508 		return -EINVAL;
1509 
1510 	*val2 = 0;
1511 	*val = hw->event_threshold;
1512 
1513 	return IIO_VAL_INT;
1514 }
1515 
1516 static int
1517 st_lsm6dsx_write_event(struct iio_dev *iio_dev,
1518 		       const struct iio_chan_spec *chan,
1519 		       enum iio_event_type type,
1520 		       enum iio_event_direction dir,
1521 		       enum iio_event_info info,
1522 		       int val, int val2)
1523 {
1524 	struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
1525 	struct st_lsm6dsx_hw *hw = sensor->hw;
1526 	const struct st_lsm6dsx_reg *reg;
1527 	unsigned int data;
1528 	int err;
1529 
1530 	if (type != IIO_EV_TYPE_THRESH)
1531 		return -EINVAL;
1532 
1533 	if (val < 0 || val > 31)
1534 		return -EINVAL;
1535 
1536 	reg = &hw->settings->event_settings.wakeup_reg;
1537 	data = ST_LSM6DSX_SHIFT_VAL(val, reg->mask);
1538 	err = st_lsm6dsx_update_bits_locked(hw, reg->addr,
1539 					    reg->mask, data);
1540 	if (err < 0)
1541 		return -EINVAL;
1542 
1543 	hw->event_threshold = val;
1544 
1545 	return 0;
1546 }
1547 
1548 static int
1549 st_lsm6dsx_read_event_config(struct iio_dev *iio_dev,
1550 			     const struct iio_chan_spec *chan,
1551 			     enum iio_event_type type,
1552 			     enum iio_event_direction dir)
1553 {
1554 	struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
1555 	struct st_lsm6dsx_hw *hw = sensor->hw;
1556 
1557 	if (type != IIO_EV_TYPE_THRESH)
1558 		return -EINVAL;
1559 
1560 	return !!(hw->enable_event & BIT(chan->channel2));
1561 }
1562 
1563 static int
1564 st_lsm6dsx_write_event_config(struct iio_dev *iio_dev,
1565 			      const struct iio_chan_spec *chan,
1566 			      enum iio_event_type type,
1567 			      enum iio_event_direction dir, int state)
1568 {
1569 	struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
1570 	struct st_lsm6dsx_hw *hw = sensor->hw;
1571 	u8 enable_event;
1572 	int err;
1573 
1574 	if (type != IIO_EV_TYPE_THRESH)
1575 		return -EINVAL;
1576 
1577 	if (state) {
1578 		enable_event = hw->enable_event | BIT(chan->channel2);
1579 
1580 		/* do not enable events if they are already enabled */
1581 		if (hw->enable_event)
1582 			goto out;
1583 	} else {
1584 		enable_event = hw->enable_event & ~BIT(chan->channel2);
1585 
1586 		/* only turn off sensor if no events is enabled */
1587 		if (enable_event)
1588 			goto out;
1589 	}
1590 
1591 	/* stop here if no changes have been made */
1592 	if (hw->enable_event == enable_event)
1593 		return 0;
1594 
1595 	err = st_lsm6dsx_event_setup(hw, state);
1596 	if (err < 0)
1597 		return err;
1598 
1599 	mutex_lock(&hw->conf_lock);
1600 	if (enable_event || !(hw->fifo_mask & BIT(sensor->id)))
1601 		err = __st_lsm6dsx_sensor_set_enable(sensor, state);
1602 	mutex_unlock(&hw->conf_lock);
1603 	if (err < 0)
1604 		return err;
1605 
1606 out:
1607 	hw->enable_event = enable_event;
1608 
1609 	return 0;
1610 }
1611 
1612 int st_lsm6dsx_set_watermark(struct iio_dev *iio_dev, unsigned int val)
1613 {
1614 	struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
1615 	struct st_lsm6dsx_hw *hw = sensor->hw;
1616 	int err;
1617 
1618 	if (val < 1 || val > hw->settings->fifo_ops.max_size)
1619 		return -EINVAL;
1620 
1621 	mutex_lock(&hw->conf_lock);
1622 
1623 	err = st_lsm6dsx_update_watermark(sensor, val);
1624 
1625 	mutex_unlock(&hw->conf_lock);
1626 
1627 	if (err < 0)
1628 		return err;
1629 
1630 	sensor->watermark = val;
1631 
1632 	return 0;
1633 }
1634 
1635 static ssize_t
1636 st_lsm6dsx_sysfs_sampling_frequency_avail(struct device *dev,
1637 					  struct device_attribute *attr,
1638 					  char *buf)
1639 {
1640 	struct st_lsm6dsx_sensor *sensor = iio_priv(dev_to_iio_dev(dev));
1641 	const struct st_lsm6dsx_odr_table_entry *odr_table;
1642 	int i, len = 0;
1643 
1644 	odr_table = &sensor->hw->settings->odr_table[sensor->id];
1645 	for (i = 0; i < odr_table->odr_len; i++)
1646 		len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%03d ",
1647 				 odr_table->odr_avl[i].milli_hz / 1000,
1648 				 odr_table->odr_avl[i].milli_hz % 1000);
1649 	buf[len - 1] = '\n';
1650 
1651 	return len;
1652 }
1653 
1654 static ssize_t st_lsm6dsx_sysfs_scale_avail(struct device *dev,
1655 					    struct device_attribute *attr,
1656 					    char *buf)
1657 {
1658 	struct st_lsm6dsx_sensor *sensor = iio_priv(dev_to_iio_dev(dev));
1659 	const struct st_lsm6dsx_fs_table_entry *fs_table;
1660 	struct st_lsm6dsx_hw *hw = sensor->hw;
1661 	int i, len = 0;
1662 
1663 	fs_table = &hw->settings->fs_table[sensor->id];
1664 	for (i = 0; i < fs_table->fs_len; i++)
1665 		len += scnprintf(buf + len, PAGE_SIZE - len, "0.%09u ",
1666 				 fs_table->fs_avl[i].gain);
1667 	buf[len - 1] = '\n';
1668 
1669 	return len;
1670 }
1671 
1672 static int st_lsm6dsx_write_raw_get_fmt(struct iio_dev *indio_dev,
1673 					struct iio_chan_spec const *chan,
1674 					long mask)
1675 {
1676 	switch (mask) {
1677 	case IIO_CHAN_INFO_SCALE:
1678 		switch (chan->type) {
1679 		case IIO_ANGL_VEL:
1680 		case IIO_ACCEL:
1681 			return IIO_VAL_INT_PLUS_NANO;
1682 		default:
1683 			return IIO_VAL_INT_PLUS_MICRO;
1684 		}
1685 	default:
1686 		return IIO_VAL_INT_PLUS_MICRO;
1687 	}
1688 }
1689 
1690 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(st_lsm6dsx_sysfs_sampling_frequency_avail);
1691 static IIO_DEVICE_ATTR(in_accel_scale_available, 0444,
1692 		       st_lsm6dsx_sysfs_scale_avail, NULL, 0);
1693 static IIO_DEVICE_ATTR(in_anglvel_scale_available, 0444,
1694 		       st_lsm6dsx_sysfs_scale_avail, NULL, 0);
1695 
1696 static struct attribute *st_lsm6dsx_acc_attributes[] = {
1697 	&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
1698 	&iio_dev_attr_in_accel_scale_available.dev_attr.attr,
1699 	NULL,
1700 };
1701 
1702 static const struct attribute_group st_lsm6dsx_acc_attribute_group = {
1703 	.attrs = st_lsm6dsx_acc_attributes,
1704 };
1705 
1706 static const struct iio_info st_lsm6dsx_acc_info = {
1707 	.attrs = &st_lsm6dsx_acc_attribute_group,
1708 	.read_raw = st_lsm6dsx_read_raw,
1709 	.write_raw = st_lsm6dsx_write_raw,
1710 	.read_event_value = st_lsm6dsx_read_event,
1711 	.write_event_value = st_lsm6dsx_write_event,
1712 	.read_event_config = st_lsm6dsx_read_event_config,
1713 	.write_event_config = st_lsm6dsx_write_event_config,
1714 	.hwfifo_set_watermark = st_lsm6dsx_set_watermark,
1715 	.write_raw_get_fmt = st_lsm6dsx_write_raw_get_fmt,
1716 };
1717 
1718 static struct attribute *st_lsm6dsx_gyro_attributes[] = {
1719 	&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
1720 	&iio_dev_attr_in_anglvel_scale_available.dev_attr.attr,
1721 	NULL,
1722 };
1723 
1724 static const struct attribute_group st_lsm6dsx_gyro_attribute_group = {
1725 	.attrs = st_lsm6dsx_gyro_attributes,
1726 };
1727 
1728 static const struct iio_info st_lsm6dsx_gyro_info = {
1729 	.attrs = &st_lsm6dsx_gyro_attribute_group,
1730 	.read_raw = st_lsm6dsx_read_raw,
1731 	.write_raw = st_lsm6dsx_write_raw,
1732 	.hwfifo_set_watermark = st_lsm6dsx_set_watermark,
1733 	.write_raw_get_fmt = st_lsm6dsx_write_raw_get_fmt,
1734 };
1735 
1736 static int st_lsm6dsx_get_drdy_pin(struct st_lsm6dsx_hw *hw, int *drdy_pin)
1737 {
1738 	struct device *dev = hw->dev;
1739 
1740 	if (!dev_fwnode(dev))
1741 		return -EINVAL;
1742 
1743 	return device_property_read_u32(dev, "st,drdy-int-pin", drdy_pin);
1744 }
1745 
1746 static int
1747 st_lsm6dsx_get_drdy_reg(struct st_lsm6dsx_hw *hw,
1748 			const struct st_lsm6dsx_reg **drdy_reg)
1749 {
1750 	int err = 0, drdy_pin;
1751 
1752 	if (st_lsm6dsx_get_drdy_pin(hw, &drdy_pin) < 0) {
1753 		struct st_sensors_platform_data *pdata;
1754 		struct device *dev = hw->dev;
1755 
1756 		pdata = (struct st_sensors_platform_data *)dev->platform_data;
1757 		drdy_pin = pdata ? pdata->drdy_int_pin : 1;
1758 	}
1759 
1760 	switch (drdy_pin) {
1761 	case 1:
1762 		hw->irq_routing = &hw->settings->irq_config.irq1_func;
1763 		*drdy_reg = &hw->settings->irq_config.irq1;
1764 		break;
1765 	case 2:
1766 		hw->irq_routing = &hw->settings->irq_config.irq2_func;
1767 		*drdy_reg = &hw->settings->irq_config.irq2;
1768 		break;
1769 	default:
1770 		dev_err(hw->dev, "unsupported data ready pin\n");
1771 		err = -EINVAL;
1772 		break;
1773 	}
1774 
1775 	return err;
1776 }
1777 
1778 static int st_lsm6dsx_init_shub(struct st_lsm6dsx_hw *hw)
1779 {
1780 	const struct st_lsm6dsx_shub_settings *hub_settings;
1781 	struct st_sensors_platform_data *pdata;
1782 	struct device *dev = hw->dev;
1783 	unsigned int data;
1784 	int err = 0;
1785 
1786 	hub_settings = &hw->settings->shub_settings;
1787 
1788 	pdata = (struct st_sensors_platform_data *)dev->platform_data;
1789 	if ((dev_fwnode(dev) && device_property_read_bool(dev, "st,pullups")) ||
1790 	    (pdata && pdata->pullups)) {
1791 		if (hub_settings->pullup_en.sec_page) {
1792 			err = st_lsm6dsx_set_page(hw, true);
1793 			if (err < 0)
1794 				return err;
1795 		}
1796 
1797 		data = ST_LSM6DSX_SHIFT_VAL(1, hub_settings->pullup_en.mask);
1798 		err = regmap_update_bits(hw->regmap,
1799 					 hub_settings->pullup_en.addr,
1800 					 hub_settings->pullup_en.mask, data);
1801 
1802 		if (hub_settings->pullup_en.sec_page)
1803 			st_lsm6dsx_set_page(hw, false);
1804 
1805 		if (err < 0)
1806 			return err;
1807 	}
1808 
1809 	if (hub_settings->aux_sens.addr) {
1810 		/* configure aux sensors */
1811 		err = st_lsm6dsx_set_page(hw, true);
1812 		if (err < 0)
1813 			return err;
1814 
1815 		data = ST_LSM6DSX_SHIFT_VAL(3, hub_settings->aux_sens.mask);
1816 		err = regmap_update_bits(hw->regmap,
1817 					 hub_settings->aux_sens.addr,
1818 					 hub_settings->aux_sens.mask, data);
1819 
1820 		st_lsm6dsx_set_page(hw, false);
1821 
1822 		if (err < 0)
1823 			return err;
1824 	}
1825 
1826 	if (hub_settings->emb_func.addr) {
1827 		data = ST_LSM6DSX_SHIFT_VAL(1, hub_settings->emb_func.mask);
1828 		err = regmap_update_bits(hw->regmap,
1829 					 hub_settings->emb_func.addr,
1830 					 hub_settings->emb_func.mask, data);
1831 	}
1832 
1833 	return err;
1834 }
1835 
1836 static int st_lsm6dsx_init_hw_timer(struct st_lsm6dsx_hw *hw)
1837 {
1838 	const struct st_lsm6dsx_hw_ts_settings *ts_settings;
1839 	int err, val;
1840 
1841 	ts_settings = &hw->settings->ts_settings;
1842 	/* enable hw timestamp generation if necessary */
1843 	if (ts_settings->timer_en.addr) {
1844 		val = ST_LSM6DSX_SHIFT_VAL(1, ts_settings->timer_en.mask);
1845 		err = regmap_update_bits(hw->regmap,
1846 					 ts_settings->timer_en.addr,
1847 					 ts_settings->timer_en.mask, val);
1848 		if (err < 0)
1849 			return err;
1850 	}
1851 
1852 	/* enable high resolution for hw ts timer if necessary */
1853 	if (ts_settings->hr_timer.addr) {
1854 		val = ST_LSM6DSX_SHIFT_VAL(1, ts_settings->hr_timer.mask);
1855 		err = regmap_update_bits(hw->regmap,
1856 					 ts_settings->hr_timer.addr,
1857 					 ts_settings->hr_timer.mask, val);
1858 		if (err < 0)
1859 			return err;
1860 	}
1861 
1862 	/* enable ts queueing in FIFO if necessary */
1863 	if (ts_settings->fifo_en.addr) {
1864 		val = ST_LSM6DSX_SHIFT_VAL(1, ts_settings->fifo_en.mask);
1865 		err = regmap_update_bits(hw->regmap,
1866 					 ts_settings->fifo_en.addr,
1867 					 ts_settings->fifo_en.mask, val);
1868 		if (err < 0)
1869 			return err;
1870 	}
1871 
1872 	/* calibrate timestamp sensitivity */
1873 	hw->ts_gain = ST_LSM6DSX_TS_SENSITIVITY;
1874 	if (ts_settings->freq_fine) {
1875 		err = regmap_read(hw->regmap, ts_settings->freq_fine, &val);
1876 		if (err < 0)
1877 			return err;
1878 
1879 		/*
1880 		 * linearize the AN5192 formula:
1881 		 * 1 / (1 + x) ~= 1 - x (Taylor’s Series)
1882 		 * ttrim[s] = 1 / (40000 * (1 + 0.0015 * val))
1883 		 * ttrim[ns] ~= 25000 - 37.5 * val
1884 		 * ttrim[ns] ~= 25000 - (37500 * val) / 1000
1885 		 */
1886 		hw->ts_gain -= ((s8)val * 37500) / 1000;
1887 	}
1888 
1889 	return 0;
1890 }
1891 
1892 static int st_lsm6dsx_reset_device(struct st_lsm6dsx_hw *hw)
1893 {
1894 	const struct st_lsm6dsx_reg *reg;
1895 	int err;
1896 
1897 	/*
1898 	 * flush hw FIFO before device reset in order to avoid
1899 	 * possible races on interrupt line 1. If the first interrupt
1900 	 * line is asserted during hw reset the device will work in
1901 	 * I3C-only mode (if it is supported)
1902 	 */
1903 	err = st_lsm6dsx_flush_fifo(hw);
1904 	if (err < 0 && err != -ENOTSUPP)
1905 		return err;
1906 
1907 	/* device sw reset */
1908 	reg = &hw->settings->reset;
1909 	err = regmap_update_bits(hw->regmap, reg->addr, reg->mask,
1910 				 ST_LSM6DSX_SHIFT_VAL(1, reg->mask));
1911 	if (err < 0)
1912 		return err;
1913 
1914 	msleep(50);
1915 
1916 	/* reload trimming parameter */
1917 	reg = &hw->settings->boot;
1918 	err = regmap_update_bits(hw->regmap, reg->addr, reg->mask,
1919 				 ST_LSM6DSX_SHIFT_VAL(1, reg->mask));
1920 	if (err < 0)
1921 		return err;
1922 
1923 	msleep(50);
1924 
1925 	return 0;
1926 }
1927 
1928 static int st_lsm6dsx_init_device(struct st_lsm6dsx_hw *hw)
1929 {
1930 	const struct st_lsm6dsx_reg *reg;
1931 	int err;
1932 
1933 	err = st_lsm6dsx_reset_device(hw);
1934 	if (err < 0)
1935 		return err;
1936 
1937 	/* enable Block Data Update */
1938 	reg = &hw->settings->bdu;
1939 	err = regmap_update_bits(hw->regmap, reg->addr, reg->mask,
1940 				 ST_LSM6DSX_SHIFT_VAL(1, reg->mask));
1941 	if (err < 0)
1942 		return err;
1943 
1944 	/* enable FIFO watermak interrupt */
1945 	err = st_lsm6dsx_get_drdy_reg(hw, &reg);
1946 	if (err < 0)
1947 		return err;
1948 
1949 	err = regmap_update_bits(hw->regmap, reg->addr, reg->mask,
1950 				 ST_LSM6DSX_SHIFT_VAL(1, reg->mask));
1951 	if (err < 0)
1952 		return err;
1953 
1954 	/* enable Latched interrupts for device events */
1955 	if (hw->settings->irq_config.lir.addr) {
1956 		reg = &hw->settings->irq_config.lir;
1957 		err = regmap_update_bits(hw->regmap, reg->addr, reg->mask,
1958 					 ST_LSM6DSX_SHIFT_VAL(1, reg->mask));
1959 		if (err < 0)
1960 			return err;
1961 
1962 		/* enable clear on read for latched interrupts */
1963 		if (hw->settings->irq_config.clear_on_read.addr) {
1964 			reg = &hw->settings->irq_config.clear_on_read;
1965 			err = regmap_update_bits(hw->regmap,
1966 					reg->addr, reg->mask,
1967 					ST_LSM6DSX_SHIFT_VAL(1, reg->mask));
1968 			if (err < 0)
1969 				return err;
1970 		}
1971 	}
1972 
1973 	/* enable drdy-mas if available */
1974 	if (hw->settings->drdy_mask.addr) {
1975 		reg = &hw->settings->drdy_mask;
1976 		err = regmap_update_bits(hw->regmap, reg->addr, reg->mask,
1977 					 ST_LSM6DSX_SHIFT_VAL(1, reg->mask));
1978 		if (err < 0)
1979 			return err;
1980 	}
1981 
1982 	err = st_lsm6dsx_init_shub(hw);
1983 	if (err < 0)
1984 		return err;
1985 
1986 	return st_lsm6dsx_init_hw_timer(hw);
1987 }
1988 
1989 static struct iio_dev *st_lsm6dsx_alloc_iiodev(struct st_lsm6dsx_hw *hw,
1990 					       enum st_lsm6dsx_sensor_id id,
1991 					       const char *name)
1992 {
1993 	struct st_lsm6dsx_sensor *sensor;
1994 	struct iio_dev *iio_dev;
1995 
1996 	iio_dev = devm_iio_device_alloc(hw->dev, sizeof(*sensor));
1997 	if (!iio_dev)
1998 		return NULL;
1999 
2000 	iio_dev->modes = INDIO_DIRECT_MODE;
2001 	iio_dev->available_scan_masks = st_lsm6dsx_available_scan_masks;
2002 	iio_dev->channels = hw->settings->channels[id].chan;
2003 	iio_dev->num_channels = hw->settings->channels[id].len;
2004 
2005 	sensor = iio_priv(iio_dev);
2006 	sensor->id = id;
2007 	sensor->hw = hw;
2008 	sensor->odr = hw->settings->odr_table[id].odr_avl[0].milli_hz;
2009 	sensor->gain = hw->settings->fs_table[id].fs_avl[0].gain;
2010 	sensor->watermark = 1;
2011 
2012 	switch (id) {
2013 	case ST_LSM6DSX_ID_ACC:
2014 		iio_dev->info = &st_lsm6dsx_acc_info;
2015 		scnprintf(sensor->name, sizeof(sensor->name), "%s_accel",
2016 			  name);
2017 		break;
2018 	case ST_LSM6DSX_ID_GYRO:
2019 		iio_dev->info = &st_lsm6dsx_gyro_info;
2020 		scnprintf(sensor->name, sizeof(sensor->name), "%s_gyro",
2021 			  name);
2022 		break;
2023 	default:
2024 		return NULL;
2025 	}
2026 	iio_dev->name = sensor->name;
2027 
2028 	return iio_dev;
2029 }
2030 
2031 static bool
2032 st_lsm6dsx_report_motion_event(struct st_lsm6dsx_hw *hw)
2033 {
2034 	const struct st_lsm6dsx_event_settings *event_settings;
2035 	int err, data;
2036 	s64 timestamp;
2037 
2038 	if (!hw->enable_event)
2039 		return false;
2040 
2041 	event_settings = &hw->settings->event_settings;
2042 	err = st_lsm6dsx_read_locked(hw, event_settings->wakeup_src_reg,
2043 				     &data, sizeof(data));
2044 	if (err < 0)
2045 		return false;
2046 
2047 	timestamp = iio_get_time_ns(hw->iio_devs[ST_LSM6DSX_ID_ACC]);
2048 	if ((data & hw->settings->event_settings.wakeup_src_z_mask) &&
2049 	    (hw->enable_event & BIT(IIO_MOD_Z)))
2050 		iio_push_event(hw->iio_devs[ST_LSM6DSX_ID_ACC],
2051 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
2052 						  0,
2053 						  IIO_MOD_Z,
2054 						  IIO_EV_TYPE_THRESH,
2055 						  IIO_EV_DIR_EITHER),
2056 						  timestamp);
2057 
2058 	if ((data & hw->settings->event_settings.wakeup_src_y_mask) &&
2059 	    (hw->enable_event & BIT(IIO_MOD_Y)))
2060 		iio_push_event(hw->iio_devs[ST_LSM6DSX_ID_ACC],
2061 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
2062 						  0,
2063 						  IIO_MOD_Y,
2064 						  IIO_EV_TYPE_THRESH,
2065 						  IIO_EV_DIR_EITHER),
2066 						  timestamp);
2067 
2068 	if ((data & hw->settings->event_settings.wakeup_src_x_mask) &&
2069 	    (hw->enable_event & BIT(IIO_MOD_X)))
2070 		iio_push_event(hw->iio_devs[ST_LSM6DSX_ID_ACC],
2071 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
2072 						  0,
2073 						  IIO_MOD_X,
2074 						  IIO_EV_TYPE_THRESH,
2075 						  IIO_EV_DIR_EITHER),
2076 						  timestamp);
2077 
2078 	return data & event_settings->wakeup_src_status_mask;
2079 }
2080 
2081 static irqreturn_t st_lsm6dsx_handler_thread(int irq, void *private)
2082 {
2083 	struct st_lsm6dsx_hw *hw = private;
2084 	int fifo_len = 0, len;
2085 	bool event;
2086 
2087 	event = st_lsm6dsx_report_motion_event(hw);
2088 
2089 	if (!hw->settings->fifo_ops.read_fifo)
2090 		return event ? IRQ_HANDLED : IRQ_NONE;
2091 
2092 	/*
2093 	 * If we are using edge IRQs, new samples can arrive while
2094 	 * processing current interrupt since there are no hw
2095 	 * guarantees the irq line stays "low" long enough to properly
2096 	 * detect the new interrupt. In this case the new sample will
2097 	 * be missed.
2098 	 * Polling FIFO status register allow us to read new
2099 	 * samples even if the interrupt arrives while processing
2100 	 * previous data and the timeslot where the line is "low" is
2101 	 * too short to be properly detected.
2102 	 */
2103 	do {
2104 		mutex_lock(&hw->fifo_lock);
2105 		len = hw->settings->fifo_ops.read_fifo(hw);
2106 		mutex_unlock(&hw->fifo_lock);
2107 
2108 		if (len > 0)
2109 			fifo_len += len;
2110 	} while (len > 0);
2111 
2112 	return fifo_len || event ? IRQ_HANDLED : IRQ_NONE;
2113 }
2114 
2115 static int st_lsm6dsx_irq_setup(struct st_lsm6dsx_hw *hw)
2116 {
2117 	struct st_sensors_platform_data *pdata;
2118 	const struct st_lsm6dsx_reg *reg;
2119 	struct device *dev = hw->dev;
2120 	unsigned long irq_type;
2121 	bool irq_active_low;
2122 	int err;
2123 
2124 	irq_type = irqd_get_trigger_type(irq_get_irq_data(hw->irq));
2125 
2126 	switch (irq_type) {
2127 	case IRQF_TRIGGER_HIGH:
2128 	case IRQF_TRIGGER_RISING:
2129 		irq_active_low = false;
2130 		break;
2131 	case IRQF_TRIGGER_LOW:
2132 	case IRQF_TRIGGER_FALLING:
2133 		irq_active_low = true;
2134 		break;
2135 	default:
2136 		dev_info(hw->dev, "mode %lx unsupported\n", irq_type);
2137 		return -EINVAL;
2138 	}
2139 
2140 	reg = &hw->settings->irq_config.hla;
2141 	err = regmap_update_bits(hw->regmap, reg->addr, reg->mask,
2142 				 ST_LSM6DSX_SHIFT_VAL(irq_active_low,
2143 						      reg->mask));
2144 	if (err < 0)
2145 		return err;
2146 
2147 	pdata = (struct st_sensors_platform_data *)dev->platform_data;
2148 	if ((dev_fwnode(dev) && device_property_read_bool(dev, "drive-open-drain")) ||
2149 	    (pdata && pdata->open_drain)) {
2150 		reg = &hw->settings->irq_config.od;
2151 		err = regmap_update_bits(hw->regmap, reg->addr, reg->mask,
2152 					 ST_LSM6DSX_SHIFT_VAL(1, reg->mask));
2153 		if (err < 0)
2154 			return err;
2155 
2156 		irq_type |= IRQF_SHARED;
2157 	}
2158 
2159 	err = devm_request_threaded_irq(hw->dev, hw->irq,
2160 					NULL,
2161 					st_lsm6dsx_handler_thread,
2162 					irq_type | IRQF_ONESHOT,
2163 					"lsm6dsx", hw);
2164 	if (err) {
2165 		dev_err(hw->dev, "failed to request trigger irq %d\n",
2166 			hw->irq);
2167 		return err;
2168 	}
2169 
2170 	return 0;
2171 }
2172 
2173 static int st_lsm6dsx_init_regulators(struct device *dev)
2174 {
2175 	struct st_lsm6dsx_hw *hw = dev_get_drvdata(dev);
2176 	int err;
2177 
2178 	/* vdd-vddio power regulators */
2179 	hw->regulators[0].supply = "vdd";
2180 	hw->regulators[1].supply = "vddio";
2181 	err = devm_regulator_bulk_get(dev, ARRAY_SIZE(hw->regulators),
2182 				      hw->regulators);
2183 	if (err)
2184 		return dev_err_probe(dev, err, "failed to get regulators\n");
2185 
2186 	err = regulator_bulk_enable(ARRAY_SIZE(hw->regulators),
2187 				    hw->regulators);
2188 	if (err) {
2189 		dev_err(dev, "failed to enable regulators: %d\n", err);
2190 		return err;
2191 	}
2192 
2193 	msleep(50);
2194 
2195 	return 0;
2196 }
2197 
2198 static void st_lsm6dsx_chip_uninit(void *data)
2199 {
2200 	struct st_lsm6dsx_hw *hw = data;
2201 
2202 	regulator_bulk_disable(ARRAY_SIZE(hw->regulators), hw->regulators);
2203 }
2204 
2205 int st_lsm6dsx_probe(struct device *dev, int irq, int hw_id,
2206 		     struct regmap *regmap)
2207 {
2208 	struct st_sensors_platform_data *pdata = dev->platform_data;
2209 	const struct st_lsm6dsx_shub_settings *hub_settings;
2210 	struct st_lsm6dsx_hw *hw;
2211 	const char *name = NULL;
2212 	int i, err;
2213 
2214 	hw = devm_kzalloc(dev, sizeof(*hw), GFP_KERNEL);
2215 	if (!hw)
2216 		return -ENOMEM;
2217 
2218 	dev_set_drvdata(dev, (void *)hw);
2219 
2220 	mutex_init(&hw->fifo_lock);
2221 	mutex_init(&hw->conf_lock);
2222 	mutex_init(&hw->page_lock);
2223 
2224 	err = st_lsm6dsx_init_regulators(dev);
2225 	if (err)
2226 		return err;
2227 
2228 	err = devm_add_action_or_reset(dev, st_lsm6dsx_chip_uninit, hw);
2229 	if (err)
2230 		return err;
2231 
2232 	hw->buff = devm_kzalloc(dev, ST_LSM6DSX_BUFF_SIZE, GFP_KERNEL);
2233 	if (!hw->buff)
2234 		return -ENOMEM;
2235 
2236 	hw->dev = dev;
2237 	hw->irq = irq;
2238 	hw->regmap = regmap;
2239 
2240 	err = st_lsm6dsx_check_whoami(hw, hw_id, &name);
2241 	if (err < 0)
2242 		return err;
2243 
2244 	for (i = 0; i < ST_LSM6DSX_ID_EXT0; i++) {
2245 		hw->iio_devs[i] = st_lsm6dsx_alloc_iiodev(hw, i, name);
2246 		if (!hw->iio_devs[i])
2247 			return -ENOMEM;
2248 	}
2249 
2250 	err = st_lsm6dsx_init_device(hw);
2251 	if (err < 0)
2252 		return err;
2253 
2254 	hub_settings = &hw->settings->shub_settings;
2255 	if (hub_settings->master_en.addr &&
2256 	    (!dev_fwnode(dev) ||
2257 	     !device_property_read_bool(dev, "st,disable-sensor-hub"))) {
2258 		err = st_lsm6dsx_shub_probe(hw, name);
2259 		if (err < 0)
2260 			return err;
2261 	}
2262 
2263 	if (hw->irq > 0) {
2264 		err = st_lsm6dsx_irq_setup(hw);
2265 		if (err < 0)
2266 			return err;
2267 
2268 		err = st_lsm6dsx_fifo_setup(hw);
2269 		if (err < 0)
2270 			return err;
2271 	}
2272 
2273 	err = iio_read_mount_matrix(hw->dev, &hw->orientation);
2274 	if (err)
2275 		return err;
2276 
2277 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
2278 		if (!hw->iio_devs[i])
2279 			continue;
2280 
2281 		err = devm_iio_device_register(hw->dev, hw->iio_devs[i]);
2282 		if (err)
2283 			return err;
2284 	}
2285 
2286 	if ((dev_fwnode(dev) && device_property_read_bool(dev, "wakeup-source")) ||
2287 	    (pdata && pdata->wakeup_source))
2288 		device_init_wakeup(dev, true);
2289 
2290 	return 0;
2291 }
2292 EXPORT_SYMBOL(st_lsm6dsx_probe);
2293 
2294 static int __maybe_unused st_lsm6dsx_suspend(struct device *dev)
2295 {
2296 	struct st_lsm6dsx_hw *hw = dev_get_drvdata(dev);
2297 	struct st_lsm6dsx_sensor *sensor;
2298 	int i, err = 0;
2299 
2300 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
2301 		if (!hw->iio_devs[i])
2302 			continue;
2303 
2304 		sensor = iio_priv(hw->iio_devs[i]);
2305 		if (!(hw->enable_mask & BIT(sensor->id)))
2306 			continue;
2307 
2308 		if (device_may_wakeup(dev) &&
2309 		    sensor->id == ST_LSM6DSX_ID_ACC && hw->enable_event) {
2310 			/* Enable wake from IRQ */
2311 			enable_irq_wake(hw->irq);
2312 			continue;
2313 		}
2314 
2315 		if (sensor->id == ST_LSM6DSX_ID_EXT0 ||
2316 		    sensor->id == ST_LSM6DSX_ID_EXT1 ||
2317 		    sensor->id == ST_LSM6DSX_ID_EXT2)
2318 			err = st_lsm6dsx_shub_set_enable(sensor, false);
2319 		else
2320 			err = st_lsm6dsx_sensor_set_enable(sensor, false);
2321 		if (err < 0)
2322 			return err;
2323 
2324 		hw->suspend_mask |= BIT(sensor->id);
2325 	}
2326 
2327 	if (hw->fifo_mask)
2328 		err = st_lsm6dsx_flush_fifo(hw);
2329 
2330 	return err;
2331 }
2332 
2333 static int __maybe_unused st_lsm6dsx_resume(struct device *dev)
2334 {
2335 	struct st_lsm6dsx_hw *hw = dev_get_drvdata(dev);
2336 	struct st_lsm6dsx_sensor *sensor;
2337 	int i, err = 0;
2338 
2339 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
2340 		if (!hw->iio_devs[i])
2341 			continue;
2342 
2343 		sensor = iio_priv(hw->iio_devs[i]);
2344 		if (device_may_wakeup(dev) &&
2345 		    sensor->id == ST_LSM6DSX_ID_ACC && hw->enable_event)
2346 			disable_irq_wake(hw->irq);
2347 
2348 		if (!(hw->suspend_mask & BIT(sensor->id)))
2349 			continue;
2350 
2351 		if (sensor->id == ST_LSM6DSX_ID_EXT0 ||
2352 		    sensor->id == ST_LSM6DSX_ID_EXT1 ||
2353 		    sensor->id == ST_LSM6DSX_ID_EXT2)
2354 			err = st_lsm6dsx_shub_set_enable(sensor, true);
2355 		else
2356 			err = st_lsm6dsx_sensor_set_enable(sensor, true);
2357 		if (err < 0)
2358 			return err;
2359 
2360 		hw->suspend_mask &= ~BIT(sensor->id);
2361 	}
2362 
2363 	if (hw->fifo_mask)
2364 		err = st_lsm6dsx_resume_fifo(hw);
2365 
2366 	return err;
2367 }
2368 
2369 const struct dev_pm_ops st_lsm6dsx_pm_ops = {
2370 	SET_SYSTEM_SLEEP_PM_OPS(st_lsm6dsx_suspend, st_lsm6dsx_resume)
2371 };
2372 EXPORT_SYMBOL(st_lsm6dsx_pm_ops);
2373 
2374 MODULE_AUTHOR("Lorenzo Bianconi <lorenzo.bianconi@st.com>");
2375 MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>");
2376 MODULE_DESCRIPTION("STMicroelectronics st_lsm6dsx driver");
2377 MODULE_LICENSE("GPL v2");
2378