xref: /openbmc/linux/drivers/iio/imu/st_lsm6dsx/st_lsm6dsx_buffer.c (revision fed8b7e366e7c8f81e957ef91aa8f0a38e038c66)
1 /*
2  * STMicroelectronics st_lsm6dsx FIFO buffer library driver
3  *
4  * LSM6DS3/LSM6DS3H/LSM6DSL/LSM6DSM/ISM330DLC: The FIFO buffer can be
5  * configured to store data from gyroscope and accelerometer. Samples are
6  * queued without any tag according to a specific pattern based on
7  * 'FIFO data sets' (6 bytes each):
8  *  - 1st data set is reserved for gyroscope data
9  *  - 2nd data set is reserved for accelerometer data
10  * The FIFO pattern changes depending on the ODRs and decimation factors
11  * assigned to the FIFO data sets. The first sequence of data stored in FIFO
12  * buffer contains the data of all the enabled FIFO data sets
13  * (e.g. Gx, Gy, Gz, Ax, Ay, Az), then data are repeated depending on the
14  * value of the decimation factor and ODR set for each FIFO data set.
15  *
16  * LSM6DSO: The FIFO buffer can be configured to store data from gyroscope and
17  * accelerometer. Each sample is queued with a tag (1B) indicating data source
18  * (gyroscope, accelerometer, hw timer).
19  *
20  * FIFO supported modes:
21  *  - BYPASS: FIFO disabled
22  *  - CONTINUOUS: FIFO enabled. When the buffer is full, the FIFO index
23  *    restarts from the beginning and the oldest sample is overwritten
24  *
25  * Copyright 2016 STMicroelectronics Inc.
26  *
27  * Lorenzo Bianconi <lorenzo.bianconi@st.com>
28  * Denis Ciocca <denis.ciocca@st.com>
29  *
30  * Licensed under the GPL-2.
31  */
32 #include <linux/module.h>
33 #include <linux/interrupt.h>
34 #include <linux/irq.h>
35 #include <linux/iio/kfifo_buf.h>
36 #include <linux/iio/iio.h>
37 #include <linux/iio/buffer.h>
38 #include <linux/regmap.h>
39 #include <linux/bitfield.h>
40 
41 #include <linux/platform_data/st_sensors_pdata.h>
42 
43 #include "st_lsm6dsx.h"
44 
45 #define ST_LSM6DSX_REG_HLACTIVE_ADDR		0x12
46 #define ST_LSM6DSX_REG_HLACTIVE_MASK		BIT(5)
47 #define ST_LSM6DSX_REG_PP_OD_ADDR		0x12
48 #define ST_LSM6DSX_REG_PP_OD_MASK		BIT(4)
49 #define ST_LSM6DSX_REG_FIFO_MODE_ADDR		0x0a
50 #define ST_LSM6DSX_FIFO_MODE_MASK		GENMASK(2, 0)
51 #define ST_LSM6DSX_FIFO_ODR_MASK		GENMASK(6, 3)
52 #define ST_LSM6DSX_FIFO_EMPTY_MASK		BIT(12)
53 #define ST_LSM6DSX_REG_FIFO_OUTL_ADDR		0x3e
54 #define ST_LSM6DSX_REG_FIFO_OUT_TAG_ADDR	0x78
55 #define ST_LSM6DSX_REG_TS_RESET_ADDR		0x42
56 
57 #define ST_LSM6DSX_MAX_FIFO_ODR_VAL		0x08
58 
59 #define ST_LSM6DSX_TS_SENSITIVITY		25000UL /* 25us */
60 #define ST_LSM6DSX_TS_RESET_VAL			0xaa
61 
62 struct st_lsm6dsx_decimator_entry {
63 	u8 decimator;
64 	u8 val;
65 };
66 
67 enum st_lsm6dsx_fifo_tag {
68 	ST_LSM6DSX_GYRO_TAG = 0x01,
69 	ST_LSM6DSX_ACC_TAG = 0x02,
70 	ST_LSM6DSX_TS_TAG = 0x04,
71 };
72 
73 static const
74 struct st_lsm6dsx_decimator_entry st_lsm6dsx_decimator_table[] = {
75 	{  0, 0x0 },
76 	{  1, 0x1 },
77 	{  2, 0x2 },
78 	{  3, 0x3 },
79 	{  4, 0x4 },
80 	{  8, 0x5 },
81 	{ 16, 0x6 },
82 	{ 32, 0x7 },
83 };
84 
85 static int st_lsm6dsx_get_decimator_val(u8 val)
86 {
87 	const int max_size = ARRAY_SIZE(st_lsm6dsx_decimator_table);
88 	int i;
89 
90 	for (i = 0; i < max_size; i++)
91 		if (st_lsm6dsx_decimator_table[i].decimator == val)
92 			break;
93 
94 	return i == max_size ? 0 : st_lsm6dsx_decimator_table[i].val;
95 }
96 
97 static void st_lsm6dsx_get_max_min_odr(struct st_lsm6dsx_hw *hw,
98 				       u16 *max_odr, u16 *min_odr)
99 {
100 	struct st_lsm6dsx_sensor *sensor;
101 	int i;
102 
103 	*max_odr = 0, *min_odr = ~0;
104 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
105 		sensor = iio_priv(hw->iio_devs[i]);
106 
107 		if (!(hw->enable_mask & BIT(sensor->id)))
108 			continue;
109 
110 		*max_odr = max_t(u16, *max_odr, sensor->odr);
111 		*min_odr = min_t(u16, *min_odr, sensor->odr);
112 	}
113 }
114 
115 static int st_lsm6dsx_update_decimators(struct st_lsm6dsx_hw *hw)
116 {
117 	u16 max_odr, min_odr, sip = 0, ts_sip = 0;
118 	const struct st_lsm6dsx_reg *ts_dec_reg;
119 	struct st_lsm6dsx_sensor *sensor;
120 	int err = 0, i;
121 	u8 data;
122 
123 	st_lsm6dsx_get_max_min_odr(hw, &max_odr, &min_odr);
124 
125 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
126 		const struct st_lsm6dsx_reg *dec_reg;
127 
128 		sensor = iio_priv(hw->iio_devs[i]);
129 		/* update fifo decimators and sample in pattern */
130 		if (hw->enable_mask & BIT(sensor->id)) {
131 			sensor->sip = sensor->odr / min_odr;
132 			sensor->decimator = max_odr / sensor->odr;
133 			data = st_lsm6dsx_get_decimator_val(sensor->decimator);
134 		} else {
135 			sensor->sip = 0;
136 			sensor->decimator = 0;
137 			data = 0;
138 		}
139 		ts_sip = max_t(u16, ts_sip, sensor->sip);
140 
141 		dec_reg = &hw->settings->decimator[sensor->id];
142 		if (dec_reg->addr) {
143 			int val = ST_LSM6DSX_SHIFT_VAL(data, dec_reg->mask);
144 
145 			err = regmap_update_bits(hw->regmap, dec_reg->addr,
146 						 dec_reg->mask, val);
147 			if (err < 0)
148 				return err;
149 		}
150 		sip += sensor->sip;
151 	}
152 	hw->sip = sip + ts_sip;
153 	hw->ts_sip = ts_sip;
154 
155 	/*
156 	 * update hw ts decimator if necessary. Decimator for hw timestamp
157 	 * is always 1 or 0 in order to have a ts sample for each data
158 	 * sample in FIFO
159 	 */
160 	ts_dec_reg = &hw->settings->ts_settings.decimator;
161 	if (ts_dec_reg->addr) {
162 		int val, ts_dec = !!hw->ts_sip;
163 
164 		val = ST_LSM6DSX_SHIFT_VAL(ts_dec, ts_dec_reg->mask);
165 		err = regmap_update_bits(hw->regmap, ts_dec_reg->addr,
166 					 ts_dec_reg->mask, val);
167 	}
168 	return err;
169 }
170 
171 int st_lsm6dsx_set_fifo_mode(struct st_lsm6dsx_hw *hw,
172 			     enum st_lsm6dsx_fifo_mode fifo_mode)
173 {
174 	int err;
175 
176 	err = regmap_update_bits(hw->regmap, ST_LSM6DSX_REG_FIFO_MODE_ADDR,
177 				 ST_LSM6DSX_FIFO_MODE_MASK,
178 				 FIELD_PREP(ST_LSM6DSX_FIFO_MODE_MASK,
179 					    fifo_mode));
180 	if (err < 0)
181 		return err;
182 
183 	hw->fifo_mode = fifo_mode;
184 
185 	return 0;
186 }
187 
188 static int st_lsm6dsx_set_fifo_odr(struct st_lsm6dsx_sensor *sensor,
189 				   bool enable)
190 {
191 	struct st_lsm6dsx_hw *hw = sensor->hw;
192 	const struct st_lsm6dsx_reg *batch_reg;
193 	u8 data;
194 
195 	batch_reg = &hw->settings->batch[sensor->id];
196 	if (batch_reg->addr) {
197 		int val;
198 
199 		if (enable) {
200 			int err;
201 
202 			err = st_lsm6dsx_check_odr(sensor, sensor->odr,
203 						   &data);
204 			if (err < 0)
205 				return err;
206 		} else {
207 			data = 0;
208 		}
209 		val = ST_LSM6DSX_SHIFT_VAL(data, batch_reg->mask);
210 		return regmap_update_bits(hw->regmap, batch_reg->addr,
211 					  batch_reg->mask, val);
212 	} else {
213 		data = hw->enable_mask ? ST_LSM6DSX_MAX_FIFO_ODR_VAL : 0;
214 		return regmap_update_bits(hw->regmap,
215 					  ST_LSM6DSX_REG_FIFO_MODE_ADDR,
216 					  ST_LSM6DSX_FIFO_ODR_MASK,
217 					  FIELD_PREP(ST_LSM6DSX_FIFO_ODR_MASK,
218 						     data));
219 	}
220 }
221 
222 int st_lsm6dsx_update_watermark(struct st_lsm6dsx_sensor *sensor, u16 watermark)
223 {
224 	u16 fifo_watermark = ~0, cur_watermark, fifo_th_mask;
225 	struct st_lsm6dsx_hw *hw = sensor->hw;
226 	struct st_lsm6dsx_sensor *cur_sensor;
227 	int i, err, data;
228 	__le16 wdata;
229 
230 	if (!hw->sip)
231 		return 0;
232 
233 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
234 		cur_sensor = iio_priv(hw->iio_devs[i]);
235 
236 		if (!(hw->enable_mask & BIT(cur_sensor->id)))
237 			continue;
238 
239 		cur_watermark = (cur_sensor == sensor) ? watermark
240 						       : cur_sensor->watermark;
241 
242 		fifo_watermark = min_t(u16, fifo_watermark, cur_watermark);
243 	}
244 
245 	fifo_watermark = max_t(u16, fifo_watermark, hw->sip);
246 	fifo_watermark = (fifo_watermark / hw->sip) * hw->sip;
247 	fifo_watermark = fifo_watermark * hw->settings->fifo_ops.th_wl;
248 
249 	err = regmap_read(hw->regmap, hw->settings->fifo_ops.fifo_th.addr + 1,
250 			  &data);
251 	if (err < 0)
252 		return err;
253 
254 	fifo_th_mask = hw->settings->fifo_ops.fifo_th.mask;
255 	fifo_watermark = ((data << 8) & ~fifo_th_mask) |
256 			 (fifo_watermark & fifo_th_mask);
257 
258 	wdata = cpu_to_le16(fifo_watermark);
259 	return regmap_bulk_write(hw->regmap,
260 				 hw->settings->fifo_ops.fifo_th.addr,
261 				 &wdata, sizeof(wdata));
262 }
263 
264 static int st_lsm6dsx_reset_hw_ts(struct st_lsm6dsx_hw *hw)
265 {
266 	struct st_lsm6dsx_sensor *sensor;
267 	int i, err;
268 
269 	/* reset hw ts counter */
270 	err = regmap_write(hw->regmap, ST_LSM6DSX_REG_TS_RESET_ADDR,
271 			   ST_LSM6DSX_TS_RESET_VAL);
272 	if (err < 0)
273 		return err;
274 
275 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
276 		sensor = iio_priv(hw->iio_devs[i]);
277 		/*
278 		 * store enable buffer timestamp as reference for
279 		 * hw timestamp
280 		 */
281 		sensor->ts_ref = iio_get_time_ns(hw->iio_devs[i]);
282 	}
283 	return 0;
284 }
285 
286 /*
287  * Set max bulk read to ST_LSM6DSX_MAX_WORD_LEN/ST_LSM6DSX_MAX_TAGGED_WORD_LEN
288  * in order to avoid a kmalloc for each bus access
289  */
290 static inline int st_lsm6dsx_read_block(struct st_lsm6dsx_hw *hw, u8 addr,
291 					u8 *data, unsigned int data_len,
292 					unsigned int max_word_len)
293 {
294 	unsigned int word_len, read_len = 0;
295 	int err;
296 
297 	while (read_len < data_len) {
298 		word_len = min_t(unsigned int, data_len - read_len,
299 				 max_word_len);
300 		err = regmap_bulk_read(hw->regmap, addr, data + read_len,
301 				       word_len);
302 		if (err < 0)
303 			return err;
304 		read_len += word_len;
305 	}
306 	return 0;
307 }
308 
309 #define ST_LSM6DSX_IIO_BUFF_SIZE	(ALIGN(ST_LSM6DSX_SAMPLE_SIZE, \
310 					       sizeof(s64)) + sizeof(s64))
311 /**
312  * st_lsm6dsx_read_fifo() - hw FIFO read routine
313  * @hw: Pointer to instance of struct st_lsm6dsx_hw.
314  *
315  * Read samples from the hw FIFO and push them to IIO buffers.
316  *
317  * Return: Number of bytes read from the FIFO
318  */
319 int st_lsm6dsx_read_fifo(struct st_lsm6dsx_hw *hw)
320 {
321 	u16 fifo_len, pattern_len = hw->sip * ST_LSM6DSX_SAMPLE_SIZE;
322 	u16 fifo_diff_mask = hw->settings->fifo_ops.fifo_diff.mask;
323 	int err, acc_sip, gyro_sip, ts_sip, read_len, offset;
324 	struct st_lsm6dsx_sensor *acc_sensor, *gyro_sensor;
325 	u8 gyro_buff[ST_LSM6DSX_IIO_BUFF_SIZE];
326 	u8 acc_buff[ST_LSM6DSX_IIO_BUFF_SIZE];
327 	bool reset_ts = false;
328 	__le16 fifo_status;
329 	s64 ts = 0;
330 
331 	err = regmap_bulk_read(hw->regmap,
332 			       hw->settings->fifo_ops.fifo_diff.addr,
333 			       &fifo_status, sizeof(fifo_status));
334 	if (err < 0) {
335 		dev_err(hw->dev, "failed to read fifo status (err=%d)\n",
336 			err);
337 		return err;
338 	}
339 
340 	if (fifo_status & cpu_to_le16(ST_LSM6DSX_FIFO_EMPTY_MASK))
341 		return 0;
342 
343 	fifo_len = (le16_to_cpu(fifo_status) & fifo_diff_mask) *
344 		   ST_LSM6DSX_CHAN_SIZE;
345 	fifo_len = (fifo_len / pattern_len) * pattern_len;
346 
347 	acc_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]);
348 	gyro_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_GYRO]);
349 
350 	for (read_len = 0; read_len < fifo_len; read_len += pattern_len) {
351 		err = st_lsm6dsx_read_block(hw, ST_LSM6DSX_REG_FIFO_OUTL_ADDR,
352 					    hw->buff, pattern_len,
353 					    ST_LSM6DSX_MAX_WORD_LEN);
354 		if (err < 0) {
355 			dev_err(hw->dev,
356 				"failed to read pattern from fifo (err=%d)\n",
357 				err);
358 			return err;
359 		}
360 
361 		/*
362 		 * Data are written to the FIFO with a specific pattern
363 		 * depending on the configured ODRs. The first sequence of data
364 		 * stored in FIFO contains the data of all enabled sensors
365 		 * (e.g. Gx, Gy, Gz, Ax, Ay, Az, Ts), then data are repeated
366 		 * depending on the value of the decimation factor set for each
367 		 * sensor.
368 		 *
369 		 * Supposing the FIFO is storing data from gyroscope and
370 		 * accelerometer at different ODRs:
371 		 *   - gyroscope ODR = 208Hz, accelerometer ODR = 104Hz
372 		 * Since the gyroscope ODR is twice the accelerometer one, the
373 		 * following pattern is repeated every 9 samples:
374 		 *   - Gx, Gy, Gz, Ax, Ay, Az, Ts, Gx, Gy, Gz, Ts, Gx, ..
375 		 */
376 		gyro_sip = gyro_sensor->sip;
377 		acc_sip = acc_sensor->sip;
378 		ts_sip = hw->ts_sip;
379 		offset = 0;
380 
381 		while (acc_sip > 0 || gyro_sip > 0) {
382 			if (gyro_sip > 0) {
383 				memcpy(gyro_buff, &hw->buff[offset],
384 				       ST_LSM6DSX_SAMPLE_SIZE);
385 				offset += ST_LSM6DSX_SAMPLE_SIZE;
386 			}
387 			if (acc_sip > 0) {
388 				memcpy(acc_buff, &hw->buff[offset],
389 				       ST_LSM6DSX_SAMPLE_SIZE);
390 				offset += ST_LSM6DSX_SAMPLE_SIZE;
391 			}
392 
393 			if (ts_sip-- > 0) {
394 				u8 data[ST_LSM6DSX_SAMPLE_SIZE];
395 
396 				memcpy(data, &hw->buff[offset], sizeof(data));
397 				/*
398 				 * hw timestamp is 3B long and it is stored
399 				 * in FIFO using 6B as 4th FIFO data set
400 				 * according to this schema:
401 				 * B0 = ts[15:8], B1 = ts[23:16], B3 = ts[7:0]
402 				 */
403 				ts = data[1] << 16 | data[0] << 8 | data[3];
404 				/*
405 				 * check if hw timestamp engine is going to
406 				 * reset (the sensor generates an interrupt
407 				 * to signal the hw timestamp will reset in
408 				 * 1.638s)
409 				 */
410 				if (!reset_ts && ts >= 0xff0000)
411 					reset_ts = true;
412 				ts *= ST_LSM6DSX_TS_SENSITIVITY;
413 
414 				offset += ST_LSM6DSX_SAMPLE_SIZE;
415 			}
416 
417 			if (gyro_sip-- > 0)
418 				iio_push_to_buffers_with_timestamp(
419 					hw->iio_devs[ST_LSM6DSX_ID_GYRO],
420 					gyro_buff, gyro_sensor->ts_ref + ts);
421 			if (acc_sip-- > 0)
422 				iio_push_to_buffers_with_timestamp(
423 					hw->iio_devs[ST_LSM6DSX_ID_ACC],
424 					acc_buff, acc_sensor->ts_ref + ts);
425 		}
426 	}
427 
428 	if (unlikely(reset_ts)) {
429 		err = st_lsm6dsx_reset_hw_ts(hw);
430 		if (err < 0) {
431 			dev_err(hw->dev, "failed to reset hw ts (err=%d)\n",
432 				err);
433 			return err;
434 		}
435 	}
436 	return read_len;
437 }
438 
439 /**
440  * st_lsm6dsx_read_tagged_fifo() - LSM6DSO read FIFO routine
441  * @hw: Pointer to instance of struct st_lsm6dsx_hw.
442  *
443  * Read samples from the hw FIFO and push them to IIO buffers.
444  *
445  * Return: Number of bytes read from the FIFO
446  */
447 int st_lsm6dsx_read_tagged_fifo(struct st_lsm6dsx_hw *hw)
448 {
449 	u16 pattern_len = hw->sip * ST_LSM6DSX_TAGGED_SAMPLE_SIZE;
450 	u16 fifo_len, fifo_diff_mask;
451 	struct st_lsm6dsx_sensor *acc_sensor, *gyro_sensor;
452 	u8 iio_buff[ST_LSM6DSX_IIO_BUFF_SIZE], tag;
453 	bool reset_ts = false;
454 	int i, err, read_len;
455 	__le16 fifo_status;
456 	s64 ts = 0;
457 
458 	err = regmap_bulk_read(hw->regmap,
459 			       hw->settings->fifo_ops.fifo_diff.addr,
460 			       &fifo_status, sizeof(fifo_status));
461 	if (err < 0) {
462 		dev_err(hw->dev, "failed to read fifo status (err=%d)\n",
463 			err);
464 		return err;
465 	}
466 
467 	fifo_diff_mask = hw->settings->fifo_ops.fifo_diff.mask;
468 	fifo_len = (le16_to_cpu(fifo_status) & fifo_diff_mask) *
469 		   ST_LSM6DSX_TAGGED_SAMPLE_SIZE;
470 	if (!fifo_len)
471 		return 0;
472 
473 	acc_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]);
474 	gyro_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_GYRO]);
475 
476 	for (read_len = 0; read_len < fifo_len; read_len += pattern_len) {
477 		err = st_lsm6dsx_read_block(hw,
478 					    ST_LSM6DSX_REG_FIFO_OUT_TAG_ADDR,
479 					    hw->buff, pattern_len,
480 					    ST_LSM6DSX_MAX_TAGGED_WORD_LEN);
481 		if (err < 0) {
482 			dev_err(hw->dev,
483 				"failed to read pattern from fifo (err=%d)\n",
484 				err);
485 			return err;
486 		}
487 
488 		for (i = 0; i < pattern_len;
489 		     i += ST_LSM6DSX_TAGGED_SAMPLE_SIZE) {
490 			memcpy(iio_buff, &hw->buff[i + ST_LSM6DSX_TAG_SIZE],
491 			       ST_LSM6DSX_SAMPLE_SIZE);
492 
493 			tag = hw->buff[i] >> 3;
494 			switch (tag) {
495 			case ST_LSM6DSX_TS_TAG:
496 				/*
497 				 * hw timestamp is 4B long and it is stored
498 				 * in FIFO according to this schema:
499 				 * B0 = ts[7:0], B1 = ts[15:8], B2 = ts[23:16],
500 				 * B3 = ts[31:24]
501 				 */
502 				ts = le32_to_cpu(*((__le32 *)iio_buff));
503 				/*
504 				 * check if hw timestamp engine is going to
505 				 * reset (the sensor generates an interrupt
506 				 * to signal the hw timestamp will reset in
507 				 * 1.638s)
508 				 */
509 				if (!reset_ts && ts >= 0xffff0000)
510 					reset_ts = true;
511 				ts *= ST_LSM6DSX_TS_SENSITIVITY;
512 				break;
513 			case ST_LSM6DSX_GYRO_TAG:
514 				iio_push_to_buffers_with_timestamp(
515 					hw->iio_devs[ST_LSM6DSX_ID_GYRO],
516 					iio_buff, gyro_sensor->ts_ref + ts);
517 				break;
518 			case ST_LSM6DSX_ACC_TAG:
519 				iio_push_to_buffers_with_timestamp(
520 					hw->iio_devs[ST_LSM6DSX_ID_ACC],
521 					iio_buff, acc_sensor->ts_ref + ts);
522 				break;
523 			default:
524 				break;
525 			}
526 		}
527 	}
528 
529 	if (unlikely(reset_ts)) {
530 		err = st_lsm6dsx_reset_hw_ts(hw);
531 		if (err < 0)
532 			return err;
533 	}
534 	return read_len;
535 }
536 
537 int st_lsm6dsx_flush_fifo(struct st_lsm6dsx_hw *hw)
538 {
539 	int err;
540 
541 	mutex_lock(&hw->fifo_lock);
542 
543 	hw->settings->fifo_ops.read_fifo(hw);
544 	err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_BYPASS);
545 
546 	mutex_unlock(&hw->fifo_lock);
547 
548 	return err;
549 }
550 
551 static int st_lsm6dsx_update_fifo(struct iio_dev *iio_dev, bool enable)
552 {
553 	struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
554 	struct st_lsm6dsx_hw *hw = sensor->hw;
555 	int err;
556 
557 	mutex_lock(&hw->conf_lock);
558 
559 	if (hw->fifo_mode != ST_LSM6DSX_FIFO_BYPASS) {
560 		err = st_lsm6dsx_flush_fifo(hw);
561 		if (err < 0)
562 			goto out;
563 	}
564 
565 	if (enable) {
566 		err = st_lsm6dsx_sensor_enable(sensor);
567 		if (err < 0)
568 			goto out;
569 	} else {
570 		err = st_lsm6dsx_sensor_disable(sensor);
571 		if (err < 0)
572 			goto out;
573 	}
574 
575 	err = st_lsm6dsx_set_fifo_odr(sensor, enable);
576 	if (err < 0)
577 		goto out;
578 
579 	err = st_lsm6dsx_update_decimators(hw);
580 	if (err < 0)
581 		goto out;
582 
583 	err = st_lsm6dsx_update_watermark(sensor, sensor->watermark);
584 	if (err < 0)
585 		goto out;
586 
587 	if (hw->enable_mask) {
588 		/* reset hw ts counter */
589 		err = st_lsm6dsx_reset_hw_ts(hw);
590 		if (err < 0)
591 			goto out;
592 
593 		err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_CONT);
594 	}
595 
596 out:
597 	mutex_unlock(&hw->conf_lock);
598 
599 	return err;
600 }
601 
602 static irqreturn_t st_lsm6dsx_handler_irq(int irq, void *private)
603 {
604 	struct st_lsm6dsx_hw *hw = private;
605 
606 	return hw->sip > 0 ? IRQ_WAKE_THREAD : IRQ_NONE;
607 }
608 
609 static irqreturn_t st_lsm6dsx_handler_thread(int irq, void *private)
610 {
611 	struct st_lsm6dsx_hw *hw = private;
612 	int count;
613 
614 	mutex_lock(&hw->fifo_lock);
615 	count = hw->settings->fifo_ops.read_fifo(hw);
616 	mutex_unlock(&hw->fifo_lock);
617 
618 	return !count ? IRQ_NONE : IRQ_HANDLED;
619 }
620 
621 static int st_lsm6dsx_buffer_preenable(struct iio_dev *iio_dev)
622 {
623 	return st_lsm6dsx_update_fifo(iio_dev, true);
624 }
625 
626 static int st_lsm6dsx_buffer_postdisable(struct iio_dev *iio_dev)
627 {
628 	return st_lsm6dsx_update_fifo(iio_dev, false);
629 }
630 
631 static const struct iio_buffer_setup_ops st_lsm6dsx_buffer_ops = {
632 	.preenable = st_lsm6dsx_buffer_preenable,
633 	.postdisable = st_lsm6dsx_buffer_postdisable,
634 };
635 
636 int st_lsm6dsx_fifo_setup(struct st_lsm6dsx_hw *hw)
637 {
638 	struct device_node *np = hw->dev->of_node;
639 	struct st_sensors_platform_data *pdata;
640 	struct iio_buffer *buffer;
641 	unsigned long irq_type;
642 	bool irq_active_low;
643 	int i, err;
644 
645 	irq_type = irqd_get_trigger_type(irq_get_irq_data(hw->irq));
646 
647 	switch (irq_type) {
648 	case IRQF_TRIGGER_HIGH:
649 	case IRQF_TRIGGER_RISING:
650 		irq_active_low = false;
651 		break;
652 	case IRQF_TRIGGER_LOW:
653 	case IRQF_TRIGGER_FALLING:
654 		irq_active_low = true;
655 		break;
656 	default:
657 		dev_info(hw->dev, "mode %lx unsupported\n", irq_type);
658 		return -EINVAL;
659 	}
660 
661 	err = regmap_update_bits(hw->regmap, ST_LSM6DSX_REG_HLACTIVE_ADDR,
662 				 ST_LSM6DSX_REG_HLACTIVE_MASK,
663 				 FIELD_PREP(ST_LSM6DSX_REG_HLACTIVE_MASK,
664 					    irq_active_low));
665 	if (err < 0)
666 		return err;
667 
668 	pdata = (struct st_sensors_platform_data *)hw->dev->platform_data;
669 	if ((np && of_property_read_bool(np, "drive-open-drain")) ||
670 	    (pdata && pdata->open_drain)) {
671 		err = regmap_update_bits(hw->regmap, ST_LSM6DSX_REG_PP_OD_ADDR,
672 					 ST_LSM6DSX_REG_PP_OD_MASK,
673 					 FIELD_PREP(ST_LSM6DSX_REG_PP_OD_MASK,
674 						    1));
675 		if (err < 0)
676 			return err;
677 
678 		irq_type |= IRQF_SHARED;
679 	}
680 
681 	err = devm_request_threaded_irq(hw->dev, hw->irq,
682 					st_lsm6dsx_handler_irq,
683 					st_lsm6dsx_handler_thread,
684 					irq_type | IRQF_ONESHOT,
685 					"lsm6dsx", hw);
686 	if (err) {
687 		dev_err(hw->dev, "failed to request trigger irq %d\n",
688 			hw->irq);
689 		return err;
690 	}
691 
692 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
693 		buffer = devm_iio_kfifo_allocate(hw->dev);
694 		if (!buffer)
695 			return -ENOMEM;
696 
697 		iio_device_attach_buffer(hw->iio_devs[i], buffer);
698 		hw->iio_devs[i]->modes |= INDIO_BUFFER_SOFTWARE;
699 		hw->iio_devs[i]->setup_ops = &st_lsm6dsx_buffer_ops;
700 	}
701 
702 	return 0;
703 }
704