1 /*
2  * STMicroelectronics st_lsm6dsx FIFO buffer library driver
3  *
4  * LSM6DS3/LSM6DS3H/LSM6DSL/LSM6DSM/ISM330DLC: The FIFO buffer can be
5  * configured to store data from gyroscope and accelerometer. Samples are
6  * queued without any tag according to a specific pattern based on
7  * 'FIFO data sets' (6 bytes each):
8  *  - 1st data set is reserved for gyroscope data
9  *  - 2nd data set is reserved for accelerometer data
10  * The FIFO pattern changes depending on the ODRs and decimation factors
11  * assigned to the FIFO data sets. The first sequence of data stored in FIFO
12  * buffer contains the data of all the enabled FIFO data sets
13  * (e.g. Gx, Gy, Gz, Ax, Ay, Az), then data are repeated depending on the
14  * value of the decimation factor and ODR set for each FIFO data set.
15  * FIFO supported modes:
16  *  - BYPASS: FIFO disabled
17  *  - CONTINUOUS: FIFO enabled. When the buffer is full, the FIFO index
18  *    restarts from the beginning and the oldest sample is overwritten
19  *
20  * Copyright 2016 STMicroelectronics Inc.
21  *
22  * Lorenzo Bianconi <lorenzo.bianconi@st.com>
23  * Denis Ciocca <denis.ciocca@st.com>
24  *
25  * Licensed under the GPL-2.
26  */
27 #include <linux/module.h>
28 #include <linux/interrupt.h>
29 #include <linux/irq.h>
30 #include <linux/iio/kfifo_buf.h>
31 #include <linux/iio/iio.h>
32 #include <linux/iio/buffer.h>
33 #include <linux/regmap.h>
34 #include <linux/bitfield.h>
35 
36 #include <linux/platform_data/st_sensors_pdata.h>
37 
38 #include "st_lsm6dsx.h"
39 
40 #define ST_LSM6DSX_REG_HLACTIVE_ADDR		0x12
41 #define ST_LSM6DSX_REG_HLACTIVE_MASK		BIT(5)
42 #define ST_LSM6DSX_REG_PP_OD_ADDR		0x12
43 #define ST_LSM6DSX_REG_PP_OD_MASK		BIT(4)
44 #define ST_LSM6DSX_REG_FIFO_MODE_ADDR		0x0a
45 #define ST_LSM6DSX_FIFO_MODE_MASK		GENMASK(2, 0)
46 #define ST_LSM6DSX_FIFO_ODR_MASK		GENMASK(6, 3)
47 #define ST_LSM6DSX_FIFO_EMPTY_MASK		BIT(12)
48 #define ST_LSM6DSX_REG_FIFO_OUTL_ADDR		0x3e
49 #define ST_LSM6DSX_REG_TS_RESET_ADDR		0x42
50 
51 #define ST_LSM6DSX_MAX_FIFO_ODR_VAL		0x08
52 
53 #define ST_LSM6DSX_TS_SENSITIVITY		25000UL /* 25us */
54 #define ST_LSM6DSX_TS_RESET_VAL			0xaa
55 
56 struct st_lsm6dsx_decimator_entry {
57 	u8 decimator;
58 	u8 val;
59 };
60 
61 static const
62 struct st_lsm6dsx_decimator_entry st_lsm6dsx_decimator_table[] = {
63 	{  0, 0x0 },
64 	{  1, 0x1 },
65 	{  2, 0x2 },
66 	{  3, 0x3 },
67 	{  4, 0x4 },
68 	{  8, 0x5 },
69 	{ 16, 0x6 },
70 	{ 32, 0x7 },
71 };
72 
73 static int st_lsm6dsx_get_decimator_val(u8 val)
74 {
75 	const int max_size = ARRAY_SIZE(st_lsm6dsx_decimator_table);
76 	int i;
77 
78 	for (i = 0; i < max_size; i++)
79 		if (st_lsm6dsx_decimator_table[i].decimator == val)
80 			break;
81 
82 	return i == max_size ? 0 : st_lsm6dsx_decimator_table[i].val;
83 }
84 
85 static void st_lsm6dsx_get_max_min_odr(struct st_lsm6dsx_hw *hw,
86 				       u16 *max_odr, u16 *min_odr)
87 {
88 	struct st_lsm6dsx_sensor *sensor;
89 	int i;
90 
91 	*max_odr = 0, *min_odr = ~0;
92 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
93 		sensor = iio_priv(hw->iio_devs[i]);
94 
95 		if (!(hw->enable_mask & BIT(sensor->id)))
96 			continue;
97 
98 		*max_odr = max_t(u16, *max_odr, sensor->odr);
99 		*min_odr = min_t(u16, *min_odr, sensor->odr);
100 	}
101 }
102 
103 static int st_lsm6dsx_update_decimators(struct st_lsm6dsx_hw *hw)
104 {
105 	u16 max_odr, min_odr, sip = 0, ts_sip = 0;
106 	const struct st_lsm6dsx_reg *ts_dec_reg;
107 	struct st_lsm6dsx_sensor *sensor;
108 	int err = 0, i;
109 	u8 data;
110 
111 	st_lsm6dsx_get_max_min_odr(hw, &max_odr, &min_odr);
112 
113 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
114 		const struct st_lsm6dsx_reg *dec_reg;
115 
116 		sensor = iio_priv(hw->iio_devs[i]);
117 		/* update fifo decimators and sample in pattern */
118 		if (hw->enable_mask & BIT(sensor->id)) {
119 			sensor->sip = sensor->odr / min_odr;
120 			sensor->decimator = max_odr / sensor->odr;
121 			data = st_lsm6dsx_get_decimator_val(sensor->decimator);
122 		} else {
123 			sensor->sip = 0;
124 			sensor->decimator = 0;
125 			data = 0;
126 		}
127 		ts_sip = max_t(u16, ts_sip, sensor->sip);
128 
129 		dec_reg = &hw->settings->decimator[sensor->id];
130 		if (dec_reg->addr) {
131 			int val = ST_LSM6DSX_SHIFT_VAL(data, dec_reg->mask);
132 
133 			err = regmap_update_bits(hw->regmap, dec_reg->addr,
134 						 dec_reg->mask, val);
135 			if (err < 0)
136 				return err;
137 		}
138 		sip += sensor->sip;
139 	}
140 	hw->sip = sip + ts_sip;
141 	hw->ts_sip = ts_sip;
142 
143 	/*
144 	 * update hw ts decimator if necessary. Decimator for hw timestamp
145 	 * is always 1 or 0 in order to have a ts sample for each data
146 	 * sample in FIFO
147 	 */
148 	ts_dec_reg = &hw->settings->ts_settings.decimator;
149 	if (ts_dec_reg->addr) {
150 		int val, ts_dec = !!hw->ts_sip;
151 
152 		val = ST_LSM6DSX_SHIFT_VAL(ts_dec, ts_dec_reg->mask);
153 		err = regmap_update_bits(hw->regmap, ts_dec_reg->addr,
154 					 ts_dec_reg->mask, val);
155 	}
156 	return err;
157 }
158 
159 int st_lsm6dsx_set_fifo_mode(struct st_lsm6dsx_hw *hw,
160 			     enum st_lsm6dsx_fifo_mode fifo_mode)
161 {
162 	int err;
163 
164 	err = regmap_update_bits(hw->regmap, ST_LSM6DSX_REG_FIFO_MODE_ADDR,
165 				 ST_LSM6DSX_FIFO_MODE_MASK,
166 				 FIELD_PREP(ST_LSM6DSX_FIFO_MODE_MASK,
167 					    fifo_mode));
168 	if (err < 0)
169 		return err;
170 
171 	hw->fifo_mode = fifo_mode;
172 
173 	return 0;
174 }
175 
176 static int st_lsm6dsx_set_fifo_odr(struct st_lsm6dsx_sensor *sensor,
177 				   bool enable)
178 {
179 	struct st_lsm6dsx_hw *hw = sensor->hw;
180 	u8 data;
181 
182 	data = hw->enable_mask ? ST_LSM6DSX_MAX_FIFO_ODR_VAL : 0;
183 	return regmap_update_bits(hw->regmap, ST_LSM6DSX_REG_FIFO_MODE_ADDR,
184 				 ST_LSM6DSX_FIFO_ODR_MASK,
185 				 FIELD_PREP(ST_LSM6DSX_FIFO_ODR_MASK, data));
186 }
187 
188 int st_lsm6dsx_update_watermark(struct st_lsm6dsx_sensor *sensor, u16 watermark)
189 {
190 	u16 fifo_watermark = ~0, cur_watermark, sip = 0, fifo_th_mask;
191 	struct st_lsm6dsx_hw *hw = sensor->hw;
192 	struct st_lsm6dsx_sensor *cur_sensor;
193 	int i, err, data;
194 	__le16 wdata;
195 
196 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
197 		cur_sensor = iio_priv(hw->iio_devs[i]);
198 
199 		if (!(hw->enable_mask & BIT(cur_sensor->id)))
200 			continue;
201 
202 		cur_watermark = (cur_sensor == sensor) ? watermark
203 						       : cur_sensor->watermark;
204 
205 		fifo_watermark = min_t(u16, fifo_watermark, cur_watermark);
206 		sip += cur_sensor->sip;
207 	}
208 
209 	if (!sip)
210 		return 0;
211 
212 	fifo_watermark = max_t(u16, fifo_watermark, sip);
213 	fifo_watermark = (fifo_watermark / sip) * sip;
214 	fifo_watermark = fifo_watermark * hw->settings->fifo_ops.th_wl;
215 
216 	err = regmap_read(hw->regmap, hw->settings->fifo_ops.fifo_th.addr + 1,
217 			  &data);
218 	if (err < 0)
219 		return err;
220 
221 	fifo_th_mask = hw->settings->fifo_ops.fifo_th.mask;
222 	fifo_watermark = ((data << 8) & ~fifo_th_mask) |
223 			 (fifo_watermark & fifo_th_mask);
224 
225 	wdata = cpu_to_le16(fifo_watermark);
226 	return regmap_bulk_write(hw->regmap,
227 				 hw->settings->fifo_ops.fifo_th.addr,
228 				 &wdata, sizeof(wdata));
229 }
230 
231 static int st_lsm6dsx_reset_hw_ts(struct st_lsm6dsx_hw *hw)
232 {
233 	struct st_lsm6dsx_sensor *sensor;
234 	int i, err;
235 
236 	/* reset hw ts counter */
237 	err = regmap_write(hw->regmap, ST_LSM6DSX_REG_TS_RESET_ADDR,
238 			   ST_LSM6DSX_TS_RESET_VAL);
239 	if (err < 0)
240 		return err;
241 
242 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
243 		sensor = iio_priv(hw->iio_devs[i]);
244 		/*
245 		 * store enable buffer timestamp as reference for
246 		 * hw timestamp
247 		 */
248 		sensor->ts_ref = iio_get_time_ns(hw->iio_devs[i]);
249 	}
250 	return 0;
251 }
252 
253 /*
254  * Set max bulk read to ST_LSM6DSX_MAX_WORD_LEN in order to avoid
255  * a kmalloc for each bus access
256  */
257 static inline int st_lsm6dsx_read_block(struct st_lsm6dsx_hw *hw, u8 *data,
258 					unsigned int data_len)
259 {
260 	unsigned int word_len, read_len = 0;
261 	int err;
262 
263 	while (read_len < data_len) {
264 		word_len = min_t(unsigned int, data_len - read_len,
265 				 ST_LSM6DSX_MAX_WORD_LEN);
266 		err = regmap_bulk_read(hw->regmap,
267 				       ST_LSM6DSX_REG_FIFO_OUTL_ADDR,
268 				       data + read_len, word_len);
269 		if (err < 0)
270 			return err;
271 		read_len += word_len;
272 	}
273 	return 0;
274 }
275 
276 #define ST_LSM6DSX_IIO_BUFF_SIZE	(ALIGN(ST_LSM6DSX_SAMPLE_SIZE, \
277 					       sizeof(s64)) + sizeof(s64))
278 /**
279  * st_lsm6dsx_read_fifo() - hw FIFO read routine
280  * @hw: Pointer to instance of struct st_lsm6dsx_hw.
281  *
282  * Read samples from the hw FIFO and push them to IIO buffers.
283  *
284  * Return: Number of bytes read from the FIFO
285  */
286 static int st_lsm6dsx_read_fifo(struct st_lsm6dsx_hw *hw)
287 {
288 	u16 fifo_len, pattern_len = hw->sip * ST_LSM6DSX_SAMPLE_SIZE;
289 	u16 fifo_diff_mask = hw->settings->fifo_ops.fifo_diff.mask;
290 	int err, acc_sip, gyro_sip, ts_sip, read_len, offset;
291 	struct st_lsm6dsx_sensor *acc_sensor, *gyro_sensor;
292 	u8 gyro_buff[ST_LSM6DSX_IIO_BUFF_SIZE];
293 	u8 acc_buff[ST_LSM6DSX_IIO_BUFF_SIZE];
294 	bool reset_ts = false;
295 	__le16 fifo_status;
296 	s64 ts = 0;
297 
298 	err = regmap_bulk_read(hw->regmap,
299 			       hw->settings->fifo_ops.fifo_diff.addr,
300 			       &fifo_status, sizeof(fifo_status));
301 	if (err < 0)
302 		return err;
303 
304 	if (fifo_status & cpu_to_le16(ST_LSM6DSX_FIFO_EMPTY_MASK))
305 		return 0;
306 
307 	fifo_len = (le16_to_cpu(fifo_status) & fifo_diff_mask) *
308 		   ST_LSM6DSX_CHAN_SIZE;
309 	fifo_len = (fifo_len / pattern_len) * pattern_len;
310 
311 	acc_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]);
312 	gyro_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_GYRO]);
313 
314 	for (read_len = 0; read_len < fifo_len; read_len += pattern_len) {
315 		err = st_lsm6dsx_read_block(hw, hw->buff, pattern_len);
316 		if (err < 0)
317 			return err;
318 
319 		/*
320 		 * Data are written to the FIFO with a specific pattern
321 		 * depending on the configured ODRs. The first sequence of data
322 		 * stored in FIFO contains the data of all enabled sensors
323 		 * (e.g. Gx, Gy, Gz, Ax, Ay, Az, Ts), then data are repeated
324 		 * depending on the value of the decimation factor set for each
325 		 * sensor.
326 		 *
327 		 * Supposing the FIFO is storing data from gyroscope and
328 		 * accelerometer at different ODRs:
329 		 *   - gyroscope ODR = 208Hz, accelerometer ODR = 104Hz
330 		 * Since the gyroscope ODR is twice the accelerometer one, the
331 		 * following pattern is repeated every 9 samples:
332 		 *   - Gx, Gy, Gz, Ax, Ay, Az, Ts, Gx, Gy, Gz, Ts, Gx, ..
333 		 */
334 		gyro_sip = gyro_sensor->sip;
335 		acc_sip = acc_sensor->sip;
336 		ts_sip = hw->ts_sip;
337 		offset = 0;
338 
339 		while (acc_sip > 0 || gyro_sip > 0) {
340 			if (gyro_sip > 0) {
341 				memcpy(gyro_buff, &hw->buff[offset],
342 				       ST_LSM6DSX_SAMPLE_SIZE);
343 				offset += ST_LSM6DSX_SAMPLE_SIZE;
344 			}
345 			if (acc_sip > 0) {
346 				memcpy(acc_buff, &hw->buff[offset],
347 				       ST_LSM6DSX_SAMPLE_SIZE);
348 				offset += ST_LSM6DSX_SAMPLE_SIZE;
349 			}
350 
351 			if (ts_sip-- > 0) {
352 				u8 data[ST_LSM6DSX_SAMPLE_SIZE];
353 
354 				memcpy(data, &hw->buff[offset], sizeof(data));
355 				/*
356 				 * hw timestamp is 3B long and it is stored
357 				 * in FIFO using 6B as 4th FIFO data set
358 				 * according to this schema:
359 				 * B0 = ts[15:8], B1 = ts[23:16], B3 = ts[7:0]
360 				 */
361 				ts = data[1] << 16 | data[0] << 8 | data[3];
362 				/*
363 				 * check if hw timestamp engine is going to
364 				 * reset (the sensor generates an interrupt
365 				 * to signal the hw timestamp will reset in
366 				 * 1.638s)
367 				 */
368 				if (!reset_ts && ts >= 0xff0000)
369 					reset_ts = true;
370 				ts *= ST_LSM6DSX_TS_SENSITIVITY;
371 
372 				offset += ST_LSM6DSX_SAMPLE_SIZE;
373 			}
374 
375 			if (gyro_sip-- > 0)
376 				iio_push_to_buffers_with_timestamp(
377 					hw->iio_devs[ST_LSM6DSX_ID_GYRO],
378 					gyro_buff, gyro_sensor->ts_ref + ts);
379 			if (acc_sip-- > 0)
380 				iio_push_to_buffers_with_timestamp(
381 					hw->iio_devs[ST_LSM6DSX_ID_ACC],
382 					acc_buff, acc_sensor->ts_ref + ts);
383 		}
384 	}
385 
386 	if (unlikely(reset_ts)) {
387 		err = st_lsm6dsx_reset_hw_ts(hw);
388 		if (err < 0)
389 			return err;
390 	}
391 	return read_len;
392 }
393 
394 int st_lsm6dsx_flush_fifo(struct st_lsm6dsx_hw *hw)
395 {
396 	int err;
397 
398 	mutex_lock(&hw->fifo_lock);
399 
400 	st_lsm6dsx_read_fifo(hw);
401 	err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_BYPASS);
402 
403 	mutex_unlock(&hw->fifo_lock);
404 
405 	return err;
406 }
407 
408 static int st_lsm6dsx_update_fifo(struct iio_dev *iio_dev, bool enable)
409 {
410 	struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
411 	struct st_lsm6dsx_hw *hw = sensor->hw;
412 	int err;
413 
414 	mutex_lock(&hw->conf_lock);
415 
416 	if (hw->fifo_mode != ST_LSM6DSX_FIFO_BYPASS) {
417 		err = st_lsm6dsx_flush_fifo(hw);
418 		if (err < 0)
419 			goto out;
420 	}
421 
422 	if (enable) {
423 		err = st_lsm6dsx_sensor_enable(sensor);
424 		if (err < 0)
425 			goto out;
426 	} else {
427 		err = st_lsm6dsx_sensor_disable(sensor);
428 		if (err < 0)
429 			goto out;
430 	}
431 
432 	err = st_lsm6dsx_set_fifo_odr(sensor, enable);
433 	if (err < 0)
434 		goto out;
435 
436 	err = st_lsm6dsx_update_decimators(hw);
437 	if (err < 0)
438 		goto out;
439 
440 	err = st_lsm6dsx_update_watermark(sensor, sensor->watermark);
441 	if (err < 0)
442 		goto out;
443 
444 	if (hw->enable_mask) {
445 		/* reset hw ts counter */
446 		err = st_lsm6dsx_reset_hw_ts(hw);
447 		if (err < 0)
448 			goto out;
449 
450 		err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_CONT);
451 	}
452 
453 out:
454 	mutex_unlock(&hw->conf_lock);
455 
456 	return err;
457 }
458 
459 static irqreturn_t st_lsm6dsx_handler_irq(int irq, void *private)
460 {
461 	struct st_lsm6dsx_hw *hw = private;
462 
463 	return hw->sip > 0 ? IRQ_WAKE_THREAD : IRQ_NONE;
464 }
465 
466 static irqreturn_t st_lsm6dsx_handler_thread(int irq, void *private)
467 {
468 	struct st_lsm6dsx_hw *hw = private;
469 	int count;
470 
471 	mutex_lock(&hw->fifo_lock);
472 	count = st_lsm6dsx_read_fifo(hw);
473 	mutex_unlock(&hw->fifo_lock);
474 
475 	return !count ? IRQ_NONE : IRQ_HANDLED;
476 }
477 
478 static int st_lsm6dsx_buffer_preenable(struct iio_dev *iio_dev)
479 {
480 	return st_lsm6dsx_update_fifo(iio_dev, true);
481 }
482 
483 static int st_lsm6dsx_buffer_postdisable(struct iio_dev *iio_dev)
484 {
485 	return st_lsm6dsx_update_fifo(iio_dev, false);
486 }
487 
488 static const struct iio_buffer_setup_ops st_lsm6dsx_buffer_ops = {
489 	.preenable = st_lsm6dsx_buffer_preenable,
490 	.postdisable = st_lsm6dsx_buffer_postdisable,
491 };
492 
493 int st_lsm6dsx_fifo_setup(struct st_lsm6dsx_hw *hw)
494 {
495 	struct device_node *np = hw->dev->of_node;
496 	struct st_sensors_platform_data *pdata;
497 	struct iio_buffer *buffer;
498 	unsigned long irq_type;
499 	bool irq_active_low;
500 	int i, err;
501 
502 	irq_type = irqd_get_trigger_type(irq_get_irq_data(hw->irq));
503 
504 	switch (irq_type) {
505 	case IRQF_TRIGGER_HIGH:
506 	case IRQF_TRIGGER_RISING:
507 		irq_active_low = false;
508 		break;
509 	case IRQF_TRIGGER_LOW:
510 	case IRQF_TRIGGER_FALLING:
511 		irq_active_low = true;
512 		break;
513 	default:
514 		dev_info(hw->dev, "mode %lx unsupported\n", irq_type);
515 		return -EINVAL;
516 	}
517 
518 	err = regmap_update_bits(hw->regmap, ST_LSM6DSX_REG_HLACTIVE_ADDR,
519 				 ST_LSM6DSX_REG_HLACTIVE_MASK,
520 				 FIELD_PREP(ST_LSM6DSX_REG_HLACTIVE_MASK,
521 					    irq_active_low));
522 	if (err < 0)
523 		return err;
524 
525 	pdata = (struct st_sensors_platform_data *)hw->dev->platform_data;
526 	if ((np && of_property_read_bool(np, "drive-open-drain")) ||
527 	    (pdata && pdata->open_drain)) {
528 		err = regmap_update_bits(hw->regmap, ST_LSM6DSX_REG_PP_OD_ADDR,
529 					 ST_LSM6DSX_REG_PP_OD_MASK,
530 					 FIELD_PREP(ST_LSM6DSX_REG_PP_OD_MASK,
531 						    1));
532 		if (err < 0)
533 			return err;
534 
535 		irq_type |= IRQF_SHARED;
536 	}
537 
538 	err = devm_request_threaded_irq(hw->dev, hw->irq,
539 					st_lsm6dsx_handler_irq,
540 					st_lsm6dsx_handler_thread,
541 					irq_type | IRQF_ONESHOT,
542 					"lsm6dsx", hw);
543 	if (err) {
544 		dev_err(hw->dev, "failed to request trigger irq %d\n",
545 			hw->irq);
546 		return err;
547 	}
548 
549 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
550 		buffer = devm_iio_kfifo_allocate(hw->dev);
551 		if (!buffer)
552 			return -ENOMEM;
553 
554 		iio_device_attach_buffer(hw->iio_devs[i], buffer);
555 		hw->iio_devs[i]->modes |= INDIO_BUFFER_SOFTWARE;
556 		hw->iio_devs[i]->setup_ops = &st_lsm6dsx_buffer_ops;
557 	}
558 
559 	return 0;
560 }
561