1 /* 2 * STMicroelectronics st_lsm6dsx FIFO buffer library driver 3 * 4 * LSM6DS3/LSM6DS3H/LSM6DSL/LSM6DSM: The FIFO buffer can be configured 5 * to store data from gyroscope and accelerometer. Samples are queued 6 * without any tag according to a specific pattern based on 'FIFO data sets' 7 * (6 bytes each): 8 * - 1st data set is reserved for gyroscope data 9 * - 2nd data set is reserved for accelerometer data 10 * The FIFO pattern changes depending on the ODRs and decimation factors 11 * assigned to the FIFO data sets. The first sequence of data stored in FIFO 12 * buffer contains the data of all the enabled FIFO data sets 13 * (e.g. Gx, Gy, Gz, Ax, Ay, Az), then data are repeated depending on the 14 * value of the decimation factor and ODR set for each FIFO data set. 15 * FIFO supported modes: 16 * - BYPASS: FIFO disabled 17 * - CONTINUOUS: FIFO enabled. When the buffer is full, the FIFO index 18 * restarts from the beginning and the oldest sample is overwritten 19 * 20 * Copyright 2016 STMicroelectronics Inc. 21 * 22 * Lorenzo Bianconi <lorenzo.bianconi@st.com> 23 * Denis Ciocca <denis.ciocca@st.com> 24 * 25 * Licensed under the GPL-2. 26 */ 27 #include <linux/module.h> 28 #include <linux/interrupt.h> 29 #include <linux/irq.h> 30 #include <linux/iio/kfifo_buf.h> 31 #include <linux/iio/iio.h> 32 #include <linux/iio/buffer.h> 33 34 #include <linux/platform_data/st_sensors_pdata.h> 35 36 #include "st_lsm6dsx.h" 37 38 #define ST_LSM6DSX_REG_HLACTIVE_ADDR 0x12 39 #define ST_LSM6DSX_REG_HLACTIVE_MASK BIT(5) 40 #define ST_LSM6DSX_REG_PP_OD_ADDR 0x12 41 #define ST_LSM6DSX_REG_PP_OD_MASK BIT(4) 42 #define ST_LSM6DSX_REG_FIFO_MODE_ADDR 0x0a 43 #define ST_LSM6DSX_FIFO_MODE_MASK GENMASK(2, 0) 44 #define ST_LSM6DSX_FIFO_ODR_MASK GENMASK(6, 3) 45 #define ST_LSM6DSX_FIFO_EMPTY_MASK BIT(12) 46 #define ST_LSM6DSX_REG_FIFO_OUTL_ADDR 0x3e 47 48 #define ST_LSM6DSX_MAX_FIFO_ODR_VAL 0x08 49 50 struct st_lsm6dsx_decimator_entry { 51 u8 decimator; 52 u8 val; 53 }; 54 55 static const 56 struct st_lsm6dsx_decimator_entry st_lsm6dsx_decimator_table[] = { 57 { 0, 0x0 }, 58 { 1, 0x1 }, 59 { 2, 0x2 }, 60 { 3, 0x3 }, 61 { 4, 0x4 }, 62 { 8, 0x5 }, 63 { 16, 0x6 }, 64 { 32, 0x7 }, 65 }; 66 67 static int st_lsm6dsx_get_decimator_val(u8 val) 68 { 69 const int max_size = ARRAY_SIZE(st_lsm6dsx_decimator_table); 70 int i; 71 72 for (i = 0; i < max_size; i++) 73 if (st_lsm6dsx_decimator_table[i].decimator == val) 74 break; 75 76 return i == max_size ? 0 : st_lsm6dsx_decimator_table[i].val; 77 } 78 79 static void st_lsm6dsx_get_max_min_odr(struct st_lsm6dsx_hw *hw, 80 u16 *max_odr, u16 *min_odr) 81 { 82 struct st_lsm6dsx_sensor *sensor; 83 int i; 84 85 *max_odr = 0, *min_odr = ~0; 86 for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) { 87 sensor = iio_priv(hw->iio_devs[i]); 88 89 if (!(hw->enable_mask & BIT(sensor->id))) 90 continue; 91 92 *max_odr = max_t(u16, *max_odr, sensor->odr); 93 *min_odr = min_t(u16, *min_odr, sensor->odr); 94 } 95 } 96 97 static int st_lsm6dsx_update_decimators(struct st_lsm6dsx_hw *hw) 98 { 99 struct st_lsm6dsx_sensor *sensor; 100 u16 max_odr, min_odr, sip = 0; 101 int err, i; 102 u8 data; 103 104 st_lsm6dsx_get_max_min_odr(hw, &max_odr, &min_odr); 105 106 for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) { 107 const struct st_lsm6dsx_reg *dec_reg; 108 109 sensor = iio_priv(hw->iio_devs[i]); 110 /* update fifo decimators and sample in pattern */ 111 if (hw->enable_mask & BIT(sensor->id)) { 112 sensor->sip = sensor->odr / min_odr; 113 sensor->decimator = max_odr / sensor->odr; 114 data = st_lsm6dsx_get_decimator_val(sensor->decimator); 115 } else { 116 sensor->sip = 0; 117 sensor->decimator = 0; 118 data = 0; 119 } 120 121 dec_reg = &hw->settings->decimator[sensor->id]; 122 if (dec_reg->addr) { 123 err = st_lsm6dsx_write_with_mask(hw, dec_reg->addr, 124 dec_reg->mask, data); 125 if (err < 0) 126 return err; 127 } 128 sip += sensor->sip; 129 } 130 hw->sip = sip; 131 132 return 0; 133 } 134 135 int st_lsm6dsx_set_fifo_mode(struct st_lsm6dsx_hw *hw, 136 enum st_lsm6dsx_fifo_mode fifo_mode) 137 { 138 int err; 139 140 err = st_lsm6dsx_write_with_mask(hw, ST_LSM6DSX_REG_FIFO_MODE_ADDR, 141 ST_LSM6DSX_FIFO_MODE_MASK, fifo_mode); 142 if (err < 0) 143 return err; 144 145 hw->fifo_mode = fifo_mode; 146 147 return 0; 148 } 149 150 static int st_lsm6dsx_set_fifo_odr(struct st_lsm6dsx_sensor *sensor, 151 bool enable) 152 { 153 struct st_lsm6dsx_hw *hw = sensor->hw; 154 u8 data; 155 156 data = hw->enable_mask ? ST_LSM6DSX_MAX_FIFO_ODR_VAL : 0; 157 return st_lsm6dsx_write_with_mask(hw, ST_LSM6DSX_REG_FIFO_MODE_ADDR, 158 ST_LSM6DSX_FIFO_ODR_MASK, data); 159 } 160 161 int st_lsm6dsx_update_watermark(struct st_lsm6dsx_sensor *sensor, u16 watermark) 162 { 163 u16 fifo_watermark = ~0, cur_watermark, sip = 0, fifo_th_mask; 164 struct st_lsm6dsx_hw *hw = sensor->hw; 165 struct st_lsm6dsx_sensor *cur_sensor; 166 __le16 wdata; 167 int i, err; 168 u8 data; 169 170 for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) { 171 cur_sensor = iio_priv(hw->iio_devs[i]); 172 173 if (!(hw->enable_mask & BIT(cur_sensor->id))) 174 continue; 175 176 cur_watermark = (cur_sensor == sensor) ? watermark 177 : cur_sensor->watermark; 178 179 fifo_watermark = min_t(u16, fifo_watermark, cur_watermark); 180 sip += cur_sensor->sip; 181 } 182 183 if (!sip) 184 return 0; 185 186 fifo_watermark = max_t(u16, fifo_watermark, sip); 187 fifo_watermark = (fifo_watermark / sip) * sip; 188 fifo_watermark = fifo_watermark * hw->settings->fifo_ops.th_wl; 189 190 mutex_lock(&hw->lock); 191 192 err = hw->tf->read(hw->dev, hw->settings->fifo_ops.fifo_th.addr + 1, 193 sizeof(data), &data); 194 if (err < 0) 195 goto out; 196 197 fifo_th_mask = hw->settings->fifo_ops.fifo_th.mask; 198 fifo_watermark = ((data << 8) & ~fifo_th_mask) | 199 (fifo_watermark & fifo_th_mask); 200 201 wdata = cpu_to_le16(fifo_watermark); 202 err = hw->tf->write(hw->dev, hw->settings->fifo_ops.fifo_th.addr, 203 sizeof(wdata), (u8 *)&wdata); 204 out: 205 mutex_unlock(&hw->lock); 206 207 return err < 0 ? err : 0; 208 } 209 210 /** 211 * st_lsm6dsx_read_fifo() - LSM6DS3-LSM6DS3H-LSM6DSL-LSM6DSM read FIFO routine 212 * @hw: Pointer to instance of struct st_lsm6dsx_hw. 213 * 214 * Read samples from the hw FIFO and push them to IIO buffers. 215 * 216 * Return: Number of bytes read from the FIFO 217 */ 218 static int st_lsm6dsx_read_fifo(struct st_lsm6dsx_hw *hw) 219 { 220 u16 fifo_len, pattern_len = hw->sip * ST_LSM6DSX_SAMPLE_SIZE; 221 u16 fifo_diff_mask = hw->settings->fifo_ops.fifo_diff.mask; 222 int err, acc_sip, gyro_sip, read_len, samples, offset; 223 struct st_lsm6dsx_sensor *acc_sensor, *gyro_sensor; 224 s64 acc_ts, acc_delta_ts, gyro_ts, gyro_delta_ts; 225 u8 iio_buff[ALIGN(ST_LSM6DSX_SAMPLE_SIZE, sizeof(s64)) + sizeof(s64)]; 226 u8 buff[pattern_len]; 227 __le16 fifo_status; 228 229 err = hw->tf->read(hw->dev, hw->settings->fifo_ops.fifo_diff.addr, 230 sizeof(fifo_status), (u8 *)&fifo_status); 231 if (err < 0) 232 return err; 233 234 if (fifo_status & cpu_to_le16(ST_LSM6DSX_FIFO_EMPTY_MASK)) 235 return 0; 236 237 fifo_len = (le16_to_cpu(fifo_status) & fifo_diff_mask) * 238 ST_LSM6DSX_CHAN_SIZE; 239 samples = fifo_len / ST_LSM6DSX_SAMPLE_SIZE; 240 fifo_len = (fifo_len / pattern_len) * pattern_len; 241 242 /* 243 * compute delta timestamp between two consecutive samples 244 * in order to estimate queueing time of data generated 245 * by the sensor 246 */ 247 acc_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]); 248 acc_ts = acc_sensor->ts - acc_sensor->delta_ts; 249 acc_delta_ts = div_s64(acc_sensor->delta_ts * acc_sensor->decimator, 250 samples); 251 252 gyro_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_GYRO]); 253 gyro_ts = gyro_sensor->ts - gyro_sensor->delta_ts; 254 gyro_delta_ts = div_s64(gyro_sensor->delta_ts * gyro_sensor->decimator, 255 samples); 256 257 for (read_len = 0; read_len < fifo_len; read_len += pattern_len) { 258 err = hw->tf->read(hw->dev, ST_LSM6DSX_REG_FIFO_OUTL_ADDR, 259 sizeof(buff), buff); 260 if (err < 0) 261 return err; 262 263 /* 264 * Data are written to the FIFO with a specific pattern 265 * depending on the configured ODRs. The first sequence of data 266 * stored in FIFO contains the data of all enabled sensors 267 * (e.g. Gx, Gy, Gz, Ax, Ay, Az), then data are repeated 268 * depending on the value of the decimation factor set for each 269 * sensor. 270 * 271 * Supposing the FIFO is storing data from gyroscope and 272 * accelerometer at different ODRs: 273 * - gyroscope ODR = 208Hz, accelerometer ODR = 104Hz 274 * Since the gyroscope ODR is twice the accelerometer one, the 275 * following pattern is repeated every 9 samples: 276 * - Gx, Gy, Gz, Ax, Ay, Az, Gx, Gy, Gz 277 */ 278 gyro_sip = gyro_sensor->sip; 279 acc_sip = acc_sensor->sip; 280 offset = 0; 281 282 while (acc_sip > 0 || gyro_sip > 0) { 283 if (gyro_sip-- > 0) { 284 memcpy(iio_buff, &buff[offset], 285 ST_LSM6DSX_SAMPLE_SIZE); 286 iio_push_to_buffers_with_timestamp( 287 hw->iio_devs[ST_LSM6DSX_ID_GYRO], 288 iio_buff, gyro_ts); 289 offset += ST_LSM6DSX_SAMPLE_SIZE; 290 gyro_ts += gyro_delta_ts; 291 } 292 293 if (acc_sip-- > 0) { 294 memcpy(iio_buff, &buff[offset], 295 ST_LSM6DSX_SAMPLE_SIZE); 296 iio_push_to_buffers_with_timestamp( 297 hw->iio_devs[ST_LSM6DSX_ID_ACC], 298 iio_buff, acc_ts); 299 offset += ST_LSM6DSX_SAMPLE_SIZE; 300 acc_ts += acc_delta_ts; 301 } 302 } 303 } 304 305 return read_len; 306 } 307 308 int st_lsm6dsx_flush_fifo(struct st_lsm6dsx_hw *hw) 309 { 310 int err; 311 312 mutex_lock(&hw->fifo_lock); 313 314 st_lsm6dsx_read_fifo(hw); 315 err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_BYPASS); 316 317 mutex_unlock(&hw->fifo_lock); 318 319 return err; 320 } 321 322 static int st_lsm6dsx_update_fifo(struct iio_dev *iio_dev, bool enable) 323 { 324 struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev); 325 struct st_lsm6dsx_hw *hw = sensor->hw; 326 int err; 327 328 if (hw->fifo_mode != ST_LSM6DSX_FIFO_BYPASS) { 329 err = st_lsm6dsx_flush_fifo(hw); 330 if (err < 0) 331 return err; 332 } 333 334 if (enable) { 335 err = st_lsm6dsx_sensor_enable(sensor); 336 if (err < 0) 337 return err; 338 } else { 339 err = st_lsm6dsx_sensor_disable(sensor); 340 if (err < 0) 341 return err; 342 } 343 344 err = st_lsm6dsx_set_fifo_odr(sensor, enable); 345 if (err < 0) 346 return err; 347 348 err = st_lsm6dsx_update_decimators(hw); 349 if (err < 0) 350 return err; 351 352 err = st_lsm6dsx_update_watermark(sensor, sensor->watermark); 353 if (err < 0) 354 return err; 355 356 if (hw->enable_mask) { 357 err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_CONT); 358 if (err < 0) 359 return err; 360 361 /* 362 * store enable buffer timestamp as reference to compute 363 * first delta timestamp 364 */ 365 sensor->ts = iio_get_time_ns(iio_dev); 366 } 367 368 return 0; 369 } 370 371 static irqreturn_t st_lsm6dsx_handler_irq(int irq, void *private) 372 { 373 struct st_lsm6dsx_hw *hw = private; 374 struct st_lsm6dsx_sensor *sensor; 375 int i; 376 377 if (!hw->sip) 378 return IRQ_NONE; 379 380 for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) { 381 sensor = iio_priv(hw->iio_devs[i]); 382 383 if (sensor->sip > 0) { 384 s64 timestamp; 385 386 timestamp = iio_get_time_ns(hw->iio_devs[i]); 387 sensor->delta_ts = timestamp - sensor->ts; 388 sensor->ts = timestamp; 389 } 390 } 391 392 return IRQ_WAKE_THREAD; 393 } 394 395 static irqreturn_t st_lsm6dsx_handler_thread(int irq, void *private) 396 { 397 struct st_lsm6dsx_hw *hw = private; 398 int count; 399 400 mutex_lock(&hw->fifo_lock); 401 count = st_lsm6dsx_read_fifo(hw); 402 mutex_unlock(&hw->fifo_lock); 403 404 return !count ? IRQ_NONE : IRQ_HANDLED; 405 } 406 407 static int st_lsm6dsx_buffer_preenable(struct iio_dev *iio_dev) 408 { 409 return st_lsm6dsx_update_fifo(iio_dev, true); 410 } 411 412 static int st_lsm6dsx_buffer_postdisable(struct iio_dev *iio_dev) 413 { 414 return st_lsm6dsx_update_fifo(iio_dev, false); 415 } 416 417 static const struct iio_buffer_setup_ops st_lsm6dsx_buffer_ops = { 418 .preenable = st_lsm6dsx_buffer_preenable, 419 .postdisable = st_lsm6dsx_buffer_postdisable, 420 }; 421 422 int st_lsm6dsx_fifo_setup(struct st_lsm6dsx_hw *hw) 423 { 424 struct device_node *np = hw->dev->of_node; 425 struct st_sensors_platform_data *pdata; 426 struct iio_buffer *buffer; 427 unsigned long irq_type; 428 bool irq_active_low; 429 int i, err; 430 431 irq_type = irqd_get_trigger_type(irq_get_irq_data(hw->irq)); 432 433 switch (irq_type) { 434 case IRQF_TRIGGER_HIGH: 435 case IRQF_TRIGGER_RISING: 436 irq_active_low = false; 437 break; 438 case IRQF_TRIGGER_LOW: 439 case IRQF_TRIGGER_FALLING: 440 irq_active_low = true; 441 break; 442 default: 443 dev_info(hw->dev, "mode %lx unsupported\n", irq_type); 444 return -EINVAL; 445 } 446 447 err = st_lsm6dsx_write_with_mask(hw, ST_LSM6DSX_REG_HLACTIVE_ADDR, 448 ST_LSM6DSX_REG_HLACTIVE_MASK, 449 irq_active_low); 450 if (err < 0) 451 return err; 452 453 pdata = (struct st_sensors_platform_data *)hw->dev->platform_data; 454 if ((np && of_property_read_bool(np, "drive-open-drain")) || 455 (pdata && pdata->open_drain)) { 456 err = st_lsm6dsx_write_with_mask(hw, ST_LSM6DSX_REG_PP_OD_ADDR, 457 ST_LSM6DSX_REG_PP_OD_MASK, 1); 458 if (err < 0) 459 return err; 460 461 irq_type |= IRQF_SHARED; 462 } 463 464 err = devm_request_threaded_irq(hw->dev, hw->irq, 465 st_lsm6dsx_handler_irq, 466 st_lsm6dsx_handler_thread, 467 irq_type | IRQF_ONESHOT, 468 "lsm6dsx", hw); 469 if (err) { 470 dev_err(hw->dev, "failed to request trigger irq %d\n", 471 hw->irq); 472 return err; 473 } 474 475 for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) { 476 buffer = devm_iio_kfifo_allocate(hw->dev); 477 if (!buffer) 478 return -ENOMEM; 479 480 iio_device_attach_buffer(hw->iio_devs[i], buffer); 481 hw->iio_devs[i]->modes |= INDIO_BUFFER_SOFTWARE; 482 hw->iio_devs[i]->setup_ops = &st_lsm6dsx_buffer_ops; 483 } 484 485 return 0; 486 } 487