xref: /openbmc/linux/drivers/iio/imu/kmx61.c (revision d6e2d652)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * KMX61 - Kionix 6-axis Accelerometer/Magnetometer
4  *
5  * Copyright (c) 2014, Intel Corporation.
6  *
7  * IIO driver for KMX61 (7-bit I2C slave address 0x0E or 0x0F).
8  */
9 
10 #include <linux/module.h>
11 #include <linux/i2c.h>
12 #include <linux/acpi.h>
13 #include <linux/interrupt.h>
14 #include <linux/pm.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/iio/iio.h>
17 #include <linux/iio/sysfs.h>
18 #include <linux/iio/events.h>
19 #include <linux/iio/trigger.h>
20 #include <linux/iio/buffer.h>
21 #include <linux/iio/triggered_buffer.h>
22 #include <linux/iio/trigger_consumer.h>
23 
24 #define KMX61_DRV_NAME "kmx61"
25 #define KMX61_IRQ_NAME "kmx61_event"
26 
27 #define KMX61_REG_WHO_AM_I	0x00
28 #define KMX61_REG_INS1		0x01
29 #define KMX61_REG_INS2		0x02
30 
31 /*
32  * three 16-bit accelerometer output registers for X/Y/Z axis
33  * we use only XOUT_L as a base register, all other addresses
34  * can be obtained by applying an offset and are provided here
35  * only for clarity.
36  */
37 #define KMX61_ACC_XOUT_L	0x0A
38 #define KMX61_ACC_XOUT_H	0x0B
39 #define KMX61_ACC_YOUT_L	0x0C
40 #define KMX61_ACC_YOUT_H	0x0D
41 #define KMX61_ACC_ZOUT_L	0x0E
42 #define KMX61_ACC_ZOUT_H	0x0F
43 
44 /*
45  * one 16-bit temperature output register
46  */
47 #define KMX61_TEMP_L		0x10
48 #define KMX61_TEMP_H		0x11
49 
50 /*
51  * three 16-bit magnetometer output registers for X/Y/Z axis
52  */
53 #define KMX61_MAG_XOUT_L	0x12
54 #define KMX61_MAG_XOUT_H	0x13
55 #define KMX61_MAG_YOUT_L	0x14
56 #define KMX61_MAG_YOUT_H	0x15
57 #define KMX61_MAG_ZOUT_L	0x16
58 #define KMX61_MAG_ZOUT_H	0x17
59 
60 #define KMX61_REG_INL		0x28
61 #define KMX61_REG_STBY		0x29
62 #define KMX61_REG_CTRL1		0x2A
63 #define KMX61_REG_CTRL2		0x2B
64 #define KMX61_REG_ODCNTL	0x2C
65 #define KMX61_REG_INC1		0x2D
66 
67 #define KMX61_REG_WUF_THRESH	0x3D
68 #define KMX61_REG_WUF_TIMER	0x3E
69 
70 #define KMX61_ACC_STBY_BIT	BIT(0)
71 #define KMX61_MAG_STBY_BIT	BIT(1)
72 #define KMX61_ACT_STBY_BIT	BIT(7)
73 
74 #define KMX61_ALL_STBY		(KMX61_ACC_STBY_BIT | KMX61_MAG_STBY_BIT)
75 
76 #define KMX61_REG_INS1_BIT_WUFS		BIT(1)
77 
78 #define KMX61_REG_INS2_BIT_ZP		BIT(0)
79 #define KMX61_REG_INS2_BIT_ZN		BIT(1)
80 #define KMX61_REG_INS2_BIT_YP		BIT(2)
81 #define KMX61_REG_INS2_BIT_YN		BIT(3)
82 #define KMX61_REG_INS2_BIT_XP		BIT(4)
83 #define KMX61_REG_INS2_BIT_XN		BIT(5)
84 
85 #define KMX61_REG_CTRL1_GSEL_MASK	0x03
86 
87 #define KMX61_REG_CTRL1_BIT_RES		BIT(4)
88 #define KMX61_REG_CTRL1_BIT_DRDYE	BIT(5)
89 #define KMX61_REG_CTRL1_BIT_WUFE	BIT(6)
90 #define KMX61_REG_CTRL1_BIT_BTSE	BIT(7)
91 
92 #define KMX61_REG_INC1_BIT_WUFS		BIT(0)
93 #define KMX61_REG_INC1_BIT_DRDYM	BIT(1)
94 #define KMX61_REG_INC1_BIT_DRDYA	BIT(2)
95 #define KMX61_REG_INC1_BIT_IEN		BIT(5)
96 
97 #define KMX61_ACC_ODR_SHIFT	0
98 #define KMX61_MAG_ODR_SHIFT	4
99 #define KMX61_ACC_ODR_MASK	0x0F
100 #define KMX61_MAG_ODR_MASK	0xF0
101 
102 #define KMX61_OWUF_MASK		0x7
103 
104 #define KMX61_DEFAULT_WAKE_THRESH	1
105 #define KMX61_DEFAULT_WAKE_DURATION	1
106 
107 #define KMX61_SLEEP_DELAY_MS	2000
108 
109 #define KMX61_CHIP_ID		0x12
110 
111 /* KMX61 devices */
112 #define KMX61_ACC	0x01
113 #define KMX61_MAG	0x02
114 
115 struct kmx61_data {
116 	struct i2c_client *client;
117 
118 	/* serialize access to non-atomic ops, e.g set_mode */
119 	struct mutex lock;
120 
121 	/* standby state */
122 	bool acc_stby;
123 	bool mag_stby;
124 
125 	/* power state */
126 	bool acc_ps;
127 	bool mag_ps;
128 
129 	/* config bits */
130 	u8 range;
131 	u8 odr_bits;
132 	u8 wake_thresh;
133 	u8 wake_duration;
134 
135 	/* accelerometer specific data */
136 	struct iio_dev *acc_indio_dev;
137 	struct iio_trigger *acc_dready_trig;
138 	struct iio_trigger *motion_trig;
139 	bool acc_dready_trig_on;
140 	bool motion_trig_on;
141 	bool ev_enable_state;
142 
143 	/* magnetometer specific data */
144 	struct iio_dev *mag_indio_dev;
145 	struct iio_trigger *mag_dready_trig;
146 	bool mag_dready_trig_on;
147 };
148 
149 enum kmx61_range {
150 	KMX61_RANGE_2G,
151 	KMX61_RANGE_4G,
152 	KMX61_RANGE_8G,
153 };
154 
155 enum kmx61_axis {
156 	KMX61_AXIS_X,
157 	KMX61_AXIS_Y,
158 	KMX61_AXIS_Z,
159 };
160 
161 static const u16 kmx61_uscale_table[] = {9582, 19163, 38326};
162 
163 static const struct {
164 	int val;
165 	int val2;
166 } kmx61_samp_freq_table[] = { {12, 500000},
167 			{25, 0},
168 			{50, 0},
169 			{100, 0},
170 			{200, 0},
171 			{400, 0},
172 			{800, 0},
173 			{1600, 0},
174 			{0, 781000},
175 			{1, 563000},
176 			{3, 125000},
177 			{6, 250000} };
178 
179 static const struct {
180 	int val;
181 	int val2;
182 	int odr_bits;
183 } kmx61_wake_up_odr_table[] = { {0, 781000, 0x00},
184 				 {1, 563000, 0x01},
185 				 {3, 125000, 0x02},
186 				 {6, 250000, 0x03},
187 				 {12, 500000, 0x04},
188 				 {25, 0, 0x05},
189 				 {50, 0, 0x06},
190 				 {100, 0, 0x06},
191 				 {200, 0, 0x06},
192 				 {400, 0, 0x06},
193 				 {800, 0, 0x06},
194 				 {1600, 0, 0x06} };
195 
196 static IIO_CONST_ATTR(accel_scale_available, "0.009582 0.019163 0.038326");
197 static IIO_CONST_ATTR(magn_scale_available, "0.001465");
198 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
199 	"0.781000 1.563000 3.125000 6.250000 12.500000 25 50 100 200 400 800");
200 
201 static struct attribute *kmx61_acc_attributes[] = {
202 	&iio_const_attr_accel_scale_available.dev_attr.attr,
203 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
204 	NULL,
205 };
206 
207 static struct attribute *kmx61_mag_attributes[] = {
208 	&iio_const_attr_magn_scale_available.dev_attr.attr,
209 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
210 	NULL,
211 };
212 
213 static const struct attribute_group kmx61_acc_attribute_group = {
214 	.attrs = kmx61_acc_attributes,
215 };
216 
217 static const struct attribute_group kmx61_mag_attribute_group = {
218 	.attrs = kmx61_mag_attributes,
219 };
220 
221 static const struct iio_event_spec kmx61_event = {
222 	.type = IIO_EV_TYPE_THRESH,
223 	.dir = IIO_EV_DIR_EITHER,
224 	.mask_separate = BIT(IIO_EV_INFO_VALUE) |
225 			 BIT(IIO_EV_INFO_ENABLE) |
226 			 BIT(IIO_EV_INFO_PERIOD),
227 };
228 
229 #define KMX61_ACC_CHAN(_axis) { \
230 	.type = IIO_ACCEL, \
231 	.modified = 1, \
232 	.channel2 = IIO_MOD_ ## _axis, \
233 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
234 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
235 				BIT(IIO_CHAN_INFO_SAMP_FREQ), \
236 	.address = KMX61_ACC, \
237 	.scan_index = KMX61_AXIS_ ## _axis, \
238 	.scan_type = { \
239 		.sign = 's', \
240 		.realbits = 12, \
241 		.storagebits = 16, \
242 		.shift = 4, \
243 		.endianness = IIO_LE, \
244 	}, \
245 	.event_spec = &kmx61_event, \
246 	.num_event_specs = 1 \
247 }
248 
249 #define KMX61_MAG_CHAN(_axis) { \
250 	.type = IIO_MAGN, \
251 	.modified = 1, \
252 	.channel2 = IIO_MOD_ ## _axis, \
253 	.address = KMX61_MAG, \
254 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
255 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
256 				BIT(IIO_CHAN_INFO_SAMP_FREQ), \
257 	.scan_index = KMX61_AXIS_ ## _axis, \
258 	.scan_type = { \
259 		.sign = 's', \
260 		.realbits = 14, \
261 		.storagebits = 16, \
262 		.shift = 2, \
263 		.endianness = IIO_LE, \
264 	}, \
265 }
266 
267 static const struct iio_chan_spec kmx61_acc_channels[] = {
268 	KMX61_ACC_CHAN(X),
269 	KMX61_ACC_CHAN(Y),
270 	KMX61_ACC_CHAN(Z),
271 };
272 
273 static const struct iio_chan_spec kmx61_mag_channels[] = {
274 	KMX61_MAG_CHAN(X),
275 	KMX61_MAG_CHAN(Y),
276 	KMX61_MAG_CHAN(Z),
277 };
278 
279 static void kmx61_set_data(struct iio_dev *indio_dev, struct kmx61_data *data)
280 {
281 	struct kmx61_data **priv = iio_priv(indio_dev);
282 
283 	*priv = data;
284 }
285 
286 static struct kmx61_data *kmx61_get_data(struct iio_dev *indio_dev)
287 {
288 	return *(struct kmx61_data **)iio_priv(indio_dev);
289 }
290 
291 static int kmx61_convert_freq_to_bit(int val, int val2)
292 {
293 	int i;
294 
295 	for (i = 0; i < ARRAY_SIZE(kmx61_samp_freq_table); i++)
296 		if (val == kmx61_samp_freq_table[i].val &&
297 		    val2 == kmx61_samp_freq_table[i].val2)
298 			return i;
299 	return -EINVAL;
300 }
301 
302 static int kmx61_convert_wake_up_odr_to_bit(int val, int val2)
303 {
304 	int i;
305 
306 	for (i = 0; i < ARRAY_SIZE(kmx61_wake_up_odr_table); ++i)
307 		if (kmx61_wake_up_odr_table[i].val == val &&
308 			kmx61_wake_up_odr_table[i].val2 == val2)
309 				return kmx61_wake_up_odr_table[i].odr_bits;
310 	return -EINVAL;
311 }
312 
313 /**
314  * kmx61_set_mode() - set KMX61 device operating mode
315  * @data: kmx61 device private data pointer
316  * @mode: bitmask, indicating operating mode for @device
317  * @device: bitmask, indicating device for which @mode needs to be set
318  * @update: update stby bits stored in device's private  @data
319  *
320  * For each sensor (accelerometer/magnetometer) there are two operating modes
321  * STANDBY and OPERATION. Neither accel nor magn can be disabled independently
322  * if they are both enabled. Internal sensors state is saved in acc_stby and
323  * mag_stby members of driver's private @data.
324  */
325 static int kmx61_set_mode(struct kmx61_data *data, u8 mode, u8 device,
326 			  bool update)
327 {
328 	int ret;
329 	int acc_stby = -1, mag_stby = -1;
330 
331 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_STBY);
332 	if (ret < 0) {
333 		dev_err(&data->client->dev, "Error reading reg_stby\n");
334 		return ret;
335 	}
336 	if (device & KMX61_ACC) {
337 		if (mode & KMX61_ACC_STBY_BIT) {
338 			ret |= KMX61_ACC_STBY_BIT;
339 			acc_stby = 1;
340 		} else {
341 			ret &= ~KMX61_ACC_STBY_BIT;
342 			acc_stby = 0;
343 		}
344 	}
345 
346 	if (device & KMX61_MAG) {
347 		if (mode & KMX61_MAG_STBY_BIT) {
348 			ret |= KMX61_MAG_STBY_BIT;
349 			mag_stby = 1;
350 		} else {
351 			ret &= ~KMX61_MAG_STBY_BIT;
352 			mag_stby = 0;
353 		}
354 	}
355 
356 	if (mode & KMX61_ACT_STBY_BIT)
357 		ret |= KMX61_ACT_STBY_BIT;
358 
359 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_STBY, ret);
360 	if (ret < 0) {
361 		dev_err(&data->client->dev, "Error writing reg_stby\n");
362 		return ret;
363 	}
364 
365 	if (acc_stby != -1 && update)
366 		data->acc_stby = acc_stby;
367 	if (mag_stby != -1 && update)
368 		data->mag_stby = mag_stby;
369 
370 	return 0;
371 }
372 
373 static int kmx61_get_mode(struct kmx61_data *data, u8 *mode, u8 device)
374 {
375 	int ret;
376 
377 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_STBY);
378 	if (ret < 0) {
379 		dev_err(&data->client->dev, "Error reading reg_stby\n");
380 		return ret;
381 	}
382 	*mode = 0;
383 
384 	if (device & KMX61_ACC) {
385 		if (ret & KMX61_ACC_STBY_BIT)
386 			*mode |= KMX61_ACC_STBY_BIT;
387 		else
388 			*mode &= ~KMX61_ACC_STBY_BIT;
389 	}
390 
391 	if (device & KMX61_MAG) {
392 		if (ret & KMX61_MAG_STBY_BIT)
393 			*mode |= KMX61_MAG_STBY_BIT;
394 		else
395 			*mode &= ~KMX61_MAG_STBY_BIT;
396 	}
397 
398 	return 0;
399 }
400 
401 static int kmx61_set_wake_up_odr(struct kmx61_data *data, int val, int val2)
402 {
403 	int ret, odr_bits;
404 
405 	odr_bits = kmx61_convert_wake_up_odr_to_bit(val, val2);
406 	if (odr_bits < 0)
407 		return odr_bits;
408 
409 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL2,
410 					odr_bits);
411 	if (ret < 0)
412 		dev_err(&data->client->dev, "Error writing reg_ctrl2\n");
413 	return ret;
414 }
415 
416 static int kmx61_set_odr(struct kmx61_data *data, int val, int val2, u8 device)
417 {
418 	int ret;
419 	u8 mode;
420 	int lodr_bits, odr_bits;
421 
422 	ret = kmx61_get_mode(data, &mode, KMX61_ACC | KMX61_MAG);
423 	if (ret < 0)
424 		return ret;
425 
426 	lodr_bits = kmx61_convert_freq_to_bit(val, val2);
427 	if (lodr_bits < 0)
428 		return lodr_bits;
429 
430 	/* To change ODR, accel and magn must be in STDBY */
431 	ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG,
432 			     true);
433 	if (ret < 0)
434 		return ret;
435 
436 	odr_bits = 0;
437 	if (device & KMX61_ACC)
438 		odr_bits |= lodr_bits << KMX61_ACC_ODR_SHIFT;
439 	if (device & KMX61_MAG)
440 		odr_bits |= lodr_bits << KMX61_MAG_ODR_SHIFT;
441 
442 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_ODCNTL,
443 					odr_bits);
444 	if (ret < 0)
445 		return ret;
446 
447 	data->odr_bits = odr_bits;
448 
449 	if (device & KMX61_ACC) {
450 		ret = kmx61_set_wake_up_odr(data, val, val2);
451 		if (ret)
452 			return ret;
453 	}
454 
455 	return kmx61_set_mode(data, mode, KMX61_ACC | KMX61_MAG, true);
456 }
457 
458 static int kmx61_get_odr(struct kmx61_data *data, int *val, int *val2,
459 			 u8 device)
460 {
461 	u8 lodr_bits;
462 
463 	if (device & KMX61_ACC)
464 		lodr_bits = (data->odr_bits >> KMX61_ACC_ODR_SHIFT) &
465 			     KMX61_ACC_ODR_MASK;
466 	else if (device & KMX61_MAG)
467 		lodr_bits = (data->odr_bits >> KMX61_MAG_ODR_SHIFT) &
468 			     KMX61_MAG_ODR_MASK;
469 	else
470 		return -EINVAL;
471 
472 	if (lodr_bits >= ARRAY_SIZE(kmx61_samp_freq_table))
473 		return -EINVAL;
474 
475 	*val = kmx61_samp_freq_table[lodr_bits].val;
476 	*val2 = kmx61_samp_freq_table[lodr_bits].val2;
477 
478 	return 0;
479 }
480 
481 static int kmx61_set_range(struct kmx61_data *data, u8 range)
482 {
483 	int ret;
484 
485 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1);
486 	if (ret < 0) {
487 		dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
488 		return ret;
489 	}
490 
491 	ret &= ~KMX61_REG_CTRL1_GSEL_MASK;
492 	ret |= range & KMX61_REG_CTRL1_GSEL_MASK;
493 
494 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret);
495 	if (ret < 0) {
496 		dev_err(&data->client->dev, "Error writing reg_ctrl1\n");
497 		return ret;
498 	}
499 
500 	data->range = range;
501 
502 	return 0;
503 }
504 
505 static int kmx61_set_scale(struct kmx61_data *data, u16 uscale)
506 {
507 	int ret, i;
508 	u8  mode;
509 
510 	for (i = 0; i < ARRAY_SIZE(kmx61_uscale_table); i++) {
511 		if (kmx61_uscale_table[i] == uscale) {
512 			ret = kmx61_get_mode(data, &mode,
513 					     KMX61_ACC | KMX61_MAG);
514 			if (ret < 0)
515 				return ret;
516 
517 			ret = kmx61_set_mode(data, KMX61_ALL_STBY,
518 					     KMX61_ACC | KMX61_MAG, true);
519 			if (ret < 0)
520 				return ret;
521 
522 			ret = kmx61_set_range(data, i);
523 			if (ret < 0)
524 				return ret;
525 
526 			return  kmx61_set_mode(data, mode,
527 					       KMX61_ACC | KMX61_MAG, true);
528 		}
529 	}
530 	return -EINVAL;
531 }
532 
533 static int kmx61_chip_init(struct kmx61_data *data)
534 {
535 	int ret, val, val2;
536 
537 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_WHO_AM_I);
538 	if (ret < 0) {
539 		dev_err(&data->client->dev, "Error reading who_am_i\n");
540 		return ret;
541 	}
542 
543 	if (ret != KMX61_CHIP_ID) {
544 		dev_err(&data->client->dev,
545 			"Wrong chip id, got %x expected %x\n",
546 			 ret, KMX61_CHIP_ID);
547 		return -EINVAL;
548 	}
549 
550 	/* set accel 12bit, 4g range */
551 	ret = kmx61_set_range(data, KMX61_RANGE_4G);
552 	if (ret < 0)
553 		return ret;
554 
555 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_ODCNTL);
556 	if (ret < 0) {
557 		dev_err(&data->client->dev, "Error reading reg_odcntl\n");
558 		return ret;
559 	}
560 	data->odr_bits = ret;
561 
562 	/*
563 	 * set output data rate for wake up (motion detection) function
564 	 * to match data rate for accelerometer sampling
565 	 */
566 	ret = kmx61_get_odr(data, &val, &val2, KMX61_ACC);
567 	if (ret < 0)
568 		return ret;
569 
570 	ret = kmx61_set_wake_up_odr(data, val, val2);
571 	if (ret < 0)
572 		return ret;
573 
574 	/* set acc/magn to OPERATION mode */
575 	ret = kmx61_set_mode(data, 0, KMX61_ACC | KMX61_MAG, true);
576 	if (ret < 0)
577 		return ret;
578 
579 	data->wake_thresh = KMX61_DEFAULT_WAKE_THRESH;
580 	data->wake_duration = KMX61_DEFAULT_WAKE_DURATION;
581 
582 	return 0;
583 }
584 
585 static int kmx61_setup_new_data_interrupt(struct kmx61_data *data,
586 					  bool status, u8 device)
587 {
588 	u8 mode;
589 	int ret;
590 
591 	ret = kmx61_get_mode(data, &mode, KMX61_ACC | KMX61_MAG);
592 	if (ret < 0)
593 		return ret;
594 
595 	ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true);
596 	if (ret < 0)
597 		return ret;
598 
599 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INC1);
600 	if (ret < 0) {
601 		dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
602 		return ret;
603 	}
604 
605 	if (status) {
606 		ret |= KMX61_REG_INC1_BIT_IEN;
607 		if (device & KMX61_ACC)
608 			ret |= KMX61_REG_INC1_BIT_DRDYA;
609 		if (device & KMX61_MAG)
610 			ret |=  KMX61_REG_INC1_BIT_DRDYM;
611 	} else {
612 		ret &= ~KMX61_REG_INC1_BIT_IEN;
613 		if (device & KMX61_ACC)
614 			ret &= ~KMX61_REG_INC1_BIT_DRDYA;
615 		if (device & KMX61_MAG)
616 			ret &= ~KMX61_REG_INC1_BIT_DRDYM;
617 	}
618 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_INC1, ret);
619 	if (ret < 0) {
620 		dev_err(&data->client->dev, "Error writing reg_int_ctrl1\n");
621 		return ret;
622 	}
623 
624 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1);
625 	if (ret < 0) {
626 		dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
627 		return ret;
628 	}
629 
630 	if (status)
631 		ret |= KMX61_REG_CTRL1_BIT_DRDYE;
632 	else
633 		ret &= ~KMX61_REG_CTRL1_BIT_DRDYE;
634 
635 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret);
636 	if (ret < 0) {
637 		dev_err(&data->client->dev, "Error writing reg_ctrl1\n");
638 		return ret;
639 	}
640 
641 	return kmx61_set_mode(data, mode, KMX61_ACC | KMX61_MAG, true);
642 }
643 
644 static int kmx61_chip_update_thresholds(struct kmx61_data *data)
645 {
646 	int ret;
647 
648 	ret = i2c_smbus_write_byte_data(data->client,
649 					KMX61_REG_WUF_TIMER,
650 					data->wake_duration);
651 	if (ret < 0) {
652 		dev_err(&data->client->dev, "Error writing reg_wuf_timer\n");
653 		return ret;
654 	}
655 
656 	ret = i2c_smbus_write_byte_data(data->client,
657 					KMX61_REG_WUF_THRESH,
658 					data->wake_thresh);
659 	if (ret < 0)
660 		dev_err(&data->client->dev, "Error writing reg_wuf_thresh\n");
661 
662 	return ret;
663 }
664 
665 static int kmx61_setup_any_motion_interrupt(struct kmx61_data *data,
666 					    bool status)
667 {
668 	u8 mode;
669 	int ret;
670 
671 	ret = kmx61_get_mode(data, &mode, KMX61_ACC | KMX61_MAG);
672 	if (ret < 0)
673 		return ret;
674 
675 	ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true);
676 	if (ret < 0)
677 		return ret;
678 
679 	ret = kmx61_chip_update_thresholds(data);
680 	if (ret < 0)
681 		return ret;
682 
683 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INC1);
684 	if (ret < 0) {
685 		dev_err(&data->client->dev, "Error reading reg_inc1\n");
686 		return ret;
687 	}
688 	if (status)
689 		ret |= (KMX61_REG_INC1_BIT_IEN | KMX61_REG_INC1_BIT_WUFS);
690 	else
691 		ret &= ~(KMX61_REG_INC1_BIT_IEN | KMX61_REG_INC1_BIT_WUFS);
692 
693 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_INC1, ret);
694 	if (ret < 0) {
695 		dev_err(&data->client->dev, "Error writing reg_inc1\n");
696 		return ret;
697 	}
698 
699 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1);
700 	if (ret < 0) {
701 		dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
702 		return ret;
703 	}
704 
705 	if (status)
706 		ret |= KMX61_REG_CTRL1_BIT_WUFE | KMX61_REG_CTRL1_BIT_BTSE;
707 	else
708 		ret &= ~(KMX61_REG_CTRL1_BIT_WUFE | KMX61_REG_CTRL1_BIT_BTSE);
709 
710 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret);
711 	if (ret < 0) {
712 		dev_err(&data->client->dev, "Error writing reg_ctrl1\n");
713 		return ret;
714 	}
715 	mode |= KMX61_ACT_STBY_BIT;
716 	return kmx61_set_mode(data, mode, KMX61_ACC | KMX61_MAG, true);
717 }
718 
719 /**
720  * kmx61_set_power_state() - set power state for kmx61 @device
721  * @data: kmx61 device private pointer
722  * @on: power state to be set for @device
723  * @device: bitmask indicating device for which @on state needs to be set
724  *
725  * Notice that when ACC power state needs to be set to ON and MAG is in
726  * OPERATION then we know that kmx61_runtime_resume was already called
727  * so we must set ACC OPERATION mode here. The same happens when MAG power
728  * state needs to be set to ON and ACC is in OPERATION.
729  */
730 static int kmx61_set_power_state(struct kmx61_data *data, bool on, u8 device)
731 {
732 #ifdef CONFIG_PM
733 	int ret;
734 
735 	if (device & KMX61_ACC) {
736 		if (on && !data->acc_ps && !data->mag_stby) {
737 			ret = kmx61_set_mode(data, 0, KMX61_ACC, true);
738 			if (ret < 0)
739 				return ret;
740 		}
741 		data->acc_ps = on;
742 	}
743 	if (device & KMX61_MAG) {
744 		if (on && !data->mag_ps && !data->acc_stby) {
745 			ret = kmx61_set_mode(data, 0, KMX61_MAG, true);
746 			if (ret < 0)
747 				return ret;
748 		}
749 		data->mag_ps = on;
750 	}
751 
752 	if (on) {
753 		ret = pm_runtime_resume_and_get(&data->client->dev);
754 	} else {
755 		pm_runtime_mark_last_busy(&data->client->dev);
756 		ret = pm_runtime_put_autosuspend(&data->client->dev);
757 	}
758 	if (ret < 0) {
759 		dev_err(&data->client->dev,
760 			"Failed: kmx61_set_power_state for %d, ret %d\n",
761 			on, ret);
762 
763 		return ret;
764 	}
765 #endif
766 	return 0;
767 }
768 
769 static int kmx61_read_measurement(struct kmx61_data *data, u8 base, u8 offset)
770 {
771 	int ret;
772 	u8 reg = base + offset * 2;
773 
774 	ret = i2c_smbus_read_word_data(data->client, reg);
775 	if (ret < 0)
776 		dev_err(&data->client->dev, "failed to read reg at %x\n", reg);
777 
778 	return ret;
779 }
780 
781 static int kmx61_read_raw(struct iio_dev *indio_dev,
782 			  struct iio_chan_spec const *chan, int *val,
783 			  int *val2, long mask)
784 {
785 	int ret;
786 	u8 base_reg;
787 	struct kmx61_data *data = kmx61_get_data(indio_dev);
788 
789 	switch (mask) {
790 	case IIO_CHAN_INFO_RAW:
791 		switch (chan->type) {
792 		case IIO_ACCEL:
793 			base_reg = KMX61_ACC_XOUT_L;
794 			break;
795 		case IIO_MAGN:
796 			base_reg = KMX61_MAG_XOUT_L;
797 			break;
798 		default:
799 			return -EINVAL;
800 		}
801 		mutex_lock(&data->lock);
802 
803 		ret = kmx61_set_power_state(data, true, chan->address);
804 		if (ret) {
805 			mutex_unlock(&data->lock);
806 			return ret;
807 		}
808 
809 		ret = kmx61_read_measurement(data, base_reg, chan->scan_index);
810 		if (ret < 0) {
811 			kmx61_set_power_state(data, false, chan->address);
812 			mutex_unlock(&data->lock);
813 			return ret;
814 		}
815 		*val = sign_extend32(ret >> chan->scan_type.shift,
816 				     chan->scan_type.realbits - 1);
817 		ret = kmx61_set_power_state(data, false, chan->address);
818 
819 		mutex_unlock(&data->lock);
820 		if (ret)
821 			return ret;
822 		return IIO_VAL_INT;
823 	case IIO_CHAN_INFO_SCALE:
824 		switch (chan->type) {
825 		case IIO_ACCEL:
826 			*val = 0;
827 			*val2 = kmx61_uscale_table[data->range];
828 			return IIO_VAL_INT_PLUS_MICRO;
829 		case IIO_MAGN:
830 			/* 14 bits res, 1465 microGauss per magn count */
831 			*val = 0;
832 			*val2 = 1465;
833 			return IIO_VAL_INT_PLUS_MICRO;
834 		default:
835 			return -EINVAL;
836 		}
837 	case IIO_CHAN_INFO_SAMP_FREQ:
838 		if (chan->type != IIO_ACCEL && chan->type != IIO_MAGN)
839 			return -EINVAL;
840 
841 		mutex_lock(&data->lock);
842 		ret = kmx61_get_odr(data, val, val2, chan->address);
843 		mutex_unlock(&data->lock);
844 		if (ret)
845 			return -EINVAL;
846 		return IIO_VAL_INT_PLUS_MICRO;
847 	}
848 	return -EINVAL;
849 }
850 
851 static int kmx61_write_raw(struct iio_dev *indio_dev,
852 			   struct iio_chan_spec const *chan, int val,
853 			   int val2, long mask)
854 {
855 	int ret;
856 	struct kmx61_data *data = kmx61_get_data(indio_dev);
857 
858 	switch (mask) {
859 	case IIO_CHAN_INFO_SAMP_FREQ:
860 		if (chan->type != IIO_ACCEL && chan->type != IIO_MAGN)
861 			return -EINVAL;
862 
863 		mutex_lock(&data->lock);
864 		ret = kmx61_set_odr(data, val, val2, chan->address);
865 		mutex_unlock(&data->lock);
866 		return ret;
867 	case IIO_CHAN_INFO_SCALE:
868 		switch (chan->type) {
869 		case IIO_ACCEL:
870 			if (val != 0)
871 				return -EINVAL;
872 			mutex_lock(&data->lock);
873 			ret = kmx61_set_scale(data, val2);
874 			mutex_unlock(&data->lock);
875 			return ret;
876 		default:
877 			return -EINVAL;
878 		}
879 	default:
880 		return -EINVAL;
881 	}
882 }
883 
884 static int kmx61_read_event(struct iio_dev *indio_dev,
885 			    const struct iio_chan_spec *chan,
886 			    enum iio_event_type type,
887 			    enum iio_event_direction dir,
888 			    enum iio_event_info info,
889 			    int *val, int *val2)
890 {
891 	struct kmx61_data *data = kmx61_get_data(indio_dev);
892 
893 	*val2 = 0;
894 	switch (info) {
895 	case IIO_EV_INFO_VALUE:
896 		*val = data->wake_thresh;
897 		return IIO_VAL_INT;
898 	case IIO_EV_INFO_PERIOD:
899 		*val = data->wake_duration;
900 		return IIO_VAL_INT;
901 	default:
902 		return -EINVAL;
903 	}
904 }
905 
906 static int kmx61_write_event(struct iio_dev *indio_dev,
907 			     const struct iio_chan_spec *chan,
908 			     enum iio_event_type type,
909 			     enum iio_event_direction dir,
910 			     enum iio_event_info info,
911 			     int val, int val2)
912 {
913 	struct kmx61_data *data = kmx61_get_data(indio_dev);
914 
915 	if (data->ev_enable_state)
916 		return -EBUSY;
917 
918 	switch (info) {
919 	case IIO_EV_INFO_VALUE:
920 		data->wake_thresh = val;
921 		return IIO_VAL_INT;
922 	case IIO_EV_INFO_PERIOD:
923 		data->wake_duration = val;
924 		return IIO_VAL_INT;
925 	default:
926 		return -EINVAL;
927 	}
928 }
929 
930 static int kmx61_read_event_config(struct iio_dev *indio_dev,
931 				   const struct iio_chan_spec *chan,
932 				   enum iio_event_type type,
933 				   enum iio_event_direction dir)
934 {
935 	struct kmx61_data *data = kmx61_get_data(indio_dev);
936 
937 	return data->ev_enable_state;
938 }
939 
940 static int kmx61_write_event_config(struct iio_dev *indio_dev,
941 				    const struct iio_chan_spec *chan,
942 				    enum iio_event_type type,
943 				    enum iio_event_direction dir,
944 				    int state)
945 {
946 	struct kmx61_data *data = kmx61_get_data(indio_dev);
947 	int ret = 0;
948 
949 	if (state && data->ev_enable_state)
950 		return 0;
951 
952 	mutex_lock(&data->lock);
953 
954 	if (!state && data->motion_trig_on) {
955 		data->ev_enable_state = false;
956 		goto err_unlock;
957 	}
958 
959 	ret = kmx61_set_power_state(data, state, KMX61_ACC);
960 	if (ret < 0)
961 		goto err_unlock;
962 
963 	ret = kmx61_setup_any_motion_interrupt(data, state);
964 	if (ret < 0) {
965 		kmx61_set_power_state(data, false, KMX61_ACC);
966 		goto err_unlock;
967 	}
968 
969 	data->ev_enable_state = state;
970 
971 err_unlock:
972 	mutex_unlock(&data->lock);
973 
974 	return ret;
975 }
976 
977 static int kmx61_acc_validate_trigger(struct iio_dev *indio_dev,
978 				      struct iio_trigger *trig)
979 {
980 	struct kmx61_data *data = kmx61_get_data(indio_dev);
981 
982 	if (data->acc_dready_trig != trig && data->motion_trig != trig)
983 		return -EINVAL;
984 
985 	return 0;
986 }
987 
988 static int kmx61_mag_validate_trigger(struct iio_dev *indio_dev,
989 				      struct iio_trigger *trig)
990 {
991 	struct kmx61_data *data = kmx61_get_data(indio_dev);
992 
993 	if (data->mag_dready_trig != trig)
994 		return -EINVAL;
995 
996 	return 0;
997 }
998 
999 static const struct iio_info kmx61_acc_info = {
1000 	.read_raw		= kmx61_read_raw,
1001 	.write_raw		= kmx61_write_raw,
1002 	.attrs			= &kmx61_acc_attribute_group,
1003 	.read_event_value	= kmx61_read_event,
1004 	.write_event_value	= kmx61_write_event,
1005 	.read_event_config	= kmx61_read_event_config,
1006 	.write_event_config	= kmx61_write_event_config,
1007 	.validate_trigger	= kmx61_acc_validate_trigger,
1008 };
1009 
1010 static const struct iio_info kmx61_mag_info = {
1011 	.read_raw		= kmx61_read_raw,
1012 	.write_raw		= kmx61_write_raw,
1013 	.attrs			= &kmx61_mag_attribute_group,
1014 	.validate_trigger	= kmx61_mag_validate_trigger,
1015 };
1016 
1017 
1018 static int kmx61_data_rdy_trigger_set_state(struct iio_trigger *trig,
1019 					    bool state)
1020 {
1021 	int ret = 0;
1022 	u8 device;
1023 
1024 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
1025 	struct kmx61_data *data = kmx61_get_data(indio_dev);
1026 
1027 	mutex_lock(&data->lock);
1028 
1029 	if (!state && data->ev_enable_state && data->motion_trig_on) {
1030 		data->motion_trig_on = false;
1031 		goto err_unlock;
1032 	}
1033 
1034 	if (data->acc_dready_trig == trig || data->motion_trig == trig)
1035 		device = KMX61_ACC;
1036 	else
1037 		device = KMX61_MAG;
1038 
1039 	ret = kmx61_set_power_state(data, state, device);
1040 	if (ret < 0)
1041 		goto err_unlock;
1042 
1043 	if (data->acc_dready_trig == trig || data->mag_dready_trig == trig)
1044 		ret = kmx61_setup_new_data_interrupt(data, state, device);
1045 	else
1046 		ret = kmx61_setup_any_motion_interrupt(data, state);
1047 	if (ret < 0) {
1048 		kmx61_set_power_state(data, false, device);
1049 		goto err_unlock;
1050 	}
1051 
1052 	if (data->acc_dready_trig == trig)
1053 		data->acc_dready_trig_on = state;
1054 	else if (data->mag_dready_trig == trig)
1055 		data->mag_dready_trig_on = state;
1056 	else
1057 		data->motion_trig_on = state;
1058 err_unlock:
1059 	mutex_unlock(&data->lock);
1060 
1061 	return ret;
1062 }
1063 
1064 static void kmx61_trig_reenable(struct iio_trigger *trig)
1065 {
1066 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
1067 	struct kmx61_data *data = kmx61_get_data(indio_dev);
1068 	int ret;
1069 
1070 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INL);
1071 	if (ret < 0)
1072 		dev_err(&data->client->dev, "Error reading reg_inl\n");
1073 }
1074 
1075 static const struct iio_trigger_ops kmx61_trigger_ops = {
1076 	.set_trigger_state = kmx61_data_rdy_trigger_set_state,
1077 	.reenable = kmx61_trig_reenable,
1078 };
1079 
1080 static irqreturn_t kmx61_event_handler(int irq, void *private)
1081 {
1082 	struct kmx61_data *data = private;
1083 	struct iio_dev *indio_dev = data->acc_indio_dev;
1084 	int ret;
1085 
1086 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INS1);
1087 	if (ret < 0) {
1088 		dev_err(&data->client->dev, "Error reading reg_ins1\n");
1089 		goto ack_intr;
1090 	}
1091 
1092 	if (ret & KMX61_REG_INS1_BIT_WUFS) {
1093 		ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INS2);
1094 		if (ret < 0) {
1095 			dev_err(&data->client->dev, "Error reading reg_ins2\n");
1096 			goto ack_intr;
1097 		}
1098 
1099 		if (ret & KMX61_REG_INS2_BIT_XN)
1100 			iio_push_event(indio_dev,
1101 				       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1102 				       0,
1103 				       IIO_MOD_X,
1104 				       IIO_EV_TYPE_THRESH,
1105 				       IIO_EV_DIR_FALLING),
1106 				       0);
1107 
1108 		if (ret & KMX61_REG_INS2_BIT_XP)
1109 			iio_push_event(indio_dev,
1110 				       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1111 				       0,
1112 				       IIO_MOD_X,
1113 				       IIO_EV_TYPE_THRESH,
1114 				       IIO_EV_DIR_RISING),
1115 				       0);
1116 
1117 		if (ret & KMX61_REG_INS2_BIT_YN)
1118 			iio_push_event(indio_dev,
1119 				       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1120 				       0,
1121 				       IIO_MOD_Y,
1122 				       IIO_EV_TYPE_THRESH,
1123 				       IIO_EV_DIR_FALLING),
1124 				       0);
1125 
1126 		if (ret & KMX61_REG_INS2_BIT_YP)
1127 			iio_push_event(indio_dev,
1128 				       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1129 				       0,
1130 				       IIO_MOD_Y,
1131 				       IIO_EV_TYPE_THRESH,
1132 				       IIO_EV_DIR_RISING),
1133 				       0);
1134 
1135 		if (ret & KMX61_REG_INS2_BIT_ZN)
1136 			iio_push_event(indio_dev,
1137 				       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1138 				       0,
1139 				       IIO_MOD_Z,
1140 				       IIO_EV_TYPE_THRESH,
1141 				       IIO_EV_DIR_FALLING),
1142 				       0);
1143 
1144 		if (ret & KMX61_REG_INS2_BIT_ZP)
1145 			iio_push_event(indio_dev,
1146 				       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1147 				       0,
1148 				       IIO_MOD_Z,
1149 				       IIO_EV_TYPE_THRESH,
1150 				       IIO_EV_DIR_RISING),
1151 				       0);
1152 	}
1153 
1154 ack_intr:
1155 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1);
1156 	if (ret < 0)
1157 		dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
1158 
1159 	ret |= KMX61_REG_CTRL1_BIT_RES;
1160 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret);
1161 	if (ret < 0)
1162 		dev_err(&data->client->dev, "Error writing reg_ctrl1\n");
1163 
1164 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INL);
1165 	if (ret < 0)
1166 		dev_err(&data->client->dev, "Error reading reg_inl\n");
1167 
1168 	return IRQ_HANDLED;
1169 }
1170 
1171 static irqreturn_t kmx61_data_rdy_trig_poll(int irq, void *private)
1172 {
1173 	struct kmx61_data *data = private;
1174 
1175 	if (data->acc_dready_trig_on)
1176 		iio_trigger_poll(data->acc_dready_trig);
1177 	if (data->mag_dready_trig_on)
1178 		iio_trigger_poll(data->mag_dready_trig);
1179 
1180 	if (data->motion_trig_on)
1181 		iio_trigger_poll(data->motion_trig);
1182 
1183 	if (data->ev_enable_state)
1184 		return IRQ_WAKE_THREAD;
1185 	return IRQ_HANDLED;
1186 }
1187 
1188 static irqreturn_t kmx61_trigger_handler(int irq, void *p)
1189 {
1190 	struct iio_poll_func *pf = p;
1191 	struct iio_dev *indio_dev = pf->indio_dev;
1192 	struct kmx61_data *data = kmx61_get_data(indio_dev);
1193 	int bit, ret, i = 0;
1194 	u8 base;
1195 	s16 buffer[8];
1196 
1197 	if (indio_dev == data->acc_indio_dev)
1198 		base = KMX61_ACC_XOUT_L;
1199 	else
1200 		base = KMX61_MAG_XOUT_L;
1201 
1202 	mutex_lock(&data->lock);
1203 	for_each_set_bit(bit, indio_dev->active_scan_mask,
1204 			 indio_dev->masklength) {
1205 		ret = kmx61_read_measurement(data, base, bit);
1206 		if (ret < 0) {
1207 			mutex_unlock(&data->lock);
1208 			goto err;
1209 		}
1210 		buffer[i++] = ret;
1211 	}
1212 	mutex_unlock(&data->lock);
1213 
1214 	iio_push_to_buffers(indio_dev, buffer);
1215 err:
1216 	iio_trigger_notify_done(indio_dev->trig);
1217 
1218 	return IRQ_HANDLED;
1219 }
1220 
1221 static const char *kmx61_match_acpi_device(struct device *dev)
1222 {
1223 	const struct acpi_device_id *id;
1224 
1225 	id = acpi_match_device(dev->driver->acpi_match_table, dev);
1226 	if (!id)
1227 		return NULL;
1228 	return dev_name(dev);
1229 }
1230 
1231 static struct iio_dev *kmx61_indiodev_setup(struct kmx61_data *data,
1232 					    const struct iio_info *info,
1233 					    const struct iio_chan_spec *chan,
1234 					    int num_channels,
1235 					    const char *name)
1236 {
1237 	struct iio_dev *indio_dev;
1238 
1239 	indio_dev = devm_iio_device_alloc(&data->client->dev, sizeof(data));
1240 	if (!indio_dev)
1241 		return ERR_PTR(-ENOMEM);
1242 
1243 	kmx61_set_data(indio_dev, data);
1244 
1245 	indio_dev->channels = chan;
1246 	indio_dev->num_channels = num_channels;
1247 	indio_dev->name = name;
1248 	indio_dev->modes = INDIO_DIRECT_MODE;
1249 	indio_dev->info = info;
1250 
1251 	return indio_dev;
1252 }
1253 
1254 static struct iio_trigger *kmx61_trigger_setup(struct kmx61_data *data,
1255 					       struct iio_dev *indio_dev,
1256 					       const char *tag)
1257 {
1258 	struct iio_trigger *trig;
1259 	int ret;
1260 
1261 	trig = devm_iio_trigger_alloc(&data->client->dev,
1262 				      "%s-%s-dev%d",
1263 				      indio_dev->name,
1264 				      tag,
1265 				      iio_device_id(indio_dev));
1266 	if (!trig)
1267 		return ERR_PTR(-ENOMEM);
1268 
1269 	trig->ops = &kmx61_trigger_ops;
1270 	iio_trigger_set_drvdata(trig, indio_dev);
1271 
1272 	ret = iio_trigger_register(trig);
1273 	if (ret)
1274 		return ERR_PTR(ret);
1275 
1276 	return trig;
1277 }
1278 
1279 static int kmx61_probe(struct i2c_client *client)
1280 {
1281 	const struct i2c_device_id *id = i2c_client_get_device_id(client);
1282 	int ret;
1283 	struct kmx61_data *data;
1284 	const char *name = NULL;
1285 
1286 	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
1287 	if (!data)
1288 		return -ENOMEM;
1289 
1290 	i2c_set_clientdata(client, data);
1291 	data->client = client;
1292 
1293 	mutex_init(&data->lock);
1294 
1295 	if (id)
1296 		name = id->name;
1297 	else if (ACPI_HANDLE(&client->dev))
1298 		name = kmx61_match_acpi_device(&client->dev);
1299 	else
1300 		return -ENODEV;
1301 
1302 	data->acc_indio_dev =
1303 		kmx61_indiodev_setup(data, &kmx61_acc_info,
1304 				     kmx61_acc_channels,
1305 				     ARRAY_SIZE(kmx61_acc_channels),
1306 				     name);
1307 	if (IS_ERR(data->acc_indio_dev))
1308 		return PTR_ERR(data->acc_indio_dev);
1309 
1310 	data->mag_indio_dev =
1311 		kmx61_indiodev_setup(data, &kmx61_mag_info,
1312 				     kmx61_mag_channels,
1313 				     ARRAY_SIZE(kmx61_mag_channels),
1314 				     name);
1315 	if (IS_ERR(data->mag_indio_dev))
1316 		return PTR_ERR(data->mag_indio_dev);
1317 
1318 	ret = kmx61_chip_init(data);
1319 	if (ret < 0)
1320 		return ret;
1321 
1322 	if (client->irq > 0) {
1323 		ret = devm_request_threaded_irq(&client->dev, client->irq,
1324 						kmx61_data_rdy_trig_poll,
1325 						kmx61_event_handler,
1326 						IRQF_TRIGGER_RISING,
1327 						KMX61_IRQ_NAME,
1328 						data);
1329 		if (ret)
1330 			goto err_chip_uninit;
1331 
1332 		data->acc_dready_trig =
1333 			kmx61_trigger_setup(data, data->acc_indio_dev,
1334 					    "dready");
1335 		if (IS_ERR(data->acc_dready_trig)) {
1336 			ret = PTR_ERR(data->acc_dready_trig);
1337 			goto err_chip_uninit;
1338 		}
1339 
1340 		data->mag_dready_trig =
1341 			kmx61_trigger_setup(data, data->mag_indio_dev,
1342 					    "dready");
1343 		if (IS_ERR(data->mag_dready_trig)) {
1344 			ret = PTR_ERR(data->mag_dready_trig);
1345 			goto err_trigger_unregister_acc_dready;
1346 		}
1347 
1348 		data->motion_trig =
1349 			kmx61_trigger_setup(data, data->acc_indio_dev,
1350 					    "any-motion");
1351 		if (IS_ERR(data->motion_trig)) {
1352 			ret = PTR_ERR(data->motion_trig);
1353 			goto err_trigger_unregister_mag_dready;
1354 		}
1355 
1356 		ret = iio_triggered_buffer_setup(data->acc_indio_dev,
1357 						 &iio_pollfunc_store_time,
1358 						 kmx61_trigger_handler,
1359 						 NULL);
1360 		if (ret < 0) {
1361 			dev_err(&data->client->dev,
1362 				"Failed to setup acc triggered buffer\n");
1363 			goto err_trigger_unregister_motion;
1364 		}
1365 
1366 		ret = iio_triggered_buffer_setup(data->mag_indio_dev,
1367 						 &iio_pollfunc_store_time,
1368 						 kmx61_trigger_handler,
1369 						 NULL);
1370 		if (ret < 0) {
1371 			dev_err(&data->client->dev,
1372 				"Failed to setup mag triggered buffer\n");
1373 			goto err_buffer_cleanup_acc;
1374 		}
1375 	}
1376 
1377 	ret = pm_runtime_set_active(&client->dev);
1378 	if (ret < 0)
1379 		goto err_buffer_cleanup_mag;
1380 
1381 	pm_runtime_enable(&client->dev);
1382 	pm_runtime_set_autosuspend_delay(&client->dev, KMX61_SLEEP_DELAY_MS);
1383 	pm_runtime_use_autosuspend(&client->dev);
1384 
1385 	ret = iio_device_register(data->acc_indio_dev);
1386 	if (ret < 0) {
1387 		dev_err(&client->dev, "Failed to register acc iio device\n");
1388 		goto err_pm_cleanup;
1389 	}
1390 
1391 	ret = iio_device_register(data->mag_indio_dev);
1392 	if (ret < 0) {
1393 		dev_err(&client->dev, "Failed to register mag iio device\n");
1394 		goto err_iio_unregister_acc;
1395 	}
1396 
1397 	return 0;
1398 
1399 err_iio_unregister_acc:
1400 	iio_device_unregister(data->acc_indio_dev);
1401 err_pm_cleanup:
1402 	pm_runtime_dont_use_autosuspend(&client->dev);
1403 	pm_runtime_disable(&client->dev);
1404 err_buffer_cleanup_mag:
1405 	if (client->irq > 0)
1406 		iio_triggered_buffer_cleanup(data->mag_indio_dev);
1407 err_buffer_cleanup_acc:
1408 	if (client->irq > 0)
1409 		iio_triggered_buffer_cleanup(data->acc_indio_dev);
1410 err_trigger_unregister_motion:
1411 	iio_trigger_unregister(data->motion_trig);
1412 err_trigger_unregister_mag_dready:
1413 	iio_trigger_unregister(data->mag_dready_trig);
1414 err_trigger_unregister_acc_dready:
1415 	iio_trigger_unregister(data->acc_dready_trig);
1416 err_chip_uninit:
1417 	kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true);
1418 	return ret;
1419 }
1420 
1421 static void kmx61_remove(struct i2c_client *client)
1422 {
1423 	struct kmx61_data *data = i2c_get_clientdata(client);
1424 
1425 	iio_device_unregister(data->acc_indio_dev);
1426 	iio_device_unregister(data->mag_indio_dev);
1427 
1428 	pm_runtime_disable(&client->dev);
1429 	pm_runtime_set_suspended(&client->dev);
1430 
1431 	if (client->irq > 0) {
1432 		iio_triggered_buffer_cleanup(data->acc_indio_dev);
1433 		iio_triggered_buffer_cleanup(data->mag_indio_dev);
1434 		iio_trigger_unregister(data->acc_dready_trig);
1435 		iio_trigger_unregister(data->mag_dready_trig);
1436 		iio_trigger_unregister(data->motion_trig);
1437 	}
1438 
1439 	mutex_lock(&data->lock);
1440 	kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true);
1441 	mutex_unlock(&data->lock);
1442 }
1443 
1444 static int kmx61_suspend(struct device *dev)
1445 {
1446 	int ret;
1447 	struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev));
1448 
1449 	mutex_lock(&data->lock);
1450 	ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG,
1451 			     false);
1452 	mutex_unlock(&data->lock);
1453 
1454 	return ret;
1455 }
1456 
1457 static int kmx61_resume(struct device *dev)
1458 {
1459 	u8 stby = 0;
1460 	struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev));
1461 
1462 	if (data->acc_stby)
1463 		stby |= KMX61_ACC_STBY_BIT;
1464 	if (data->mag_stby)
1465 		stby |= KMX61_MAG_STBY_BIT;
1466 
1467 	return kmx61_set_mode(data, stby, KMX61_ACC | KMX61_MAG, true);
1468 }
1469 
1470 static int kmx61_runtime_suspend(struct device *dev)
1471 {
1472 	struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev));
1473 	int ret;
1474 
1475 	mutex_lock(&data->lock);
1476 	ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true);
1477 	mutex_unlock(&data->lock);
1478 
1479 	return ret;
1480 }
1481 
1482 static int kmx61_runtime_resume(struct device *dev)
1483 {
1484 	struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev));
1485 	u8 stby = 0;
1486 
1487 	if (!data->acc_ps)
1488 		stby |= KMX61_ACC_STBY_BIT;
1489 	if (!data->mag_ps)
1490 		stby |= KMX61_MAG_STBY_BIT;
1491 
1492 	return kmx61_set_mode(data, stby, KMX61_ACC | KMX61_MAG, true);
1493 }
1494 
1495 static const struct dev_pm_ops kmx61_pm_ops = {
1496 	SYSTEM_SLEEP_PM_OPS(kmx61_suspend, kmx61_resume)
1497 	RUNTIME_PM_OPS(kmx61_runtime_suspend, kmx61_runtime_resume, NULL)
1498 };
1499 
1500 static const struct acpi_device_id kmx61_acpi_match[] = {
1501 	{"KMX61021", 0},
1502 	{}
1503 };
1504 
1505 MODULE_DEVICE_TABLE(acpi, kmx61_acpi_match);
1506 
1507 static const struct i2c_device_id kmx61_id[] = {
1508 	{"kmx611021", 0},
1509 	{}
1510 };
1511 
1512 MODULE_DEVICE_TABLE(i2c, kmx61_id);
1513 
1514 static struct i2c_driver kmx61_driver = {
1515 	.driver = {
1516 		.name = KMX61_DRV_NAME,
1517 		.acpi_match_table = ACPI_PTR(kmx61_acpi_match),
1518 		.pm = pm_ptr(&kmx61_pm_ops),
1519 	},
1520 	.probe		= kmx61_probe,
1521 	.remove		= kmx61_remove,
1522 	.id_table	= kmx61_id,
1523 };
1524 
1525 module_i2c_driver(kmx61_driver);
1526 
1527 MODULE_AUTHOR("Daniel Baluta <daniel.baluta@intel.com>");
1528 MODULE_DESCRIPTION("KMX61 accelerometer/magnetometer driver");
1529 MODULE_LICENSE("GPL v2");
1530