xref: /openbmc/linux/drivers/iio/imu/inv_mpu6050/inv_mpu_ring.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Invensense, Inc.
4 */
5 
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/err.h>
9 #include <linux/delay.h>
10 #include <linux/sysfs.h>
11 #include <linux/jiffies.h>
12 #include <linux/irq.h>
13 #include <linux/interrupt.h>
14 #include <linux/poll.h>
15 #include <linux/math64.h>
16 #include <asm/unaligned.h>
17 #include "inv_mpu_iio.h"
18 
19 /**
20  *  inv_mpu6050_update_period() - Update chip internal period estimation
21  *
22  *  @st:		driver state
23  *  @timestamp:		the interrupt timestamp
24  *  @nb:		number of data set in the fifo
25  *
26  *  This function uses interrupt timestamps to estimate the chip period and
27  *  to choose the data timestamp to come.
28  */
29 static void inv_mpu6050_update_period(struct inv_mpu6050_state *st,
30 				      s64 timestamp, size_t nb)
31 {
32 	/* Period boundaries for accepting timestamp */
33 	const s64 period_min =
34 		(NSEC_PER_MSEC * (100 - INV_MPU6050_TS_PERIOD_JITTER)) / 100;
35 	const s64 period_max =
36 		(NSEC_PER_MSEC * (100 + INV_MPU6050_TS_PERIOD_JITTER)) / 100;
37 	const s32 divider = INV_MPU6050_FREQ_DIVIDER(st);
38 	s64 delta, interval;
39 	bool use_it_timestamp = false;
40 
41 	if (st->it_timestamp == 0) {
42 		/* not initialized, forced to use it_timestamp */
43 		use_it_timestamp = true;
44 	} else if (nb == 1) {
45 		/*
46 		 * Validate the use of it timestamp by checking if interrupt
47 		 * has been delayed.
48 		 * nb > 1 means interrupt was delayed for more than 1 sample,
49 		 * so it's obviously not good.
50 		 * Compute the chip period between 2 interrupts for validating.
51 		 */
52 		delta = div_s64(timestamp - st->it_timestamp, divider);
53 		if (delta > period_min && delta < period_max) {
54 			/* update chip period and use it timestamp */
55 			st->chip_period = (st->chip_period + delta) / 2;
56 			use_it_timestamp = true;
57 		}
58 	}
59 
60 	if (use_it_timestamp) {
61 		/*
62 		 * Manage case of multiple samples in the fifo (nb > 1):
63 		 * compute timestamp corresponding to the first sample using
64 		 * estimated chip period.
65 		 */
66 		interval = (nb - 1) * st->chip_period * divider;
67 		st->data_timestamp = timestamp - interval;
68 	}
69 
70 	/* save it timestamp */
71 	st->it_timestamp = timestamp;
72 }
73 
74 /**
75  *  inv_mpu6050_get_timestamp() - Return the current data timestamp
76  *
77  *  @st:		driver state
78  *  @return:		current data timestamp
79  *
80  *  This function returns the current data timestamp and prepares for next one.
81  */
82 static s64 inv_mpu6050_get_timestamp(struct inv_mpu6050_state *st)
83 {
84 	s64 ts;
85 
86 	/* return current data timestamp and increment */
87 	ts = st->data_timestamp;
88 	st->data_timestamp += st->chip_period * INV_MPU6050_FREQ_DIVIDER(st);
89 
90 	return ts;
91 }
92 
93 int inv_reset_fifo(struct iio_dev *indio_dev)
94 {
95 	int result;
96 	u8 d;
97 	struct inv_mpu6050_state  *st = iio_priv(indio_dev);
98 
99 	/* reset it timestamp validation */
100 	st->it_timestamp = 0;
101 
102 	/* disable interrupt */
103 	result = regmap_write(st->map, st->reg->int_enable, 0);
104 	if (result) {
105 		dev_err(regmap_get_device(st->map), "int_enable failed %d\n",
106 			result);
107 		return result;
108 	}
109 	/* disable the sensor output to FIFO */
110 	result = regmap_write(st->map, st->reg->fifo_en, 0);
111 	if (result)
112 		goto reset_fifo_fail;
113 	/* disable fifo reading */
114 	result = regmap_write(st->map, st->reg->user_ctrl,
115 			      st->chip_config.user_ctrl);
116 	if (result)
117 		goto reset_fifo_fail;
118 
119 	/* reset FIFO*/
120 	d = st->chip_config.user_ctrl | INV_MPU6050_BIT_FIFO_RST;
121 	result = regmap_write(st->map, st->reg->user_ctrl, d);
122 	if (result)
123 		goto reset_fifo_fail;
124 
125 	/* enable interrupt */
126 	if (st->chip_config.accl_fifo_enable ||
127 	    st->chip_config.gyro_fifo_enable ||
128 	    st->chip_config.magn_fifo_enable) {
129 		result = regmap_write(st->map, st->reg->int_enable,
130 				      INV_MPU6050_BIT_DATA_RDY_EN);
131 		if (result)
132 			return result;
133 	}
134 	/* enable FIFO reading */
135 	d = st->chip_config.user_ctrl | INV_MPU6050_BIT_FIFO_EN;
136 	result = regmap_write(st->map, st->reg->user_ctrl, d);
137 	if (result)
138 		goto reset_fifo_fail;
139 	/* enable sensor output to FIFO */
140 	d = 0;
141 	if (st->chip_config.gyro_fifo_enable)
142 		d |= INV_MPU6050_BITS_GYRO_OUT;
143 	if (st->chip_config.accl_fifo_enable)
144 		d |= INV_MPU6050_BIT_ACCEL_OUT;
145 	if (st->chip_config.temp_fifo_enable)
146 		d |= INV_MPU6050_BIT_TEMP_OUT;
147 	if (st->chip_config.magn_fifo_enable)
148 		d |= INV_MPU6050_BIT_SLAVE_0;
149 	result = regmap_write(st->map, st->reg->fifo_en, d);
150 	if (result)
151 		goto reset_fifo_fail;
152 
153 	return 0;
154 
155 reset_fifo_fail:
156 	dev_err(regmap_get_device(st->map), "reset fifo failed %d\n", result);
157 	result = regmap_write(st->map, st->reg->int_enable,
158 			      INV_MPU6050_BIT_DATA_RDY_EN);
159 
160 	return result;
161 }
162 
163 /**
164  * inv_mpu6050_read_fifo() - Transfer data from hardware FIFO to KFIFO.
165  */
166 irqreturn_t inv_mpu6050_read_fifo(int irq, void *p)
167 {
168 	struct iio_poll_func *pf = p;
169 	struct iio_dev *indio_dev = pf->indio_dev;
170 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
171 	size_t bytes_per_datum;
172 	int result;
173 	u8 data[INV_MPU6050_OUTPUT_DATA_SIZE];
174 	u16 fifo_count;
175 	s64 timestamp;
176 	int int_status;
177 	size_t i, nb;
178 
179 	mutex_lock(&st->lock);
180 
181 	/* ack interrupt and check status */
182 	result = regmap_read(st->map, st->reg->int_status, &int_status);
183 	if (result) {
184 		dev_err(regmap_get_device(st->map),
185 			"failed to ack interrupt\n");
186 		goto flush_fifo;
187 	}
188 	if (!(int_status & INV_MPU6050_BIT_RAW_DATA_RDY_INT))
189 		goto end_session;
190 
191 	if (!(st->chip_config.accl_fifo_enable |
192 		st->chip_config.gyro_fifo_enable |
193 		st->chip_config.magn_fifo_enable))
194 		goto end_session;
195 	bytes_per_datum = 0;
196 	if (st->chip_config.accl_fifo_enable)
197 		bytes_per_datum += INV_MPU6050_BYTES_PER_3AXIS_SENSOR;
198 
199 	if (st->chip_config.gyro_fifo_enable)
200 		bytes_per_datum += INV_MPU6050_BYTES_PER_3AXIS_SENSOR;
201 
202 	if (st->chip_config.temp_fifo_enable)
203 		bytes_per_datum += INV_MPU6050_BYTES_PER_TEMP_SENSOR;
204 
205 	if (st->chip_config.magn_fifo_enable)
206 		bytes_per_datum += INV_MPU9X50_BYTES_MAGN;
207 
208 	/*
209 	 * read fifo_count register to know how many bytes are inside the FIFO
210 	 * right now
211 	 */
212 	result = regmap_bulk_read(st->map, st->reg->fifo_count_h, data,
213 				  INV_MPU6050_FIFO_COUNT_BYTE);
214 	if (result)
215 		goto end_session;
216 	fifo_count = get_unaligned_be16(&data[0]);
217 
218 	/*
219 	 * Handle fifo overflow by resetting fifo.
220 	 * Reset if there is only 3 data set free remaining to mitigate
221 	 * possible delay between reading fifo count and fifo data.
222 	 */
223 	nb = 3 * bytes_per_datum;
224 	if (fifo_count >= st->hw->fifo_size - nb) {
225 		dev_warn(regmap_get_device(st->map), "fifo overflow reset\n");
226 		goto flush_fifo;
227 	}
228 
229 	/* compute and process all complete datum */
230 	nb = fifo_count / bytes_per_datum;
231 	inv_mpu6050_update_period(st, pf->timestamp, nb);
232 	for (i = 0; i < nb; ++i) {
233 		result = regmap_bulk_read(st->map, st->reg->fifo_r_w,
234 					  data, bytes_per_datum);
235 		if (result)
236 			goto flush_fifo;
237 		/* skip first samples if needed */
238 		if (st->skip_samples) {
239 			st->skip_samples--;
240 			continue;
241 		}
242 		timestamp = inv_mpu6050_get_timestamp(st);
243 		iio_push_to_buffers_with_timestamp(indio_dev, data, timestamp);
244 	}
245 
246 end_session:
247 	mutex_unlock(&st->lock);
248 	iio_trigger_notify_done(indio_dev->trig);
249 
250 	return IRQ_HANDLED;
251 
252 flush_fifo:
253 	/* Flush HW and SW FIFOs. */
254 	inv_reset_fifo(indio_dev);
255 	mutex_unlock(&st->lock);
256 	iio_trigger_notify_done(indio_dev->trig);
257 
258 	return IRQ_HANDLED;
259 }
260