1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Invensense, Inc.
4 */
5 
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/i2c.h>
9 #include <linux/err.h>
10 #include <linux/delay.h>
11 #include <linux/sysfs.h>
12 #include <linux/jiffies.h>
13 #include <linux/irq.h>
14 #include <linux/interrupt.h>
15 #include <linux/iio/iio.h>
16 #include <linux/acpi.h>
17 #include <linux/platform_device.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/pm.h>
20 #include <linux/pm_runtime.h>
21 #include "inv_mpu_iio.h"
22 #include "inv_mpu_magn.h"
23 
24 /*
25  * this is the gyro scale translated from dynamic range plus/minus
26  * {250, 500, 1000, 2000} to rad/s
27  */
28 static const int gyro_scale_6050[] = {133090, 266181, 532362, 1064724};
29 
30 /*
31  * this is the accel scale translated from dynamic range plus/minus
32  * {2, 4, 8, 16} to m/s^2
33  */
34 static const int accel_scale[] = {598, 1196, 2392, 4785};
35 
36 static const struct inv_mpu6050_reg_map reg_set_icm20602 = {
37 	.sample_rate_div	= INV_MPU6050_REG_SAMPLE_RATE_DIV,
38 	.lpf                    = INV_MPU6050_REG_CONFIG,
39 	.accel_lpf              = INV_MPU6500_REG_ACCEL_CONFIG_2,
40 	.user_ctrl              = INV_MPU6050_REG_USER_CTRL,
41 	.fifo_en                = INV_MPU6050_REG_FIFO_EN,
42 	.gyro_config            = INV_MPU6050_REG_GYRO_CONFIG,
43 	.accl_config            = INV_MPU6050_REG_ACCEL_CONFIG,
44 	.fifo_count_h           = INV_MPU6050_REG_FIFO_COUNT_H,
45 	.fifo_r_w               = INV_MPU6050_REG_FIFO_R_W,
46 	.raw_gyro               = INV_MPU6050_REG_RAW_GYRO,
47 	.raw_accl               = INV_MPU6050_REG_RAW_ACCEL,
48 	.temperature            = INV_MPU6050_REG_TEMPERATURE,
49 	.int_enable             = INV_MPU6050_REG_INT_ENABLE,
50 	.int_status             = INV_MPU6050_REG_INT_STATUS,
51 	.pwr_mgmt_1             = INV_MPU6050_REG_PWR_MGMT_1,
52 	.pwr_mgmt_2             = INV_MPU6050_REG_PWR_MGMT_2,
53 	.int_pin_cfg            = INV_MPU6050_REG_INT_PIN_CFG,
54 	.accl_offset            = INV_MPU6500_REG_ACCEL_OFFSET,
55 	.gyro_offset            = INV_MPU6050_REG_GYRO_OFFSET,
56 	.i2c_if                 = INV_ICM20602_REG_I2C_IF,
57 };
58 
59 static const struct inv_mpu6050_reg_map reg_set_6500 = {
60 	.sample_rate_div	= INV_MPU6050_REG_SAMPLE_RATE_DIV,
61 	.lpf                    = INV_MPU6050_REG_CONFIG,
62 	.accel_lpf              = INV_MPU6500_REG_ACCEL_CONFIG_2,
63 	.user_ctrl              = INV_MPU6050_REG_USER_CTRL,
64 	.fifo_en                = INV_MPU6050_REG_FIFO_EN,
65 	.gyro_config            = INV_MPU6050_REG_GYRO_CONFIG,
66 	.accl_config            = INV_MPU6050_REG_ACCEL_CONFIG,
67 	.fifo_count_h           = INV_MPU6050_REG_FIFO_COUNT_H,
68 	.fifo_r_w               = INV_MPU6050_REG_FIFO_R_W,
69 	.raw_gyro               = INV_MPU6050_REG_RAW_GYRO,
70 	.raw_accl               = INV_MPU6050_REG_RAW_ACCEL,
71 	.temperature            = INV_MPU6050_REG_TEMPERATURE,
72 	.int_enable             = INV_MPU6050_REG_INT_ENABLE,
73 	.int_status             = INV_MPU6050_REG_INT_STATUS,
74 	.pwr_mgmt_1             = INV_MPU6050_REG_PWR_MGMT_1,
75 	.pwr_mgmt_2             = INV_MPU6050_REG_PWR_MGMT_2,
76 	.int_pin_cfg		= INV_MPU6050_REG_INT_PIN_CFG,
77 	.accl_offset		= INV_MPU6500_REG_ACCEL_OFFSET,
78 	.gyro_offset		= INV_MPU6050_REG_GYRO_OFFSET,
79 	.i2c_if                 = 0,
80 };
81 
82 static const struct inv_mpu6050_reg_map reg_set_6050 = {
83 	.sample_rate_div	= INV_MPU6050_REG_SAMPLE_RATE_DIV,
84 	.lpf                    = INV_MPU6050_REG_CONFIG,
85 	.user_ctrl              = INV_MPU6050_REG_USER_CTRL,
86 	.fifo_en                = INV_MPU6050_REG_FIFO_EN,
87 	.gyro_config            = INV_MPU6050_REG_GYRO_CONFIG,
88 	.accl_config            = INV_MPU6050_REG_ACCEL_CONFIG,
89 	.fifo_count_h           = INV_MPU6050_REG_FIFO_COUNT_H,
90 	.fifo_r_w               = INV_MPU6050_REG_FIFO_R_W,
91 	.raw_gyro               = INV_MPU6050_REG_RAW_GYRO,
92 	.raw_accl               = INV_MPU6050_REG_RAW_ACCEL,
93 	.temperature            = INV_MPU6050_REG_TEMPERATURE,
94 	.int_enable             = INV_MPU6050_REG_INT_ENABLE,
95 	.pwr_mgmt_1             = INV_MPU6050_REG_PWR_MGMT_1,
96 	.pwr_mgmt_2             = INV_MPU6050_REG_PWR_MGMT_2,
97 	.int_pin_cfg		= INV_MPU6050_REG_INT_PIN_CFG,
98 	.accl_offset		= INV_MPU6050_REG_ACCEL_OFFSET,
99 	.gyro_offset		= INV_MPU6050_REG_GYRO_OFFSET,
100 	.i2c_if                 = 0,
101 };
102 
103 static const struct inv_mpu6050_chip_config chip_config_6050 = {
104 	.clk = INV_CLK_INTERNAL,
105 	.fsr = INV_MPU6050_FSR_2000DPS,
106 	.lpf = INV_MPU6050_FILTER_20HZ,
107 	.divider = INV_MPU6050_FIFO_RATE_TO_DIVIDER(50),
108 	.gyro_en = true,
109 	.accl_en = true,
110 	.temp_en = true,
111 	.magn_en = false,
112 	.gyro_fifo_enable = false,
113 	.accl_fifo_enable = false,
114 	.temp_fifo_enable = false,
115 	.magn_fifo_enable = false,
116 	.accl_fs = INV_MPU6050_FS_02G,
117 	.user_ctrl = 0,
118 };
119 
120 static const struct inv_mpu6050_chip_config chip_config_6500 = {
121 	.clk = INV_CLK_PLL,
122 	.fsr = INV_MPU6050_FSR_2000DPS,
123 	.lpf = INV_MPU6050_FILTER_20HZ,
124 	.divider = INV_MPU6050_FIFO_RATE_TO_DIVIDER(50),
125 	.gyro_en = true,
126 	.accl_en = true,
127 	.temp_en = true,
128 	.magn_en = false,
129 	.gyro_fifo_enable = false,
130 	.accl_fifo_enable = false,
131 	.temp_fifo_enable = false,
132 	.magn_fifo_enable = false,
133 	.accl_fs = INV_MPU6050_FS_02G,
134 	.user_ctrl = 0,
135 };
136 
137 /* Indexed by enum inv_devices */
138 static const struct inv_mpu6050_hw hw_info[] = {
139 	{
140 		.whoami = INV_MPU6050_WHOAMI_VALUE,
141 		.name = "MPU6050",
142 		.reg = &reg_set_6050,
143 		.config = &chip_config_6050,
144 		.fifo_size = 1024,
145 		.temp = {INV_MPU6050_TEMP_OFFSET, INV_MPU6050_TEMP_SCALE},
146 	},
147 	{
148 		.whoami = INV_MPU6500_WHOAMI_VALUE,
149 		.name = "MPU6500",
150 		.reg = &reg_set_6500,
151 		.config = &chip_config_6500,
152 		.fifo_size = 512,
153 		.temp = {INV_MPU6500_TEMP_OFFSET, INV_MPU6500_TEMP_SCALE},
154 	},
155 	{
156 		.whoami = INV_MPU6515_WHOAMI_VALUE,
157 		.name = "MPU6515",
158 		.reg = &reg_set_6500,
159 		.config = &chip_config_6500,
160 		.fifo_size = 512,
161 		.temp = {INV_MPU6500_TEMP_OFFSET, INV_MPU6500_TEMP_SCALE},
162 	},
163 	{
164 		.whoami = INV_MPU6000_WHOAMI_VALUE,
165 		.name = "MPU6000",
166 		.reg = &reg_set_6050,
167 		.config = &chip_config_6050,
168 		.fifo_size = 1024,
169 		.temp = {INV_MPU6050_TEMP_OFFSET, INV_MPU6050_TEMP_SCALE},
170 	},
171 	{
172 		.whoami = INV_MPU9150_WHOAMI_VALUE,
173 		.name = "MPU9150",
174 		.reg = &reg_set_6050,
175 		.config = &chip_config_6050,
176 		.fifo_size = 1024,
177 		.temp = {INV_MPU6050_TEMP_OFFSET, INV_MPU6050_TEMP_SCALE},
178 	},
179 	{
180 		.whoami = INV_MPU9250_WHOAMI_VALUE,
181 		.name = "MPU9250",
182 		.reg = &reg_set_6500,
183 		.config = &chip_config_6500,
184 		.fifo_size = 512,
185 		.temp = {INV_MPU6500_TEMP_OFFSET, INV_MPU6500_TEMP_SCALE},
186 	},
187 	{
188 		.whoami = INV_MPU9255_WHOAMI_VALUE,
189 		.name = "MPU9255",
190 		.reg = &reg_set_6500,
191 		.config = &chip_config_6500,
192 		.fifo_size = 512,
193 		.temp = {INV_MPU6500_TEMP_OFFSET, INV_MPU6500_TEMP_SCALE},
194 	},
195 	{
196 		.whoami = INV_ICM20608_WHOAMI_VALUE,
197 		.name = "ICM20608",
198 		.reg = &reg_set_6500,
199 		.config = &chip_config_6500,
200 		.fifo_size = 512,
201 		.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
202 	},
203 	{
204 		.whoami = INV_ICM20609_WHOAMI_VALUE,
205 		.name = "ICM20609",
206 		.reg = &reg_set_6500,
207 		.config = &chip_config_6500,
208 		.fifo_size = 4 * 1024,
209 		.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
210 	},
211 	{
212 		.whoami = INV_ICM20689_WHOAMI_VALUE,
213 		.name = "ICM20689",
214 		.reg = &reg_set_6500,
215 		.config = &chip_config_6500,
216 		.fifo_size = 4 * 1024,
217 		.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
218 	},
219 	{
220 		.whoami = INV_ICM20602_WHOAMI_VALUE,
221 		.name = "ICM20602",
222 		.reg = &reg_set_icm20602,
223 		.config = &chip_config_6500,
224 		.fifo_size = 1008,
225 		.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
226 	},
227 	{
228 		.whoami = INV_ICM20690_WHOAMI_VALUE,
229 		.name = "ICM20690",
230 		.reg = &reg_set_6500,
231 		.config = &chip_config_6500,
232 		.fifo_size = 1024,
233 		.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
234 	},
235 	{
236 		.whoami = INV_IAM20680_WHOAMI_VALUE,
237 		.name = "IAM20680",
238 		.reg = &reg_set_6500,
239 		.config = &chip_config_6500,
240 		.fifo_size = 512,
241 		.temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE},
242 	},
243 };
244 
245 static int inv_mpu6050_pwr_mgmt_1_write(struct inv_mpu6050_state *st, bool sleep,
246 					int clock, int temp_dis)
247 {
248 	u8 val;
249 
250 	if (clock < 0)
251 		clock = st->chip_config.clk;
252 	if (temp_dis < 0)
253 		temp_dis = !st->chip_config.temp_en;
254 
255 	val = clock & INV_MPU6050_BIT_CLK_MASK;
256 	if (temp_dis)
257 		val |= INV_MPU6050_BIT_TEMP_DIS;
258 	if (sleep)
259 		val |= INV_MPU6050_BIT_SLEEP;
260 
261 	dev_dbg(regmap_get_device(st->map), "pwr_mgmt_1: 0x%x\n", val);
262 	return regmap_write(st->map, st->reg->pwr_mgmt_1, val);
263 }
264 
265 static int inv_mpu6050_clock_switch(struct inv_mpu6050_state *st,
266 				    unsigned int clock)
267 {
268 	int ret;
269 
270 	switch (st->chip_type) {
271 	case INV_MPU6050:
272 	case INV_MPU6000:
273 	case INV_MPU9150:
274 		/* old chips: switch clock manually */
275 		ret = inv_mpu6050_pwr_mgmt_1_write(st, false, clock, -1);
276 		if (ret)
277 			return ret;
278 		st->chip_config.clk = clock;
279 		break;
280 	default:
281 		/* automatic clock switching, nothing to do */
282 		break;
283 	}
284 
285 	return 0;
286 }
287 
288 int inv_mpu6050_switch_engine(struct inv_mpu6050_state *st, bool en,
289 			      unsigned int mask)
290 {
291 	unsigned int sleep;
292 	u8 pwr_mgmt2, user_ctrl;
293 	int ret;
294 
295 	/* delete useless requests */
296 	if (mask & INV_MPU6050_SENSOR_ACCL && en == st->chip_config.accl_en)
297 		mask &= ~INV_MPU6050_SENSOR_ACCL;
298 	if (mask & INV_MPU6050_SENSOR_GYRO && en == st->chip_config.gyro_en)
299 		mask &= ~INV_MPU6050_SENSOR_GYRO;
300 	if (mask & INV_MPU6050_SENSOR_TEMP && en == st->chip_config.temp_en)
301 		mask &= ~INV_MPU6050_SENSOR_TEMP;
302 	if (mask & INV_MPU6050_SENSOR_MAGN && en == st->chip_config.magn_en)
303 		mask &= ~INV_MPU6050_SENSOR_MAGN;
304 	if (mask == 0)
305 		return 0;
306 
307 	/* turn on/off temperature sensor */
308 	if (mask & INV_MPU6050_SENSOR_TEMP) {
309 		ret = inv_mpu6050_pwr_mgmt_1_write(st, false, -1, !en);
310 		if (ret)
311 			return ret;
312 		st->chip_config.temp_en = en;
313 	}
314 
315 	/* update user_crtl for driving magnetometer */
316 	if (mask & INV_MPU6050_SENSOR_MAGN) {
317 		user_ctrl = st->chip_config.user_ctrl;
318 		if (en)
319 			user_ctrl |= INV_MPU6050_BIT_I2C_MST_EN;
320 		else
321 			user_ctrl &= ~INV_MPU6050_BIT_I2C_MST_EN;
322 		ret = regmap_write(st->map, st->reg->user_ctrl, user_ctrl);
323 		if (ret)
324 			return ret;
325 		st->chip_config.user_ctrl = user_ctrl;
326 		st->chip_config.magn_en = en;
327 	}
328 
329 	/* manage accel & gyro engines */
330 	if (mask & (INV_MPU6050_SENSOR_ACCL | INV_MPU6050_SENSOR_GYRO)) {
331 		/* compute power management 2 current value */
332 		pwr_mgmt2 = 0;
333 		if (!st->chip_config.accl_en)
334 			pwr_mgmt2 |= INV_MPU6050_BIT_PWR_ACCL_STBY;
335 		if (!st->chip_config.gyro_en)
336 			pwr_mgmt2 |= INV_MPU6050_BIT_PWR_GYRO_STBY;
337 
338 		/* update to new requested value */
339 		if (mask & INV_MPU6050_SENSOR_ACCL) {
340 			if (en)
341 				pwr_mgmt2 &= ~INV_MPU6050_BIT_PWR_ACCL_STBY;
342 			else
343 				pwr_mgmt2 |= INV_MPU6050_BIT_PWR_ACCL_STBY;
344 		}
345 		if (mask & INV_MPU6050_SENSOR_GYRO) {
346 			if (en)
347 				pwr_mgmt2 &= ~INV_MPU6050_BIT_PWR_GYRO_STBY;
348 			else
349 				pwr_mgmt2 |= INV_MPU6050_BIT_PWR_GYRO_STBY;
350 		}
351 
352 		/* switch clock to internal when turning gyro off */
353 		if (mask & INV_MPU6050_SENSOR_GYRO && !en) {
354 			ret = inv_mpu6050_clock_switch(st, INV_CLK_INTERNAL);
355 			if (ret)
356 				return ret;
357 		}
358 
359 		/* update sensors engine */
360 		dev_dbg(regmap_get_device(st->map), "pwr_mgmt_2: 0x%x\n",
361 			pwr_mgmt2);
362 		ret = regmap_write(st->map, st->reg->pwr_mgmt_2, pwr_mgmt2);
363 		if (ret)
364 			return ret;
365 		if (mask & INV_MPU6050_SENSOR_ACCL)
366 			st->chip_config.accl_en = en;
367 		if (mask & INV_MPU6050_SENSOR_GYRO)
368 			st->chip_config.gyro_en = en;
369 
370 		/* compute required time to have sensors stabilized */
371 		sleep = 0;
372 		if (en) {
373 			if (mask & INV_MPU6050_SENSOR_ACCL) {
374 				if (sleep < INV_MPU6050_ACCEL_UP_TIME)
375 					sleep = INV_MPU6050_ACCEL_UP_TIME;
376 			}
377 			if (mask & INV_MPU6050_SENSOR_GYRO) {
378 				if (sleep < INV_MPU6050_GYRO_UP_TIME)
379 					sleep = INV_MPU6050_GYRO_UP_TIME;
380 			}
381 		} else {
382 			if (mask & INV_MPU6050_SENSOR_GYRO) {
383 				if (sleep < INV_MPU6050_GYRO_DOWN_TIME)
384 					sleep = INV_MPU6050_GYRO_DOWN_TIME;
385 			}
386 		}
387 		if (sleep)
388 			msleep(sleep);
389 
390 		/* switch clock to PLL when turning gyro on */
391 		if (mask & INV_MPU6050_SENSOR_GYRO && en) {
392 			ret = inv_mpu6050_clock_switch(st, INV_CLK_PLL);
393 			if (ret)
394 				return ret;
395 		}
396 	}
397 
398 	return 0;
399 }
400 
401 static int inv_mpu6050_set_power_itg(struct inv_mpu6050_state *st,
402 				     bool power_on)
403 {
404 	int result;
405 
406 	result = inv_mpu6050_pwr_mgmt_1_write(st, !power_on, -1, -1);
407 	if (result)
408 		return result;
409 
410 	if (power_on)
411 		usleep_range(INV_MPU6050_REG_UP_TIME_MIN,
412 			     INV_MPU6050_REG_UP_TIME_MAX);
413 
414 	return 0;
415 }
416 
417 static int inv_mpu6050_set_gyro_fsr(struct inv_mpu6050_state *st,
418 				    enum inv_mpu6050_fsr_e val)
419 {
420 	unsigned int gyro_shift;
421 	u8 data;
422 
423 	switch (st->chip_type) {
424 	case INV_ICM20690:
425 		gyro_shift = INV_ICM20690_GYRO_CONFIG_FSR_SHIFT;
426 		break;
427 	default:
428 		gyro_shift = INV_MPU6050_GYRO_CONFIG_FSR_SHIFT;
429 		break;
430 	}
431 
432 	data = val << gyro_shift;
433 	return regmap_write(st->map, st->reg->gyro_config, data);
434 }
435 
436 /*
437  *  inv_mpu6050_set_lpf_regs() - set low pass filter registers, chip dependent
438  *
439  *  MPU60xx/MPU9150 use only 1 register for accelerometer + gyroscope
440  *  MPU6500 and above have a dedicated register for accelerometer
441  */
442 static int inv_mpu6050_set_lpf_regs(struct inv_mpu6050_state *st,
443 				    enum inv_mpu6050_filter_e val)
444 {
445 	int result;
446 
447 	result = regmap_write(st->map, st->reg->lpf, val);
448 	if (result)
449 		return result;
450 
451 	/* set accel lpf */
452 	switch (st->chip_type) {
453 	case INV_MPU6050:
454 	case INV_MPU6000:
455 	case INV_MPU9150:
456 		/* old chips, nothing to do */
457 		return 0;
458 	case INV_ICM20689:
459 	case INV_ICM20690:
460 		/* set FIFO size to maximum value */
461 		val |= INV_ICM20689_BITS_FIFO_SIZE_MAX;
462 		break;
463 	default:
464 		break;
465 	}
466 
467 	return regmap_write(st->map, st->reg->accel_lpf, val);
468 }
469 
470 /*
471  *  inv_mpu6050_init_config() - Initialize hardware, disable FIFO.
472  *
473  *  Initial configuration:
474  *  FSR: ± 2000DPS
475  *  DLPF: 20Hz
476  *  FIFO rate: 50Hz
477  *  Clock source: Gyro PLL
478  */
479 static int inv_mpu6050_init_config(struct iio_dev *indio_dev)
480 {
481 	int result;
482 	u8 d;
483 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
484 
485 	result = inv_mpu6050_set_gyro_fsr(st, st->chip_config.fsr);
486 	if (result)
487 		return result;
488 
489 	result = inv_mpu6050_set_lpf_regs(st, st->chip_config.lpf);
490 	if (result)
491 		return result;
492 
493 	d = st->chip_config.divider;
494 	result = regmap_write(st->map, st->reg->sample_rate_div, d);
495 	if (result)
496 		return result;
497 
498 	d = (st->chip_config.accl_fs << INV_MPU6050_ACCL_CONFIG_FSR_SHIFT);
499 	result = regmap_write(st->map, st->reg->accl_config, d);
500 	if (result)
501 		return result;
502 
503 	result = regmap_write(st->map, st->reg->int_pin_cfg, st->irq_mask);
504 	if (result)
505 		return result;
506 
507 	/*
508 	 * Internal chip period is 1ms (1kHz).
509 	 * Let's use at the beginning the theorical value before measuring
510 	 * with interrupt timestamps.
511 	 */
512 	st->chip_period = NSEC_PER_MSEC;
513 
514 	/* magn chip init, noop if not present in the chip */
515 	result = inv_mpu_magn_probe(st);
516 	if (result)
517 		return result;
518 
519 	return 0;
520 }
521 
522 static int inv_mpu6050_sensor_set(struct inv_mpu6050_state  *st, int reg,
523 				int axis, int val)
524 {
525 	int ind, result;
526 	__be16 d = cpu_to_be16(val);
527 
528 	ind = (axis - IIO_MOD_X) * 2;
529 	result = regmap_bulk_write(st->map, reg + ind, &d, sizeof(d));
530 	if (result)
531 		return -EINVAL;
532 
533 	return 0;
534 }
535 
536 static int inv_mpu6050_sensor_show(struct inv_mpu6050_state  *st, int reg,
537 				   int axis, int *val)
538 {
539 	int ind, result;
540 	__be16 d;
541 
542 	ind = (axis - IIO_MOD_X) * 2;
543 	result = regmap_bulk_read(st->map, reg + ind, &d, sizeof(d));
544 	if (result)
545 		return -EINVAL;
546 	*val = (short)be16_to_cpup(&d);
547 
548 	return IIO_VAL_INT;
549 }
550 
551 static int inv_mpu6050_read_channel_data(struct iio_dev *indio_dev,
552 					 struct iio_chan_spec const *chan,
553 					 int *val)
554 {
555 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
556 	struct device *pdev = regmap_get_device(st->map);
557 	unsigned int freq_hz, period_us, min_sleep_us, max_sleep_us;
558 	int result;
559 	int ret;
560 
561 	/* compute sample period */
562 	freq_hz = INV_MPU6050_DIVIDER_TO_FIFO_RATE(st->chip_config.divider);
563 	period_us = 1000000 / freq_hz;
564 
565 	result = pm_runtime_get_sync(pdev);
566 	if (result < 0) {
567 		pm_runtime_put_noidle(pdev);
568 		return result;
569 	}
570 
571 	switch (chan->type) {
572 	case IIO_ANGL_VEL:
573 		if (!st->chip_config.gyro_en) {
574 			result = inv_mpu6050_switch_engine(st, true,
575 					INV_MPU6050_SENSOR_GYRO);
576 			if (result)
577 				goto error_power_off;
578 			/* need to wait 2 periods to have first valid sample */
579 			min_sleep_us = 2 * period_us;
580 			max_sleep_us = 2 * (period_us + period_us / 2);
581 			usleep_range(min_sleep_us, max_sleep_us);
582 		}
583 		ret = inv_mpu6050_sensor_show(st, st->reg->raw_gyro,
584 					      chan->channel2, val);
585 		break;
586 	case IIO_ACCEL:
587 		if (!st->chip_config.accl_en) {
588 			result = inv_mpu6050_switch_engine(st, true,
589 					INV_MPU6050_SENSOR_ACCL);
590 			if (result)
591 				goto error_power_off;
592 			/* wait 1 period for first sample availability */
593 			min_sleep_us = period_us;
594 			max_sleep_us = period_us + period_us / 2;
595 			usleep_range(min_sleep_us, max_sleep_us);
596 		}
597 		ret = inv_mpu6050_sensor_show(st, st->reg->raw_accl,
598 					      chan->channel2, val);
599 		break;
600 	case IIO_TEMP:
601 		/* temperature sensor work only with accel and/or gyro */
602 		if (!st->chip_config.accl_en && !st->chip_config.gyro_en) {
603 			result = -EBUSY;
604 			goto error_power_off;
605 		}
606 		if (!st->chip_config.temp_en) {
607 			result = inv_mpu6050_switch_engine(st, true,
608 					INV_MPU6050_SENSOR_TEMP);
609 			if (result)
610 				goto error_power_off;
611 			/* wait 1 period for first sample availability */
612 			min_sleep_us = period_us;
613 			max_sleep_us = period_us + period_us / 2;
614 			usleep_range(min_sleep_us, max_sleep_us);
615 		}
616 		ret = inv_mpu6050_sensor_show(st, st->reg->temperature,
617 					      IIO_MOD_X, val);
618 		break;
619 	case IIO_MAGN:
620 		if (!st->chip_config.magn_en) {
621 			result = inv_mpu6050_switch_engine(st, true,
622 					INV_MPU6050_SENSOR_MAGN);
623 			if (result)
624 				goto error_power_off;
625 			/* frequency is limited for magnetometer */
626 			if (freq_hz > INV_MPU_MAGN_FREQ_HZ_MAX) {
627 				freq_hz = INV_MPU_MAGN_FREQ_HZ_MAX;
628 				period_us = 1000000 / freq_hz;
629 			}
630 			/* need to wait 2 periods to have first valid sample */
631 			min_sleep_us = 2 * period_us;
632 			max_sleep_us = 2 * (period_us + period_us / 2);
633 			usleep_range(min_sleep_us, max_sleep_us);
634 		}
635 		ret = inv_mpu_magn_read(st, chan->channel2, val);
636 		break;
637 	default:
638 		ret = -EINVAL;
639 		break;
640 	}
641 
642 	pm_runtime_mark_last_busy(pdev);
643 	pm_runtime_put_autosuspend(pdev);
644 
645 	return ret;
646 
647 error_power_off:
648 	pm_runtime_put_autosuspend(pdev);
649 	return result;
650 }
651 
652 static int
653 inv_mpu6050_read_raw(struct iio_dev *indio_dev,
654 		     struct iio_chan_spec const *chan,
655 		     int *val, int *val2, long mask)
656 {
657 	struct inv_mpu6050_state  *st = iio_priv(indio_dev);
658 	int ret = 0;
659 
660 	switch (mask) {
661 	case IIO_CHAN_INFO_RAW:
662 		ret = iio_device_claim_direct_mode(indio_dev);
663 		if (ret)
664 			return ret;
665 		mutex_lock(&st->lock);
666 		ret = inv_mpu6050_read_channel_data(indio_dev, chan, val);
667 		mutex_unlock(&st->lock);
668 		iio_device_release_direct_mode(indio_dev);
669 		return ret;
670 	case IIO_CHAN_INFO_SCALE:
671 		switch (chan->type) {
672 		case IIO_ANGL_VEL:
673 			mutex_lock(&st->lock);
674 			*val  = 0;
675 			*val2 = gyro_scale_6050[st->chip_config.fsr];
676 			mutex_unlock(&st->lock);
677 
678 			return IIO_VAL_INT_PLUS_NANO;
679 		case IIO_ACCEL:
680 			mutex_lock(&st->lock);
681 			*val = 0;
682 			*val2 = accel_scale[st->chip_config.accl_fs];
683 			mutex_unlock(&st->lock);
684 
685 			return IIO_VAL_INT_PLUS_MICRO;
686 		case IIO_TEMP:
687 			*val = st->hw->temp.scale / 1000000;
688 			*val2 = st->hw->temp.scale % 1000000;
689 			return IIO_VAL_INT_PLUS_MICRO;
690 		case IIO_MAGN:
691 			return inv_mpu_magn_get_scale(st, chan, val, val2);
692 		default:
693 			return -EINVAL;
694 		}
695 	case IIO_CHAN_INFO_OFFSET:
696 		switch (chan->type) {
697 		case IIO_TEMP:
698 			*val = st->hw->temp.offset;
699 			return IIO_VAL_INT;
700 		default:
701 			return -EINVAL;
702 		}
703 	case IIO_CHAN_INFO_CALIBBIAS:
704 		switch (chan->type) {
705 		case IIO_ANGL_VEL:
706 			mutex_lock(&st->lock);
707 			ret = inv_mpu6050_sensor_show(st, st->reg->gyro_offset,
708 						chan->channel2, val);
709 			mutex_unlock(&st->lock);
710 			return IIO_VAL_INT;
711 		case IIO_ACCEL:
712 			mutex_lock(&st->lock);
713 			ret = inv_mpu6050_sensor_show(st, st->reg->accl_offset,
714 						chan->channel2, val);
715 			mutex_unlock(&st->lock);
716 			return IIO_VAL_INT;
717 
718 		default:
719 			return -EINVAL;
720 		}
721 	default:
722 		return -EINVAL;
723 	}
724 }
725 
726 static int inv_mpu6050_write_gyro_scale(struct inv_mpu6050_state *st, int val)
727 {
728 	int result, i;
729 
730 	for (i = 0; i < ARRAY_SIZE(gyro_scale_6050); ++i) {
731 		if (gyro_scale_6050[i] == val) {
732 			result = inv_mpu6050_set_gyro_fsr(st, i);
733 			if (result)
734 				return result;
735 
736 			st->chip_config.fsr = i;
737 			return 0;
738 		}
739 	}
740 
741 	return -EINVAL;
742 }
743 
744 static int inv_write_raw_get_fmt(struct iio_dev *indio_dev,
745 				 struct iio_chan_spec const *chan, long mask)
746 {
747 	switch (mask) {
748 	case IIO_CHAN_INFO_SCALE:
749 		switch (chan->type) {
750 		case IIO_ANGL_VEL:
751 			return IIO_VAL_INT_PLUS_NANO;
752 		default:
753 			return IIO_VAL_INT_PLUS_MICRO;
754 		}
755 	default:
756 		return IIO_VAL_INT_PLUS_MICRO;
757 	}
758 
759 	return -EINVAL;
760 }
761 
762 static int inv_mpu6050_write_accel_scale(struct inv_mpu6050_state *st, int val)
763 {
764 	int result, i;
765 	u8 d;
766 
767 	for (i = 0; i < ARRAY_SIZE(accel_scale); ++i) {
768 		if (accel_scale[i] == val) {
769 			d = (i << INV_MPU6050_ACCL_CONFIG_FSR_SHIFT);
770 			result = regmap_write(st->map, st->reg->accl_config, d);
771 			if (result)
772 				return result;
773 
774 			st->chip_config.accl_fs = i;
775 			return 0;
776 		}
777 	}
778 
779 	return -EINVAL;
780 }
781 
782 static int inv_mpu6050_write_raw(struct iio_dev *indio_dev,
783 				 struct iio_chan_spec const *chan,
784 				 int val, int val2, long mask)
785 {
786 	struct inv_mpu6050_state  *st = iio_priv(indio_dev);
787 	struct device *pdev = regmap_get_device(st->map);
788 	int result;
789 
790 	/*
791 	 * we should only update scale when the chip is disabled, i.e.
792 	 * not running
793 	 */
794 	result = iio_device_claim_direct_mode(indio_dev);
795 	if (result)
796 		return result;
797 
798 	mutex_lock(&st->lock);
799 	result = pm_runtime_get_sync(pdev);
800 	if (result < 0) {
801 		pm_runtime_put_noidle(pdev);
802 		goto error_write_raw_unlock;
803 	}
804 
805 	switch (mask) {
806 	case IIO_CHAN_INFO_SCALE:
807 		switch (chan->type) {
808 		case IIO_ANGL_VEL:
809 			result = inv_mpu6050_write_gyro_scale(st, val2);
810 			break;
811 		case IIO_ACCEL:
812 			result = inv_mpu6050_write_accel_scale(st, val2);
813 			break;
814 		default:
815 			result = -EINVAL;
816 			break;
817 		}
818 		break;
819 	case IIO_CHAN_INFO_CALIBBIAS:
820 		switch (chan->type) {
821 		case IIO_ANGL_VEL:
822 			result = inv_mpu6050_sensor_set(st,
823 							st->reg->gyro_offset,
824 							chan->channel2, val);
825 			break;
826 		case IIO_ACCEL:
827 			result = inv_mpu6050_sensor_set(st,
828 							st->reg->accl_offset,
829 							chan->channel2, val);
830 			break;
831 		default:
832 			result = -EINVAL;
833 			break;
834 		}
835 		break;
836 	default:
837 		result = -EINVAL;
838 		break;
839 	}
840 
841 	pm_runtime_mark_last_busy(pdev);
842 	pm_runtime_put_autosuspend(pdev);
843 error_write_raw_unlock:
844 	mutex_unlock(&st->lock);
845 	iio_device_release_direct_mode(indio_dev);
846 
847 	return result;
848 }
849 
850 /*
851  *  inv_mpu6050_set_lpf() - set low pass filer based on fifo rate.
852  *
853  *                  Based on the Nyquist principle, the bandwidth of the low
854  *                  pass filter must not exceed the signal sampling rate divided
855  *                  by 2, or there would be aliasing.
856  *                  This function basically search for the correct low pass
857  *                  parameters based on the fifo rate, e.g, sampling frequency.
858  *
859  *  lpf is set automatically when setting sampling rate to avoid any aliases.
860  */
861 static int inv_mpu6050_set_lpf(struct inv_mpu6050_state *st, int rate)
862 {
863 	static const int hz[] = {400, 200, 90, 40, 20, 10};
864 	static const int d[] = {
865 		INV_MPU6050_FILTER_200HZ, INV_MPU6050_FILTER_100HZ,
866 		INV_MPU6050_FILTER_45HZ, INV_MPU6050_FILTER_20HZ,
867 		INV_MPU6050_FILTER_10HZ, INV_MPU6050_FILTER_5HZ
868 	};
869 	int i, result;
870 	u8 data;
871 
872 	data = INV_MPU6050_FILTER_5HZ;
873 	for (i = 0; i < ARRAY_SIZE(hz); ++i) {
874 		if (rate >= hz[i]) {
875 			data = d[i];
876 			break;
877 		}
878 	}
879 	result = inv_mpu6050_set_lpf_regs(st, data);
880 	if (result)
881 		return result;
882 	st->chip_config.lpf = data;
883 
884 	return 0;
885 }
886 
887 /*
888  * inv_mpu6050_fifo_rate_store() - Set fifo rate.
889  */
890 static ssize_t
891 inv_mpu6050_fifo_rate_store(struct device *dev, struct device_attribute *attr,
892 			    const char *buf, size_t count)
893 {
894 	int fifo_rate;
895 	u8 d;
896 	int result;
897 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
898 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
899 	struct device *pdev = regmap_get_device(st->map);
900 
901 	if (kstrtoint(buf, 10, &fifo_rate))
902 		return -EINVAL;
903 	if (fifo_rate < INV_MPU6050_MIN_FIFO_RATE ||
904 	    fifo_rate > INV_MPU6050_MAX_FIFO_RATE)
905 		return -EINVAL;
906 
907 	/* compute the chip sample rate divider */
908 	d = INV_MPU6050_FIFO_RATE_TO_DIVIDER(fifo_rate);
909 	/* compute back the fifo rate to handle truncation cases */
910 	fifo_rate = INV_MPU6050_DIVIDER_TO_FIFO_RATE(d);
911 
912 	mutex_lock(&st->lock);
913 	if (d == st->chip_config.divider) {
914 		result = 0;
915 		goto fifo_rate_fail_unlock;
916 	}
917 	result = pm_runtime_get_sync(pdev);
918 	if (result < 0) {
919 		pm_runtime_put_noidle(pdev);
920 		goto fifo_rate_fail_unlock;
921 	}
922 
923 	result = regmap_write(st->map, st->reg->sample_rate_div, d);
924 	if (result)
925 		goto fifo_rate_fail_power_off;
926 	st->chip_config.divider = d;
927 
928 	result = inv_mpu6050_set_lpf(st, fifo_rate);
929 	if (result)
930 		goto fifo_rate_fail_power_off;
931 
932 	/* update rate for magn, noop if not present in chip */
933 	result = inv_mpu_magn_set_rate(st, fifo_rate);
934 	if (result)
935 		goto fifo_rate_fail_power_off;
936 
937 	pm_runtime_mark_last_busy(pdev);
938 fifo_rate_fail_power_off:
939 	pm_runtime_put_autosuspend(pdev);
940 fifo_rate_fail_unlock:
941 	mutex_unlock(&st->lock);
942 	if (result)
943 		return result;
944 
945 	return count;
946 }
947 
948 /*
949  * inv_fifo_rate_show() - Get the current sampling rate.
950  */
951 static ssize_t
952 inv_fifo_rate_show(struct device *dev, struct device_attribute *attr,
953 		   char *buf)
954 {
955 	struct inv_mpu6050_state *st = iio_priv(dev_to_iio_dev(dev));
956 	unsigned fifo_rate;
957 
958 	mutex_lock(&st->lock);
959 	fifo_rate = INV_MPU6050_DIVIDER_TO_FIFO_RATE(st->chip_config.divider);
960 	mutex_unlock(&st->lock);
961 
962 	return scnprintf(buf, PAGE_SIZE, "%u\n", fifo_rate);
963 }
964 
965 /*
966  * inv_attr_show() - calling this function will show current
967  *                    parameters.
968  *
969  * Deprecated in favor of IIO mounting matrix API.
970  *
971  * See inv_get_mount_matrix()
972  */
973 static ssize_t inv_attr_show(struct device *dev, struct device_attribute *attr,
974 			     char *buf)
975 {
976 	struct inv_mpu6050_state *st = iio_priv(dev_to_iio_dev(dev));
977 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
978 	s8 *m;
979 
980 	switch (this_attr->address) {
981 	/*
982 	 * In MPU6050, the two matrix are the same because gyro and accel
983 	 * are integrated in one chip
984 	 */
985 	case ATTR_GYRO_MATRIX:
986 	case ATTR_ACCL_MATRIX:
987 		m = st->plat_data.orientation;
988 
989 		return scnprintf(buf, PAGE_SIZE,
990 			"%d, %d, %d; %d, %d, %d; %d, %d, %d\n",
991 			m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8]);
992 	default:
993 		return -EINVAL;
994 	}
995 }
996 
997 /**
998  * inv_mpu6050_validate_trigger() - validate_trigger callback for invensense
999  *                                  MPU6050 device.
1000  * @indio_dev: The IIO device
1001  * @trig: The new trigger
1002  *
1003  * Returns: 0 if the 'trig' matches the trigger registered by the MPU6050
1004  * device, -EINVAL otherwise.
1005  */
1006 static int inv_mpu6050_validate_trigger(struct iio_dev *indio_dev,
1007 					struct iio_trigger *trig)
1008 {
1009 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
1010 
1011 	if (st->trig != trig)
1012 		return -EINVAL;
1013 
1014 	return 0;
1015 }
1016 
1017 static const struct iio_mount_matrix *
1018 inv_get_mount_matrix(const struct iio_dev *indio_dev,
1019 		     const struct iio_chan_spec *chan)
1020 {
1021 	struct inv_mpu6050_state *data = iio_priv(indio_dev);
1022 	const struct iio_mount_matrix *matrix;
1023 
1024 	if (chan->type == IIO_MAGN)
1025 		matrix = &data->magn_orient;
1026 	else
1027 		matrix = &data->orientation;
1028 
1029 	return matrix;
1030 }
1031 
1032 static const struct iio_chan_spec_ext_info inv_ext_info[] = {
1033 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, inv_get_mount_matrix),
1034 	{ }
1035 };
1036 
1037 #define INV_MPU6050_CHAN(_type, _channel2, _index)                    \
1038 	{                                                             \
1039 		.type = _type,                                        \
1040 		.modified = 1,                                        \
1041 		.channel2 = _channel2,                                \
1042 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
1043 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |	      \
1044 				      BIT(IIO_CHAN_INFO_CALIBBIAS),   \
1045 		.scan_index = _index,                                 \
1046 		.scan_type = {                                        \
1047 				.sign = 's',                          \
1048 				.realbits = 16,                       \
1049 				.storagebits = 16,                    \
1050 				.shift = 0,                           \
1051 				.endianness = IIO_BE,                 \
1052 			     },                                       \
1053 		.ext_info = inv_ext_info,                             \
1054 	}
1055 
1056 #define INV_MPU6050_TEMP_CHAN(_index)				\
1057 	{							\
1058 		.type = IIO_TEMP,				\
1059 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW)	\
1060 				| BIT(IIO_CHAN_INFO_OFFSET)	\
1061 				| BIT(IIO_CHAN_INFO_SCALE),	\
1062 		.scan_index = _index,				\
1063 		.scan_type = {					\
1064 			.sign = 's',				\
1065 			.realbits = 16,				\
1066 			.storagebits = 16,			\
1067 			.shift = 0,				\
1068 			.endianness = IIO_BE,			\
1069 		},						\
1070 	}
1071 
1072 static const struct iio_chan_spec inv_mpu_channels[] = {
1073 	IIO_CHAN_SOFT_TIMESTAMP(INV_MPU6050_SCAN_TIMESTAMP),
1074 
1075 	INV_MPU6050_TEMP_CHAN(INV_MPU6050_SCAN_TEMP),
1076 
1077 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_X, INV_MPU6050_SCAN_GYRO_X),
1078 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Y, INV_MPU6050_SCAN_GYRO_Y),
1079 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Z, INV_MPU6050_SCAN_GYRO_Z),
1080 
1081 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_X, INV_MPU6050_SCAN_ACCL_X),
1082 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Y, INV_MPU6050_SCAN_ACCL_Y),
1083 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Z, INV_MPU6050_SCAN_ACCL_Z),
1084 };
1085 
1086 #define INV_MPU6050_SCAN_MASK_3AXIS_ACCEL	\
1087 	(BIT(INV_MPU6050_SCAN_ACCL_X)		\
1088 	| BIT(INV_MPU6050_SCAN_ACCL_Y)		\
1089 	| BIT(INV_MPU6050_SCAN_ACCL_Z))
1090 
1091 #define INV_MPU6050_SCAN_MASK_3AXIS_GYRO	\
1092 	(BIT(INV_MPU6050_SCAN_GYRO_X)		\
1093 	| BIT(INV_MPU6050_SCAN_GYRO_Y)		\
1094 	| BIT(INV_MPU6050_SCAN_GYRO_Z))
1095 
1096 #define INV_MPU6050_SCAN_MASK_TEMP		(BIT(INV_MPU6050_SCAN_TEMP))
1097 
1098 static const unsigned long inv_mpu_scan_masks[] = {
1099 	/* 3-axis accel */
1100 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL,
1101 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_TEMP,
1102 	/* 3-axis gyro */
1103 	INV_MPU6050_SCAN_MASK_3AXIS_GYRO,
1104 	INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU6050_SCAN_MASK_TEMP,
1105 	/* 6-axis accel + gyro */
1106 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO,
1107 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO
1108 		| INV_MPU6050_SCAN_MASK_TEMP,
1109 	0,
1110 };
1111 
1112 #define INV_MPU9X50_MAGN_CHAN(_chan2, _bits, _index)			\
1113 	{								\
1114 		.type = IIO_MAGN,					\
1115 		.modified = 1,						\
1116 		.channel2 = _chan2,					\
1117 		.info_mask_separate = BIT(IIO_CHAN_INFO_SCALE) |	\
1118 				      BIT(IIO_CHAN_INFO_RAW),		\
1119 		.scan_index = _index,					\
1120 		.scan_type = {						\
1121 			.sign = 's',					\
1122 			.realbits = _bits,				\
1123 			.storagebits = 16,				\
1124 			.shift = 0,					\
1125 			.endianness = IIO_BE,				\
1126 		},							\
1127 		.ext_info = inv_ext_info,				\
1128 	}
1129 
1130 static const struct iio_chan_spec inv_mpu9150_channels[] = {
1131 	IIO_CHAN_SOFT_TIMESTAMP(INV_MPU9X50_SCAN_TIMESTAMP),
1132 
1133 	INV_MPU6050_TEMP_CHAN(INV_MPU6050_SCAN_TEMP),
1134 
1135 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_X, INV_MPU6050_SCAN_GYRO_X),
1136 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Y, INV_MPU6050_SCAN_GYRO_Y),
1137 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Z, INV_MPU6050_SCAN_GYRO_Z),
1138 
1139 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_X, INV_MPU6050_SCAN_ACCL_X),
1140 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Y, INV_MPU6050_SCAN_ACCL_Y),
1141 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Z, INV_MPU6050_SCAN_ACCL_Z),
1142 
1143 	/* Magnetometer resolution is 13 bits */
1144 	INV_MPU9X50_MAGN_CHAN(IIO_MOD_X, 13, INV_MPU9X50_SCAN_MAGN_X),
1145 	INV_MPU9X50_MAGN_CHAN(IIO_MOD_Y, 13, INV_MPU9X50_SCAN_MAGN_Y),
1146 	INV_MPU9X50_MAGN_CHAN(IIO_MOD_Z, 13, INV_MPU9X50_SCAN_MAGN_Z),
1147 };
1148 
1149 static const struct iio_chan_spec inv_mpu9250_channels[] = {
1150 	IIO_CHAN_SOFT_TIMESTAMP(INV_MPU9X50_SCAN_TIMESTAMP),
1151 
1152 	INV_MPU6050_TEMP_CHAN(INV_MPU6050_SCAN_TEMP),
1153 
1154 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_X, INV_MPU6050_SCAN_GYRO_X),
1155 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Y, INV_MPU6050_SCAN_GYRO_Y),
1156 	INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Z, INV_MPU6050_SCAN_GYRO_Z),
1157 
1158 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_X, INV_MPU6050_SCAN_ACCL_X),
1159 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Y, INV_MPU6050_SCAN_ACCL_Y),
1160 	INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Z, INV_MPU6050_SCAN_ACCL_Z),
1161 
1162 	/* Magnetometer resolution is 16 bits */
1163 	INV_MPU9X50_MAGN_CHAN(IIO_MOD_X, 16, INV_MPU9X50_SCAN_MAGN_X),
1164 	INV_MPU9X50_MAGN_CHAN(IIO_MOD_Y, 16, INV_MPU9X50_SCAN_MAGN_Y),
1165 	INV_MPU9X50_MAGN_CHAN(IIO_MOD_Z, 16, INV_MPU9X50_SCAN_MAGN_Z),
1166 };
1167 
1168 #define INV_MPU9X50_SCAN_MASK_3AXIS_MAGN	\
1169 	(BIT(INV_MPU9X50_SCAN_MAGN_X)		\
1170 	| BIT(INV_MPU9X50_SCAN_MAGN_Y)		\
1171 	| BIT(INV_MPU9X50_SCAN_MAGN_Z))
1172 
1173 static const unsigned long inv_mpu9x50_scan_masks[] = {
1174 	/* 3-axis accel */
1175 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL,
1176 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_TEMP,
1177 	/* 3-axis gyro */
1178 	INV_MPU6050_SCAN_MASK_3AXIS_GYRO,
1179 	INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU6050_SCAN_MASK_TEMP,
1180 	/* 3-axis magn */
1181 	INV_MPU9X50_SCAN_MASK_3AXIS_MAGN,
1182 	INV_MPU9X50_SCAN_MASK_3AXIS_MAGN | INV_MPU6050_SCAN_MASK_TEMP,
1183 	/* 6-axis accel + gyro */
1184 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO,
1185 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO
1186 		| INV_MPU6050_SCAN_MASK_TEMP,
1187 	/* 6-axis accel + magn */
1188 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU9X50_SCAN_MASK_3AXIS_MAGN,
1189 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU9X50_SCAN_MASK_3AXIS_MAGN
1190 		| INV_MPU6050_SCAN_MASK_TEMP,
1191 	/* 6-axis gyro + magn */
1192 	INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU9X50_SCAN_MASK_3AXIS_MAGN,
1193 	INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU9X50_SCAN_MASK_3AXIS_MAGN
1194 		| INV_MPU6050_SCAN_MASK_TEMP,
1195 	/* 9-axis accel + gyro + magn */
1196 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO
1197 		| INV_MPU9X50_SCAN_MASK_3AXIS_MAGN,
1198 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO
1199 		| INV_MPU9X50_SCAN_MASK_3AXIS_MAGN
1200 		| INV_MPU6050_SCAN_MASK_TEMP,
1201 	0,
1202 };
1203 
1204 static const unsigned long inv_icm20602_scan_masks[] = {
1205 	/* 3-axis accel + temp (mandatory) */
1206 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_TEMP,
1207 	/* 3-axis gyro + temp (mandatory) */
1208 	INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU6050_SCAN_MASK_TEMP,
1209 	/* 6-axis accel + gyro + temp (mandatory) */
1210 	INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO
1211 		| INV_MPU6050_SCAN_MASK_TEMP,
1212 	0,
1213 };
1214 
1215 /*
1216  * The user can choose any frequency between INV_MPU6050_MIN_FIFO_RATE and
1217  * INV_MPU6050_MAX_FIFO_RATE, but only these frequencies are matched by the
1218  * low-pass filter. Specifically, each of these sampling rates are about twice
1219  * the bandwidth of a corresponding low-pass filter, which should eliminate
1220  * aliasing following the Nyquist principle. By picking a frequency different
1221  * from these, the user risks aliasing effects.
1222  */
1223 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("10 20 50 100 200 500");
1224 static IIO_CONST_ATTR(in_anglvel_scale_available,
1225 					  "0.000133090 0.000266181 0.000532362 0.001064724");
1226 static IIO_CONST_ATTR(in_accel_scale_available,
1227 					  "0.000598 0.001196 0.002392 0.004785");
1228 static IIO_DEV_ATTR_SAMP_FREQ(S_IRUGO | S_IWUSR, inv_fifo_rate_show,
1229 	inv_mpu6050_fifo_rate_store);
1230 
1231 /* Deprecated: kept for userspace backward compatibility. */
1232 static IIO_DEVICE_ATTR(in_gyro_matrix, S_IRUGO, inv_attr_show, NULL,
1233 	ATTR_GYRO_MATRIX);
1234 static IIO_DEVICE_ATTR(in_accel_matrix, S_IRUGO, inv_attr_show, NULL,
1235 	ATTR_ACCL_MATRIX);
1236 
1237 static struct attribute *inv_attributes[] = {
1238 	&iio_dev_attr_in_gyro_matrix.dev_attr.attr,  /* deprecated */
1239 	&iio_dev_attr_in_accel_matrix.dev_attr.attr, /* deprecated */
1240 	&iio_dev_attr_sampling_frequency.dev_attr.attr,
1241 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
1242 	&iio_const_attr_in_accel_scale_available.dev_attr.attr,
1243 	&iio_const_attr_in_anglvel_scale_available.dev_attr.attr,
1244 	NULL,
1245 };
1246 
1247 static const struct attribute_group inv_attribute_group = {
1248 	.attrs = inv_attributes
1249 };
1250 
1251 static int inv_mpu6050_reg_access(struct iio_dev *indio_dev,
1252 				  unsigned int reg,
1253 				  unsigned int writeval,
1254 				  unsigned int *readval)
1255 {
1256 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
1257 	int ret;
1258 
1259 	mutex_lock(&st->lock);
1260 	if (readval)
1261 		ret = regmap_read(st->map, reg, readval);
1262 	else
1263 		ret = regmap_write(st->map, reg, writeval);
1264 	mutex_unlock(&st->lock);
1265 
1266 	return ret;
1267 }
1268 
1269 static const struct iio_info mpu_info = {
1270 	.read_raw = &inv_mpu6050_read_raw,
1271 	.write_raw = &inv_mpu6050_write_raw,
1272 	.write_raw_get_fmt = &inv_write_raw_get_fmt,
1273 	.attrs = &inv_attribute_group,
1274 	.validate_trigger = inv_mpu6050_validate_trigger,
1275 	.debugfs_reg_access = &inv_mpu6050_reg_access,
1276 };
1277 
1278 /*
1279  *  inv_check_and_setup_chip() - check and setup chip.
1280  */
1281 static int inv_check_and_setup_chip(struct inv_mpu6050_state *st)
1282 {
1283 	int result;
1284 	unsigned int regval, mask;
1285 	int i;
1286 
1287 	st->hw  = &hw_info[st->chip_type];
1288 	st->reg = hw_info[st->chip_type].reg;
1289 	memcpy(&st->chip_config, hw_info[st->chip_type].config,
1290 	       sizeof(st->chip_config));
1291 
1292 	/* check chip self-identification */
1293 	result = regmap_read(st->map, INV_MPU6050_REG_WHOAMI, &regval);
1294 	if (result)
1295 		return result;
1296 	if (regval != st->hw->whoami) {
1297 		/* check whoami against all possible values */
1298 		for (i = 0; i < INV_NUM_PARTS; ++i) {
1299 			if (regval == hw_info[i].whoami) {
1300 				dev_warn(regmap_get_device(st->map),
1301 					"whoami mismatch got %#02x (%s)"
1302 					"expected %#02hhx (%s)\n",
1303 					regval, hw_info[i].name,
1304 					st->hw->whoami, st->hw->name);
1305 				break;
1306 			}
1307 		}
1308 		if (i >= INV_NUM_PARTS) {
1309 			dev_err(regmap_get_device(st->map),
1310 				"invalid whoami %#02x expected %#02hhx (%s)\n",
1311 				regval, st->hw->whoami, st->hw->name);
1312 			return -ENODEV;
1313 		}
1314 	}
1315 
1316 	/* reset to make sure previous state are not there */
1317 	result = regmap_write(st->map, st->reg->pwr_mgmt_1,
1318 			      INV_MPU6050_BIT_H_RESET);
1319 	if (result)
1320 		return result;
1321 	msleep(INV_MPU6050_POWER_UP_TIME);
1322 	switch (st->chip_type) {
1323 	case INV_MPU6000:
1324 	case INV_MPU6500:
1325 	case INV_MPU6515:
1326 	case INV_MPU9250:
1327 	case INV_MPU9255:
1328 		/* reset signal path (required for spi connection) */
1329 		regval = INV_MPU6050_BIT_TEMP_RST | INV_MPU6050_BIT_ACCEL_RST |
1330 			 INV_MPU6050_BIT_GYRO_RST;
1331 		result = regmap_write(st->map, INV_MPU6050_REG_SIGNAL_PATH_RESET,
1332 				      regval);
1333 		if (result)
1334 			return result;
1335 		msleep(INV_MPU6050_POWER_UP_TIME);
1336 		break;
1337 	default:
1338 		break;
1339 	}
1340 
1341 	/*
1342 	 * Turn power on. After reset, the sleep bit could be on
1343 	 * or off depending on the OTP settings. Turning power on
1344 	 * make it in a definite state as well as making the hardware
1345 	 * state align with the software state
1346 	 */
1347 	result = inv_mpu6050_set_power_itg(st, true);
1348 	if (result)
1349 		return result;
1350 	mask = INV_MPU6050_SENSOR_ACCL | INV_MPU6050_SENSOR_GYRO |
1351 			INV_MPU6050_SENSOR_TEMP | INV_MPU6050_SENSOR_MAGN;
1352 	result = inv_mpu6050_switch_engine(st, false, mask);
1353 	if (result)
1354 		goto error_power_off;
1355 
1356 	return 0;
1357 
1358 error_power_off:
1359 	inv_mpu6050_set_power_itg(st, false);
1360 	return result;
1361 }
1362 
1363 static int inv_mpu_core_enable_regulator_vddio(struct inv_mpu6050_state *st)
1364 {
1365 	int result;
1366 
1367 	result = regulator_enable(st->vddio_supply);
1368 	if (result) {
1369 		dev_err(regmap_get_device(st->map),
1370 			"Failed to enable vddio regulator: %d\n", result);
1371 	} else {
1372 		/* Give the device a little bit of time to start up. */
1373 		usleep_range(3000, 5000);
1374 	}
1375 
1376 	return result;
1377 }
1378 
1379 static int inv_mpu_core_disable_regulator_vddio(struct inv_mpu6050_state *st)
1380 {
1381 	int result;
1382 
1383 	result = regulator_disable(st->vddio_supply);
1384 	if (result)
1385 		dev_err(regmap_get_device(st->map),
1386 			"Failed to disable vddio regulator: %d\n", result);
1387 
1388 	return result;
1389 }
1390 
1391 static void inv_mpu_core_disable_regulator_action(void *_data)
1392 {
1393 	struct inv_mpu6050_state *st = _data;
1394 	int result;
1395 
1396 	result = regulator_disable(st->vdd_supply);
1397 	if (result)
1398 		dev_err(regmap_get_device(st->map),
1399 			"Failed to disable vdd regulator: %d\n", result);
1400 
1401 	inv_mpu_core_disable_regulator_vddio(st);
1402 }
1403 
1404 static void inv_mpu_pm_disable(void *data)
1405 {
1406 	struct device *dev = data;
1407 
1408 	pm_runtime_put_sync_suspend(dev);
1409 	pm_runtime_disable(dev);
1410 }
1411 
1412 int inv_mpu_core_probe(struct regmap *regmap, int irq, const char *name,
1413 		int (*inv_mpu_bus_setup)(struct iio_dev *), int chip_type)
1414 {
1415 	struct inv_mpu6050_state *st;
1416 	struct iio_dev *indio_dev;
1417 	struct inv_mpu6050_platform_data *pdata;
1418 	struct device *dev = regmap_get_device(regmap);
1419 	int result;
1420 	struct irq_data *desc;
1421 	int irq_type;
1422 
1423 	indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
1424 	if (!indio_dev)
1425 		return -ENOMEM;
1426 
1427 	BUILD_BUG_ON(ARRAY_SIZE(hw_info) != INV_NUM_PARTS);
1428 	if (chip_type < 0 || chip_type >= INV_NUM_PARTS) {
1429 		dev_err(dev, "Bad invensense chip_type=%d name=%s\n",
1430 				chip_type, name);
1431 		return -ENODEV;
1432 	}
1433 	st = iio_priv(indio_dev);
1434 	mutex_init(&st->lock);
1435 	st->chip_type = chip_type;
1436 	st->irq = irq;
1437 	st->map = regmap;
1438 
1439 	pdata = dev_get_platdata(dev);
1440 	if (!pdata) {
1441 		result = iio_read_mount_matrix(dev, "mount-matrix",
1442 					       &st->orientation);
1443 		if (result) {
1444 			dev_err(dev, "Failed to retrieve mounting matrix %d\n",
1445 				result);
1446 			return result;
1447 		}
1448 	} else {
1449 		st->plat_data = *pdata;
1450 	}
1451 
1452 	desc = irq_get_irq_data(irq);
1453 	if (!desc) {
1454 		dev_err(dev, "Could not find IRQ %d\n", irq);
1455 		return -EINVAL;
1456 	}
1457 
1458 	irq_type = irqd_get_trigger_type(desc);
1459 	if (!irq_type)
1460 		irq_type = IRQF_TRIGGER_RISING;
1461 	if (irq_type & IRQF_TRIGGER_RISING)	// rising or both-edge
1462 		st->irq_mask = INV_MPU6050_ACTIVE_HIGH;
1463 	else if (irq_type == IRQF_TRIGGER_FALLING)
1464 		st->irq_mask = INV_MPU6050_ACTIVE_LOW;
1465 	else if (irq_type == IRQF_TRIGGER_HIGH)
1466 		st->irq_mask = INV_MPU6050_ACTIVE_HIGH |
1467 			INV_MPU6050_LATCH_INT_EN;
1468 	else if (irq_type == IRQF_TRIGGER_LOW)
1469 		st->irq_mask = INV_MPU6050_ACTIVE_LOW |
1470 			INV_MPU6050_LATCH_INT_EN;
1471 	else {
1472 		dev_err(dev, "Invalid interrupt type 0x%x specified\n",
1473 			irq_type);
1474 		return -EINVAL;
1475 	}
1476 
1477 	st->vdd_supply = devm_regulator_get(dev, "vdd");
1478 	if (IS_ERR(st->vdd_supply))
1479 		return dev_err_probe(dev, PTR_ERR(st->vdd_supply),
1480 				     "Failed to get vdd regulator\n");
1481 
1482 	st->vddio_supply = devm_regulator_get(dev, "vddio");
1483 	if (IS_ERR(st->vddio_supply))
1484 		return dev_err_probe(dev, PTR_ERR(st->vddio_supply),
1485 				     "Failed to get vddio regulator\n");
1486 
1487 	result = regulator_enable(st->vdd_supply);
1488 	if (result) {
1489 		dev_err(dev, "Failed to enable vdd regulator: %d\n", result);
1490 		return result;
1491 	}
1492 	msleep(INV_MPU6050_POWER_UP_TIME);
1493 
1494 	result = inv_mpu_core_enable_regulator_vddio(st);
1495 	if (result) {
1496 		regulator_disable(st->vdd_supply);
1497 		return result;
1498 	}
1499 
1500 	result = devm_add_action_or_reset(dev, inv_mpu_core_disable_regulator_action,
1501 				 st);
1502 	if (result) {
1503 		dev_err(dev, "Failed to setup regulator cleanup action %d\n",
1504 			result);
1505 		return result;
1506 	}
1507 
1508 	/* fill magnetometer orientation */
1509 	result = inv_mpu_magn_set_orient(st);
1510 	if (result)
1511 		return result;
1512 
1513 	/* power is turned on inside check chip type*/
1514 	result = inv_check_and_setup_chip(st);
1515 	if (result)
1516 		return result;
1517 
1518 	result = inv_mpu6050_init_config(indio_dev);
1519 	if (result) {
1520 		dev_err(dev, "Could not initialize device.\n");
1521 		goto error_power_off;
1522 	}
1523 
1524 	dev_set_drvdata(dev, indio_dev);
1525 	/* name will be NULL when enumerated via ACPI */
1526 	if (name)
1527 		indio_dev->name = name;
1528 	else
1529 		indio_dev->name = dev_name(dev);
1530 
1531 	/* requires parent device set in indio_dev */
1532 	if (inv_mpu_bus_setup) {
1533 		result = inv_mpu_bus_setup(indio_dev);
1534 		if (result)
1535 			goto error_power_off;
1536 	}
1537 
1538 	/* chip init is done, turning on runtime power management */
1539 	result = pm_runtime_set_active(dev);
1540 	if (result)
1541 		goto error_power_off;
1542 	pm_runtime_get_noresume(dev);
1543 	pm_runtime_enable(dev);
1544 	pm_runtime_set_autosuspend_delay(dev, INV_MPU6050_SUSPEND_DELAY_MS);
1545 	pm_runtime_use_autosuspend(dev);
1546 	pm_runtime_put(dev);
1547 	result = devm_add_action_or_reset(dev, inv_mpu_pm_disable, dev);
1548 	if (result)
1549 		return result;
1550 
1551 	switch (chip_type) {
1552 	case INV_MPU9150:
1553 		indio_dev->channels = inv_mpu9150_channels;
1554 		indio_dev->num_channels = ARRAY_SIZE(inv_mpu9150_channels);
1555 		indio_dev->available_scan_masks = inv_mpu9x50_scan_masks;
1556 		break;
1557 	case INV_MPU9250:
1558 	case INV_MPU9255:
1559 		indio_dev->channels = inv_mpu9250_channels;
1560 		indio_dev->num_channels = ARRAY_SIZE(inv_mpu9250_channels);
1561 		indio_dev->available_scan_masks = inv_mpu9x50_scan_masks;
1562 		break;
1563 	case INV_ICM20602:
1564 		indio_dev->channels = inv_mpu_channels;
1565 		indio_dev->num_channels = ARRAY_SIZE(inv_mpu_channels);
1566 		indio_dev->available_scan_masks = inv_icm20602_scan_masks;
1567 		break;
1568 	default:
1569 		indio_dev->channels = inv_mpu_channels;
1570 		indio_dev->num_channels = ARRAY_SIZE(inv_mpu_channels);
1571 		indio_dev->available_scan_masks = inv_mpu_scan_masks;
1572 		break;
1573 	}
1574 	/*
1575 	 * Use magnetometer inside the chip only if there is no i2c
1576 	 * auxiliary device in use. Otherwise Going back to 6-axis only.
1577 	 */
1578 	if (st->magn_disabled) {
1579 		indio_dev->channels = inv_mpu_channels;
1580 		indio_dev->num_channels = ARRAY_SIZE(inv_mpu_channels);
1581 		indio_dev->available_scan_masks = inv_mpu_scan_masks;
1582 	}
1583 
1584 	indio_dev->info = &mpu_info;
1585 	indio_dev->modes = INDIO_BUFFER_TRIGGERED;
1586 
1587 	result = devm_iio_triggered_buffer_setup(dev, indio_dev,
1588 						 iio_pollfunc_store_time,
1589 						 inv_mpu6050_read_fifo,
1590 						 NULL);
1591 	if (result) {
1592 		dev_err(dev, "configure buffer fail %d\n", result);
1593 		return result;
1594 	}
1595 	result = inv_mpu6050_probe_trigger(indio_dev, irq_type);
1596 	if (result) {
1597 		dev_err(dev, "trigger probe fail %d\n", result);
1598 		return result;
1599 	}
1600 
1601 	result = devm_iio_device_register(dev, indio_dev);
1602 	if (result) {
1603 		dev_err(dev, "IIO register fail %d\n", result);
1604 		return result;
1605 	}
1606 
1607 	return 0;
1608 
1609 error_power_off:
1610 	inv_mpu6050_set_power_itg(st, false);
1611 	return result;
1612 }
1613 EXPORT_SYMBOL_GPL(inv_mpu_core_probe);
1614 
1615 static int __maybe_unused inv_mpu_resume(struct device *dev)
1616 {
1617 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1618 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
1619 	int result;
1620 
1621 	mutex_lock(&st->lock);
1622 	result = inv_mpu_core_enable_regulator_vddio(st);
1623 	if (result)
1624 		goto out_unlock;
1625 
1626 	result = inv_mpu6050_set_power_itg(st, true);
1627 	if (result)
1628 		goto out_unlock;
1629 
1630 	pm_runtime_disable(dev);
1631 	pm_runtime_set_active(dev);
1632 	pm_runtime_enable(dev);
1633 
1634 	result = inv_mpu6050_switch_engine(st, true, st->suspended_sensors);
1635 	if (result)
1636 		goto out_unlock;
1637 
1638 	if (iio_buffer_enabled(indio_dev))
1639 		result = inv_mpu6050_prepare_fifo(st, true);
1640 
1641 out_unlock:
1642 	mutex_unlock(&st->lock);
1643 
1644 	return result;
1645 }
1646 
1647 static int __maybe_unused inv_mpu_suspend(struct device *dev)
1648 {
1649 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1650 	struct inv_mpu6050_state *st = iio_priv(indio_dev);
1651 	int result;
1652 
1653 	mutex_lock(&st->lock);
1654 
1655 	st->suspended_sensors = 0;
1656 	if (pm_runtime_suspended(dev)) {
1657 		result = 0;
1658 		goto out_unlock;
1659 	}
1660 
1661 	if (iio_buffer_enabled(indio_dev)) {
1662 		result = inv_mpu6050_prepare_fifo(st, false);
1663 		if (result)
1664 			goto out_unlock;
1665 	}
1666 
1667 	if (st->chip_config.accl_en)
1668 		st->suspended_sensors |= INV_MPU6050_SENSOR_ACCL;
1669 	if (st->chip_config.gyro_en)
1670 		st->suspended_sensors |= INV_MPU6050_SENSOR_GYRO;
1671 	if (st->chip_config.temp_en)
1672 		st->suspended_sensors |= INV_MPU6050_SENSOR_TEMP;
1673 	if (st->chip_config.magn_en)
1674 		st->suspended_sensors |= INV_MPU6050_SENSOR_MAGN;
1675 	result = inv_mpu6050_switch_engine(st, false, st->suspended_sensors);
1676 	if (result)
1677 		goto out_unlock;
1678 
1679 	result = inv_mpu6050_set_power_itg(st, false);
1680 	if (result)
1681 		goto out_unlock;
1682 
1683 	inv_mpu_core_disable_regulator_vddio(st);
1684 out_unlock:
1685 	mutex_unlock(&st->lock);
1686 
1687 	return result;
1688 }
1689 
1690 static int __maybe_unused inv_mpu_runtime_suspend(struct device *dev)
1691 {
1692 	struct inv_mpu6050_state *st = iio_priv(dev_get_drvdata(dev));
1693 	unsigned int sensors;
1694 	int ret;
1695 
1696 	mutex_lock(&st->lock);
1697 
1698 	sensors = INV_MPU6050_SENSOR_ACCL | INV_MPU6050_SENSOR_GYRO |
1699 			INV_MPU6050_SENSOR_TEMP | INV_MPU6050_SENSOR_MAGN;
1700 	ret = inv_mpu6050_switch_engine(st, false, sensors);
1701 	if (ret)
1702 		goto out_unlock;
1703 
1704 	ret = inv_mpu6050_set_power_itg(st, false);
1705 	if (ret)
1706 		goto out_unlock;
1707 
1708 	inv_mpu_core_disable_regulator_vddio(st);
1709 
1710 out_unlock:
1711 	mutex_unlock(&st->lock);
1712 	return ret;
1713 }
1714 
1715 static int __maybe_unused inv_mpu_runtime_resume(struct device *dev)
1716 {
1717 	struct inv_mpu6050_state *st = iio_priv(dev_get_drvdata(dev));
1718 	int ret;
1719 
1720 	ret = inv_mpu_core_enable_regulator_vddio(st);
1721 	if (ret)
1722 		return ret;
1723 
1724 	return inv_mpu6050_set_power_itg(st, true);
1725 }
1726 
1727 const struct dev_pm_ops inv_mpu_pmops = {
1728 	SET_SYSTEM_SLEEP_PM_OPS(inv_mpu_suspend, inv_mpu_resume)
1729 	SET_RUNTIME_PM_OPS(inv_mpu_runtime_suspend, inv_mpu_runtime_resume, NULL)
1730 };
1731 EXPORT_SYMBOL_GPL(inv_mpu_pmops);
1732 
1733 MODULE_AUTHOR("Invensense Corporation");
1734 MODULE_DESCRIPTION("Invensense device MPU6050 driver");
1735 MODULE_LICENSE("GPL");
1736