1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BMI160 - Bosch IMU (accel, gyro plus external magnetometer)
4  *
5  * Copyright (c) 2016, Intel Corporation.
6  * Copyright (c) 2019, Martin Kelly.
7  *
8  * IIO core driver for BMI160, with support for I2C/SPI busses
9  *
10  * TODO: magnetometer, hardware FIFO
11  */
12 #include <linux/module.h>
13 #include <linux/regmap.h>
14 #include <linux/acpi.h>
15 #include <linux/delay.h>
16 #include <linux/irq.h>
17 #include <linux/of_irq.h>
18 #include <linux/regulator/consumer.h>
19 
20 #include <linux/iio/iio.h>
21 #include <linux/iio/triggered_buffer.h>
22 #include <linux/iio/trigger_consumer.h>
23 #include <linux/iio/buffer.h>
24 #include <linux/iio/sysfs.h>
25 #include <linux/iio/trigger.h>
26 
27 #include "bmi160.h"
28 
29 #define BMI160_REG_CHIP_ID	0x00
30 #define BMI160_CHIP_ID_VAL	0xD1
31 
32 #define BMI160_REG_PMU_STATUS	0x03
33 
34 /* X axis data low byte address, the rest can be obtained using axis offset */
35 #define BMI160_REG_DATA_MAGN_XOUT_L	0x04
36 #define BMI160_REG_DATA_GYRO_XOUT_L	0x0C
37 #define BMI160_REG_DATA_ACCEL_XOUT_L	0x12
38 
39 #define BMI160_REG_ACCEL_CONFIG		0x40
40 #define BMI160_ACCEL_CONFIG_ODR_MASK	GENMASK(3, 0)
41 #define BMI160_ACCEL_CONFIG_BWP_MASK	GENMASK(6, 4)
42 
43 #define BMI160_REG_ACCEL_RANGE		0x41
44 #define BMI160_ACCEL_RANGE_2G		0x03
45 #define BMI160_ACCEL_RANGE_4G		0x05
46 #define BMI160_ACCEL_RANGE_8G		0x08
47 #define BMI160_ACCEL_RANGE_16G		0x0C
48 
49 #define BMI160_REG_GYRO_CONFIG		0x42
50 #define BMI160_GYRO_CONFIG_ODR_MASK	GENMASK(3, 0)
51 #define BMI160_GYRO_CONFIG_BWP_MASK	GENMASK(5, 4)
52 
53 #define BMI160_REG_GYRO_RANGE		0x43
54 #define BMI160_GYRO_RANGE_2000DPS	0x00
55 #define BMI160_GYRO_RANGE_1000DPS	0x01
56 #define BMI160_GYRO_RANGE_500DPS	0x02
57 #define BMI160_GYRO_RANGE_250DPS	0x03
58 #define BMI160_GYRO_RANGE_125DPS	0x04
59 
60 #define BMI160_REG_CMD			0x7E
61 #define BMI160_CMD_ACCEL_PM_SUSPEND	0x10
62 #define BMI160_CMD_ACCEL_PM_NORMAL	0x11
63 #define BMI160_CMD_ACCEL_PM_LOW_POWER	0x12
64 #define BMI160_CMD_GYRO_PM_SUSPEND	0x14
65 #define BMI160_CMD_GYRO_PM_NORMAL	0x15
66 #define BMI160_CMD_GYRO_PM_FAST_STARTUP	0x17
67 #define BMI160_CMD_SOFTRESET		0xB6
68 
69 #define BMI160_REG_INT_EN		0x51
70 #define BMI160_DRDY_INT_EN		BIT(4)
71 
72 #define BMI160_REG_INT_OUT_CTRL		0x53
73 #define BMI160_INT_OUT_CTRL_MASK	0x0f
74 #define BMI160_INT1_OUT_CTRL_SHIFT	0
75 #define BMI160_INT2_OUT_CTRL_SHIFT	4
76 #define BMI160_EDGE_TRIGGERED		BIT(0)
77 #define BMI160_ACTIVE_HIGH		BIT(1)
78 #define BMI160_OPEN_DRAIN		BIT(2)
79 #define BMI160_OUTPUT_EN		BIT(3)
80 
81 #define BMI160_REG_INT_LATCH		0x54
82 #define BMI160_INT1_LATCH_MASK		BIT(4)
83 #define BMI160_INT2_LATCH_MASK		BIT(5)
84 
85 /* INT1 and INT2 are in the opposite order as in INT_OUT_CTRL! */
86 #define BMI160_REG_INT_MAP		0x56
87 #define BMI160_INT1_MAP_DRDY_EN		0x80
88 #define BMI160_INT2_MAP_DRDY_EN		0x08
89 
90 #define BMI160_REG_DUMMY		0x7F
91 
92 #define BMI160_NORMAL_WRITE_USLEEP	2
93 #define BMI160_SUSPENDED_WRITE_USLEEP	450
94 
95 #define BMI160_ACCEL_PMU_MIN_USLEEP	3800
96 #define BMI160_GYRO_PMU_MIN_USLEEP	80000
97 #define BMI160_SOFTRESET_USLEEP		1000
98 
99 #define BMI160_CHANNEL(_type, _axis, _index) {			\
100 	.type = _type,						\
101 	.modified = 1,						\
102 	.channel2 = IIO_MOD_##_axis,				\
103 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
104 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |  \
105 		BIT(IIO_CHAN_INFO_SAMP_FREQ),			\
106 	.scan_index = _index,					\
107 	.scan_type = {						\
108 		.sign = 's',					\
109 		.realbits = 16,					\
110 		.storagebits = 16,				\
111 		.endianness = IIO_LE,				\
112 	},							\
113 	.ext_info = bmi160_ext_info,				\
114 }
115 
116 /* scan indexes follow DATA register order */
117 enum bmi160_scan_axis {
118 	BMI160_SCAN_EXT_MAGN_X = 0,
119 	BMI160_SCAN_EXT_MAGN_Y,
120 	BMI160_SCAN_EXT_MAGN_Z,
121 	BMI160_SCAN_RHALL,
122 	BMI160_SCAN_GYRO_X,
123 	BMI160_SCAN_GYRO_Y,
124 	BMI160_SCAN_GYRO_Z,
125 	BMI160_SCAN_ACCEL_X,
126 	BMI160_SCAN_ACCEL_Y,
127 	BMI160_SCAN_ACCEL_Z,
128 	BMI160_SCAN_TIMESTAMP,
129 };
130 
131 enum bmi160_sensor_type {
132 	BMI160_ACCEL	= 0,
133 	BMI160_GYRO,
134 	BMI160_EXT_MAGN,
135 	BMI160_NUM_SENSORS /* must be last */
136 };
137 
138 enum bmi160_int_pin {
139 	BMI160_PIN_INT1,
140 	BMI160_PIN_INT2
141 };
142 
143 const struct regmap_config bmi160_regmap_config = {
144 	.reg_bits = 8,
145 	.val_bits = 8,
146 };
147 EXPORT_SYMBOL(bmi160_regmap_config);
148 
149 struct bmi160_regs {
150 	u8 data; /* LSB byte register for X-axis */
151 	u8 config;
152 	u8 config_odr_mask;
153 	u8 config_bwp_mask;
154 	u8 range;
155 	u8 pmu_cmd_normal;
156 	u8 pmu_cmd_suspend;
157 };
158 
159 static struct bmi160_regs bmi160_regs[] = {
160 	[BMI160_ACCEL] = {
161 		.data	= BMI160_REG_DATA_ACCEL_XOUT_L,
162 		.config	= BMI160_REG_ACCEL_CONFIG,
163 		.config_odr_mask = BMI160_ACCEL_CONFIG_ODR_MASK,
164 		.config_bwp_mask = BMI160_ACCEL_CONFIG_BWP_MASK,
165 		.range	= BMI160_REG_ACCEL_RANGE,
166 		.pmu_cmd_normal = BMI160_CMD_ACCEL_PM_NORMAL,
167 		.pmu_cmd_suspend = BMI160_CMD_ACCEL_PM_SUSPEND,
168 	},
169 	[BMI160_GYRO] = {
170 		.data	= BMI160_REG_DATA_GYRO_XOUT_L,
171 		.config	= BMI160_REG_GYRO_CONFIG,
172 		.config_odr_mask = BMI160_GYRO_CONFIG_ODR_MASK,
173 		.config_bwp_mask = BMI160_GYRO_CONFIG_BWP_MASK,
174 		.range	= BMI160_REG_GYRO_RANGE,
175 		.pmu_cmd_normal = BMI160_CMD_GYRO_PM_NORMAL,
176 		.pmu_cmd_suspend = BMI160_CMD_GYRO_PM_SUSPEND,
177 	},
178 };
179 
180 static unsigned long bmi160_pmu_time[] = {
181 	[BMI160_ACCEL] = BMI160_ACCEL_PMU_MIN_USLEEP,
182 	[BMI160_GYRO] = BMI160_GYRO_PMU_MIN_USLEEP,
183 };
184 
185 struct bmi160_scale {
186 	u8 bits;
187 	int uscale;
188 };
189 
190 struct bmi160_odr {
191 	u8 bits;
192 	int odr;
193 	int uodr;
194 };
195 
196 static const struct bmi160_scale bmi160_accel_scale[] = {
197 	{ BMI160_ACCEL_RANGE_2G, 598},
198 	{ BMI160_ACCEL_RANGE_4G, 1197},
199 	{ BMI160_ACCEL_RANGE_8G, 2394},
200 	{ BMI160_ACCEL_RANGE_16G, 4788},
201 };
202 
203 static const struct bmi160_scale bmi160_gyro_scale[] = {
204 	{ BMI160_GYRO_RANGE_2000DPS, 1065},
205 	{ BMI160_GYRO_RANGE_1000DPS, 532},
206 	{ BMI160_GYRO_RANGE_500DPS, 266},
207 	{ BMI160_GYRO_RANGE_250DPS, 133},
208 	{ BMI160_GYRO_RANGE_125DPS, 66},
209 };
210 
211 struct bmi160_scale_item {
212 	const struct bmi160_scale *tbl;
213 	int num;
214 };
215 
216 static const struct  bmi160_scale_item bmi160_scale_table[] = {
217 	[BMI160_ACCEL] = {
218 		.tbl	= bmi160_accel_scale,
219 		.num	= ARRAY_SIZE(bmi160_accel_scale),
220 	},
221 	[BMI160_GYRO] = {
222 		.tbl	= bmi160_gyro_scale,
223 		.num	= ARRAY_SIZE(bmi160_gyro_scale),
224 	},
225 };
226 
227 static const struct bmi160_odr bmi160_accel_odr[] = {
228 	{0x01, 0, 781250},
229 	{0x02, 1, 562500},
230 	{0x03, 3, 125000},
231 	{0x04, 6, 250000},
232 	{0x05, 12, 500000},
233 	{0x06, 25, 0},
234 	{0x07, 50, 0},
235 	{0x08, 100, 0},
236 	{0x09, 200, 0},
237 	{0x0A, 400, 0},
238 	{0x0B, 800, 0},
239 	{0x0C, 1600, 0},
240 };
241 
242 static const struct bmi160_odr bmi160_gyro_odr[] = {
243 	{0x06, 25, 0},
244 	{0x07, 50, 0},
245 	{0x08, 100, 0},
246 	{0x09, 200, 0},
247 	{0x0A, 400, 0},
248 	{0x0B, 800, 0},
249 	{0x0C, 1600, 0},
250 	{0x0D, 3200, 0},
251 };
252 
253 struct bmi160_odr_item {
254 	const struct bmi160_odr *tbl;
255 	int num;
256 };
257 
258 static const struct  bmi160_odr_item bmi160_odr_table[] = {
259 	[BMI160_ACCEL] = {
260 		.tbl	= bmi160_accel_odr,
261 		.num	= ARRAY_SIZE(bmi160_accel_odr),
262 	},
263 	[BMI160_GYRO] = {
264 		.tbl	= bmi160_gyro_odr,
265 		.num	= ARRAY_SIZE(bmi160_gyro_odr),
266 	},
267 };
268 
269 static const struct iio_mount_matrix *
270 bmi160_get_mount_matrix(const struct iio_dev *indio_dev,
271 			const struct iio_chan_spec *chan)
272 {
273 	struct bmi160_data *data = iio_priv(indio_dev);
274 
275 	return &data->orientation;
276 }
277 
278 static const struct iio_chan_spec_ext_info bmi160_ext_info[] = {
279 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmi160_get_mount_matrix),
280 	{ }
281 };
282 
283 static const struct iio_chan_spec bmi160_channels[] = {
284 	BMI160_CHANNEL(IIO_ACCEL, X, BMI160_SCAN_ACCEL_X),
285 	BMI160_CHANNEL(IIO_ACCEL, Y, BMI160_SCAN_ACCEL_Y),
286 	BMI160_CHANNEL(IIO_ACCEL, Z, BMI160_SCAN_ACCEL_Z),
287 	BMI160_CHANNEL(IIO_ANGL_VEL, X, BMI160_SCAN_GYRO_X),
288 	BMI160_CHANNEL(IIO_ANGL_VEL, Y, BMI160_SCAN_GYRO_Y),
289 	BMI160_CHANNEL(IIO_ANGL_VEL, Z, BMI160_SCAN_GYRO_Z),
290 	IIO_CHAN_SOFT_TIMESTAMP(BMI160_SCAN_TIMESTAMP),
291 };
292 
293 static enum bmi160_sensor_type bmi160_to_sensor(enum iio_chan_type iio_type)
294 {
295 	switch (iio_type) {
296 	case IIO_ACCEL:
297 		return BMI160_ACCEL;
298 	case IIO_ANGL_VEL:
299 		return BMI160_GYRO;
300 	default:
301 		return -EINVAL;
302 	}
303 }
304 
305 static
306 int bmi160_set_mode(struct bmi160_data *data, enum bmi160_sensor_type t,
307 		    bool mode)
308 {
309 	int ret;
310 	u8 cmd;
311 
312 	if (mode)
313 		cmd = bmi160_regs[t].pmu_cmd_normal;
314 	else
315 		cmd = bmi160_regs[t].pmu_cmd_suspend;
316 
317 	ret = regmap_write(data->regmap, BMI160_REG_CMD, cmd);
318 	if (ret)
319 		return ret;
320 
321 	usleep_range(bmi160_pmu_time[t], bmi160_pmu_time[t] + 1000);
322 
323 	return 0;
324 }
325 
326 static
327 int bmi160_set_scale(struct bmi160_data *data, enum bmi160_sensor_type t,
328 		     int uscale)
329 {
330 	int i;
331 
332 	for (i = 0; i < bmi160_scale_table[t].num; i++)
333 		if (bmi160_scale_table[t].tbl[i].uscale == uscale)
334 			break;
335 
336 	if (i == bmi160_scale_table[t].num)
337 		return -EINVAL;
338 
339 	return regmap_write(data->regmap, bmi160_regs[t].range,
340 			    bmi160_scale_table[t].tbl[i].bits);
341 }
342 
343 static
344 int bmi160_get_scale(struct bmi160_data *data, enum bmi160_sensor_type t,
345 		     int *uscale)
346 {
347 	int i, ret, val;
348 
349 	ret = regmap_read(data->regmap, bmi160_regs[t].range, &val);
350 	if (ret)
351 		return ret;
352 
353 	for (i = 0; i < bmi160_scale_table[t].num; i++)
354 		if (bmi160_scale_table[t].tbl[i].bits == val) {
355 			*uscale = bmi160_scale_table[t].tbl[i].uscale;
356 			return 0;
357 		}
358 
359 	return -EINVAL;
360 }
361 
362 static int bmi160_get_data(struct bmi160_data *data, int chan_type,
363 			   int axis, int *val)
364 {
365 	u8 reg;
366 	int ret;
367 	__le16 sample;
368 	enum bmi160_sensor_type t = bmi160_to_sensor(chan_type);
369 
370 	reg = bmi160_regs[t].data + (axis - IIO_MOD_X) * sizeof(sample);
371 
372 	ret = regmap_bulk_read(data->regmap, reg, &sample, sizeof(sample));
373 	if (ret)
374 		return ret;
375 
376 	*val = sign_extend32(le16_to_cpu(sample), 15);
377 
378 	return 0;
379 }
380 
381 static
382 int bmi160_set_odr(struct bmi160_data *data, enum bmi160_sensor_type t,
383 		   int odr, int uodr)
384 {
385 	int i;
386 
387 	for (i = 0; i < bmi160_odr_table[t].num; i++)
388 		if (bmi160_odr_table[t].tbl[i].odr == odr &&
389 		    bmi160_odr_table[t].tbl[i].uodr == uodr)
390 			break;
391 
392 	if (i >= bmi160_odr_table[t].num)
393 		return -EINVAL;
394 
395 	return regmap_update_bits(data->regmap,
396 				  bmi160_regs[t].config,
397 				  bmi160_regs[t].config_odr_mask,
398 				  bmi160_odr_table[t].tbl[i].bits);
399 }
400 
401 static int bmi160_get_odr(struct bmi160_data *data, enum bmi160_sensor_type t,
402 			  int *odr, int *uodr)
403 {
404 	int i, val, ret;
405 
406 	ret = regmap_read(data->regmap, bmi160_regs[t].config, &val);
407 	if (ret)
408 		return ret;
409 
410 	val &= bmi160_regs[t].config_odr_mask;
411 
412 	for (i = 0; i < bmi160_odr_table[t].num; i++)
413 		if (val == bmi160_odr_table[t].tbl[i].bits)
414 			break;
415 
416 	if (i >= bmi160_odr_table[t].num)
417 		return -EINVAL;
418 
419 	*odr = bmi160_odr_table[t].tbl[i].odr;
420 	*uodr = bmi160_odr_table[t].tbl[i].uodr;
421 
422 	return 0;
423 }
424 
425 static irqreturn_t bmi160_trigger_handler(int irq, void *p)
426 {
427 	struct iio_poll_func *pf = p;
428 	struct iio_dev *indio_dev = pf->indio_dev;
429 	struct bmi160_data *data = iio_priv(indio_dev);
430 	int i, ret, j = 0, base = BMI160_REG_DATA_MAGN_XOUT_L;
431 	__le16 sample;
432 
433 	for_each_set_bit(i, indio_dev->active_scan_mask,
434 			 indio_dev->masklength) {
435 		ret = regmap_bulk_read(data->regmap, base + i * sizeof(sample),
436 				       &sample, sizeof(sample));
437 		if (ret)
438 			goto done;
439 		data->buf[j++] = sample;
440 	}
441 
442 	iio_push_to_buffers_with_timestamp(indio_dev, data->buf, pf->timestamp);
443 done:
444 	iio_trigger_notify_done(indio_dev->trig);
445 	return IRQ_HANDLED;
446 }
447 
448 static int bmi160_read_raw(struct iio_dev *indio_dev,
449 			   struct iio_chan_spec const *chan,
450 			   int *val, int *val2, long mask)
451 {
452 	int ret;
453 	struct bmi160_data *data = iio_priv(indio_dev);
454 
455 	switch (mask) {
456 	case IIO_CHAN_INFO_RAW:
457 		ret = bmi160_get_data(data, chan->type, chan->channel2, val);
458 		if (ret)
459 			return ret;
460 		return IIO_VAL_INT;
461 	case IIO_CHAN_INFO_SCALE:
462 		*val = 0;
463 		ret = bmi160_get_scale(data,
464 				       bmi160_to_sensor(chan->type), val2);
465 		return ret ? ret : IIO_VAL_INT_PLUS_MICRO;
466 	case IIO_CHAN_INFO_SAMP_FREQ:
467 		ret = bmi160_get_odr(data, bmi160_to_sensor(chan->type),
468 				     val, val2);
469 		return ret ? ret : IIO_VAL_INT_PLUS_MICRO;
470 	default:
471 		return -EINVAL;
472 	}
473 
474 	return 0;
475 }
476 
477 static int bmi160_write_raw(struct iio_dev *indio_dev,
478 			    struct iio_chan_spec const *chan,
479 			    int val, int val2, long mask)
480 {
481 	struct bmi160_data *data = iio_priv(indio_dev);
482 
483 	switch (mask) {
484 	case IIO_CHAN_INFO_SCALE:
485 		return bmi160_set_scale(data,
486 					bmi160_to_sensor(chan->type), val2);
487 	case IIO_CHAN_INFO_SAMP_FREQ:
488 		return bmi160_set_odr(data, bmi160_to_sensor(chan->type),
489 				      val, val2);
490 	default:
491 		return -EINVAL;
492 	}
493 
494 	return 0;
495 }
496 
497 static
498 IIO_CONST_ATTR(in_accel_sampling_frequency_available,
499 	       "0.78125 1.5625 3.125 6.25 12.5 25 50 100 200 400 800 1600");
500 static
501 IIO_CONST_ATTR(in_anglvel_sampling_frequency_available,
502 	       "25 50 100 200 400 800 1600 3200");
503 static
504 IIO_CONST_ATTR(in_accel_scale_available,
505 	       "0.000598 0.001197 0.002394 0.004788");
506 static
507 IIO_CONST_ATTR(in_anglvel_scale_available,
508 	       "0.001065 0.000532 0.000266 0.000133 0.000066");
509 
510 static struct attribute *bmi160_attrs[] = {
511 	&iio_const_attr_in_accel_sampling_frequency_available.dev_attr.attr,
512 	&iio_const_attr_in_anglvel_sampling_frequency_available.dev_attr.attr,
513 	&iio_const_attr_in_accel_scale_available.dev_attr.attr,
514 	&iio_const_attr_in_anglvel_scale_available.dev_attr.attr,
515 	NULL,
516 };
517 
518 static const struct attribute_group bmi160_attrs_group = {
519 	.attrs = bmi160_attrs,
520 };
521 
522 static const struct iio_info bmi160_info = {
523 	.read_raw = bmi160_read_raw,
524 	.write_raw = bmi160_write_raw,
525 	.attrs = &bmi160_attrs_group,
526 };
527 
528 static const char *bmi160_match_acpi_device(struct device *dev)
529 {
530 	const struct acpi_device_id *id;
531 
532 	id = acpi_match_device(dev->driver->acpi_match_table, dev);
533 	if (!id)
534 		return NULL;
535 
536 	return dev_name(dev);
537 }
538 
539 static int bmi160_write_conf_reg(struct regmap *regmap, unsigned int reg,
540 				 unsigned int mask, unsigned int bits,
541 				 unsigned int write_usleep)
542 {
543 	int ret;
544 	unsigned int val;
545 
546 	ret = regmap_read(regmap, reg, &val);
547 	if (ret)
548 		return ret;
549 
550 	val = (val & ~mask) | bits;
551 
552 	ret = regmap_write(regmap, reg, val);
553 	if (ret)
554 		return ret;
555 
556 	/*
557 	 * We need to wait after writing before we can write again. See the
558 	 * datasheet, page 93.
559 	 */
560 	usleep_range(write_usleep, write_usleep + 1000);
561 
562 	return 0;
563 }
564 
565 static int bmi160_config_pin(struct regmap *regmap, enum bmi160_int_pin pin,
566 			     bool open_drain, u8 irq_mask,
567 			     unsigned long write_usleep)
568 {
569 	int ret;
570 	struct device *dev = regmap_get_device(regmap);
571 	u8 int_out_ctrl_shift;
572 	u8 int_latch_mask;
573 	u8 int_map_mask;
574 	u8 int_out_ctrl_mask;
575 	u8 int_out_ctrl_bits;
576 	const char *pin_name;
577 
578 	switch (pin) {
579 	case BMI160_PIN_INT1:
580 		int_out_ctrl_shift = BMI160_INT1_OUT_CTRL_SHIFT;
581 		int_latch_mask = BMI160_INT1_LATCH_MASK;
582 		int_map_mask = BMI160_INT1_MAP_DRDY_EN;
583 		break;
584 	case BMI160_PIN_INT2:
585 		int_out_ctrl_shift = BMI160_INT2_OUT_CTRL_SHIFT;
586 		int_latch_mask = BMI160_INT2_LATCH_MASK;
587 		int_map_mask = BMI160_INT2_MAP_DRDY_EN;
588 		break;
589 	}
590 	int_out_ctrl_mask = BMI160_INT_OUT_CTRL_MASK << int_out_ctrl_shift;
591 
592 	/*
593 	 * Enable the requested pin with the right settings:
594 	 * - Push-pull/open-drain
595 	 * - Active low/high
596 	 * - Edge/level triggered
597 	 */
598 	int_out_ctrl_bits = BMI160_OUTPUT_EN;
599 	if (open_drain)
600 		/* Default is push-pull. */
601 		int_out_ctrl_bits |= BMI160_OPEN_DRAIN;
602 	int_out_ctrl_bits |= irq_mask;
603 	int_out_ctrl_bits <<= int_out_ctrl_shift;
604 
605 	ret = bmi160_write_conf_reg(regmap, BMI160_REG_INT_OUT_CTRL,
606 				    int_out_ctrl_mask, int_out_ctrl_bits,
607 				    write_usleep);
608 	if (ret)
609 		return ret;
610 
611 	/* Set the pin to input mode with no latching. */
612 	ret = bmi160_write_conf_reg(regmap, BMI160_REG_INT_LATCH,
613 				    int_latch_mask, int_latch_mask,
614 				    write_usleep);
615 	if (ret)
616 		return ret;
617 
618 	/* Map interrupts to the requested pin. */
619 	ret = bmi160_write_conf_reg(regmap, BMI160_REG_INT_MAP,
620 				    int_map_mask, int_map_mask,
621 				    write_usleep);
622 	if (ret) {
623 		switch (pin) {
624 		case BMI160_PIN_INT1:
625 			pin_name = "INT1";
626 			break;
627 		case BMI160_PIN_INT2:
628 			pin_name = "INT2";
629 			break;
630 		}
631 		dev_err(dev, "Failed to configure %s IRQ pin", pin_name);
632 	}
633 
634 	return ret;
635 }
636 
637 int bmi160_enable_irq(struct regmap *regmap, bool enable)
638 {
639 	unsigned int enable_bit = 0;
640 
641 	if (enable)
642 		enable_bit = BMI160_DRDY_INT_EN;
643 
644 	return bmi160_write_conf_reg(regmap, BMI160_REG_INT_EN,
645 				     BMI160_DRDY_INT_EN, enable_bit,
646 				     BMI160_NORMAL_WRITE_USLEEP);
647 }
648 EXPORT_SYMBOL(bmi160_enable_irq);
649 
650 static int bmi160_get_irq(struct device_node *of_node, enum bmi160_int_pin *pin)
651 {
652 	int irq;
653 
654 	/* Use INT1 if possible, otherwise fall back to INT2. */
655 	irq = of_irq_get_byname(of_node, "INT1");
656 	if (irq > 0) {
657 		*pin = BMI160_PIN_INT1;
658 		return irq;
659 	}
660 
661 	irq = of_irq_get_byname(of_node, "INT2");
662 	if (irq > 0)
663 		*pin = BMI160_PIN_INT2;
664 
665 	return irq;
666 }
667 
668 static int bmi160_config_device_irq(struct iio_dev *indio_dev, int irq_type,
669 				    enum bmi160_int_pin pin)
670 {
671 	bool open_drain;
672 	u8 irq_mask;
673 	struct bmi160_data *data = iio_priv(indio_dev);
674 	struct device *dev = regmap_get_device(data->regmap);
675 
676 	/* Level-triggered, active-low is the default if we set all zeroes. */
677 	if (irq_type == IRQF_TRIGGER_RISING)
678 		irq_mask = BMI160_ACTIVE_HIGH | BMI160_EDGE_TRIGGERED;
679 	else if (irq_type == IRQF_TRIGGER_FALLING)
680 		irq_mask = BMI160_EDGE_TRIGGERED;
681 	else if (irq_type == IRQF_TRIGGER_HIGH)
682 		irq_mask = BMI160_ACTIVE_HIGH;
683 	else if (irq_type == IRQF_TRIGGER_LOW)
684 		irq_mask = 0;
685 	else {
686 		dev_err(&indio_dev->dev,
687 			"Invalid interrupt type 0x%x specified\n", irq_type);
688 		return -EINVAL;
689 	}
690 
691 	open_drain = of_property_read_bool(dev->of_node, "drive-open-drain");
692 
693 	return bmi160_config_pin(data->regmap, pin, open_drain, irq_mask,
694 				 BMI160_NORMAL_WRITE_USLEEP);
695 }
696 
697 static int bmi160_setup_irq(struct iio_dev *indio_dev, int irq,
698 			    enum bmi160_int_pin pin)
699 {
700 	struct irq_data *desc;
701 	u32 irq_type;
702 	int ret;
703 
704 	desc = irq_get_irq_data(irq);
705 	if (!desc) {
706 		dev_err(&indio_dev->dev, "Could not find IRQ %d\n", irq);
707 		return -EINVAL;
708 	}
709 
710 	irq_type = irqd_get_trigger_type(desc);
711 
712 	ret = bmi160_config_device_irq(indio_dev, irq_type, pin);
713 	if (ret)
714 		return ret;
715 
716 	return bmi160_probe_trigger(indio_dev, irq, irq_type);
717 }
718 
719 static int bmi160_chip_init(struct bmi160_data *data, bool use_spi)
720 {
721 	int ret;
722 	unsigned int val;
723 	struct device *dev = regmap_get_device(data->regmap);
724 
725 	ret = regulator_bulk_enable(ARRAY_SIZE(data->supplies), data->supplies);
726 	if (ret) {
727 		dev_err(dev, "Failed to enable regulators: %d\n", ret);
728 		return ret;
729 	}
730 
731 	ret = regmap_write(data->regmap, BMI160_REG_CMD, BMI160_CMD_SOFTRESET);
732 	if (ret)
733 		goto disable_regulator;
734 
735 	usleep_range(BMI160_SOFTRESET_USLEEP, BMI160_SOFTRESET_USLEEP + 1);
736 
737 	/*
738 	 * CS rising edge is needed before starting SPI, so do a dummy read
739 	 * See Section 3.2.1, page 86 of the datasheet
740 	 */
741 	if (use_spi) {
742 		ret = regmap_read(data->regmap, BMI160_REG_DUMMY, &val);
743 		if (ret)
744 			goto disable_regulator;
745 	}
746 
747 	ret = regmap_read(data->regmap, BMI160_REG_CHIP_ID, &val);
748 	if (ret) {
749 		dev_err(dev, "Error reading chip id\n");
750 		goto disable_regulator;
751 	}
752 	if (val != BMI160_CHIP_ID_VAL) {
753 		dev_err(dev, "Wrong chip id, got %x expected %x\n",
754 			val, BMI160_CHIP_ID_VAL);
755 		ret = -ENODEV;
756 		goto disable_regulator;
757 	}
758 
759 	ret = bmi160_set_mode(data, BMI160_ACCEL, true);
760 	if (ret)
761 		goto disable_regulator;
762 
763 	ret = bmi160_set_mode(data, BMI160_GYRO, true);
764 	if (ret)
765 		goto disable_accel;
766 
767 	return 0;
768 
769 disable_accel:
770 	bmi160_set_mode(data, BMI160_ACCEL, false);
771 
772 disable_regulator:
773 	regulator_bulk_disable(ARRAY_SIZE(data->supplies), data->supplies);
774 	return ret;
775 }
776 
777 static int bmi160_data_rdy_trigger_set_state(struct iio_trigger *trig,
778 					     bool enable)
779 {
780 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
781 	struct bmi160_data *data = iio_priv(indio_dev);
782 
783 	return bmi160_enable_irq(data->regmap, enable);
784 }
785 
786 static const struct iio_trigger_ops bmi160_trigger_ops = {
787 	.set_trigger_state = &bmi160_data_rdy_trigger_set_state,
788 };
789 
790 int bmi160_probe_trigger(struct iio_dev *indio_dev, int irq, u32 irq_type)
791 {
792 	struct bmi160_data *data = iio_priv(indio_dev);
793 	int ret;
794 
795 	data->trig = devm_iio_trigger_alloc(&indio_dev->dev, "%s-dev%d",
796 					    indio_dev->name,
797 					    iio_device_id(indio_dev));
798 
799 	if (data->trig == NULL)
800 		return -ENOMEM;
801 
802 	ret = devm_request_irq(&indio_dev->dev, irq,
803 			       &iio_trigger_generic_data_rdy_poll,
804 			       irq_type, "bmi160", data->trig);
805 	if (ret)
806 		return ret;
807 
808 	data->trig->dev.parent = regmap_get_device(data->regmap);
809 	data->trig->ops = &bmi160_trigger_ops;
810 	iio_trigger_set_drvdata(data->trig, indio_dev);
811 
812 	ret = devm_iio_trigger_register(&indio_dev->dev, data->trig);
813 	if (ret)
814 		return ret;
815 
816 	indio_dev->trig = iio_trigger_get(data->trig);
817 
818 	return 0;
819 }
820 
821 static void bmi160_chip_uninit(void *data)
822 {
823 	struct bmi160_data *bmi_data = data;
824 	struct device *dev = regmap_get_device(bmi_data->regmap);
825 	int ret;
826 
827 	bmi160_set_mode(bmi_data, BMI160_GYRO, false);
828 	bmi160_set_mode(bmi_data, BMI160_ACCEL, false);
829 
830 	ret = regulator_bulk_disable(ARRAY_SIZE(bmi_data->supplies),
831 				     bmi_data->supplies);
832 	if (ret)
833 		dev_err(dev, "Failed to disable regulators: %d\n", ret);
834 }
835 
836 int bmi160_core_probe(struct device *dev, struct regmap *regmap,
837 		      const char *name, bool use_spi)
838 {
839 	struct iio_dev *indio_dev;
840 	struct bmi160_data *data;
841 	int irq;
842 	enum bmi160_int_pin int_pin;
843 	int ret;
844 
845 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
846 	if (!indio_dev)
847 		return -ENOMEM;
848 
849 	data = iio_priv(indio_dev);
850 	dev_set_drvdata(dev, indio_dev);
851 	data->regmap = regmap;
852 
853 	data->supplies[0].supply = "vdd";
854 	data->supplies[1].supply = "vddio";
855 	ret = devm_regulator_bulk_get(dev,
856 				      ARRAY_SIZE(data->supplies),
857 				      data->supplies);
858 	if (ret) {
859 		dev_err(dev, "Failed to get regulators: %d\n", ret);
860 		return ret;
861 	}
862 
863 	ret = iio_read_mount_matrix(dev, &data->orientation);
864 	if (ret)
865 		return ret;
866 
867 	ret = bmi160_chip_init(data, use_spi);
868 	if (ret)
869 		return ret;
870 
871 	ret = devm_add_action_or_reset(dev, bmi160_chip_uninit, data);
872 	if (ret)
873 		return ret;
874 
875 	if (!name && ACPI_HANDLE(dev))
876 		name = bmi160_match_acpi_device(dev);
877 
878 	indio_dev->channels = bmi160_channels;
879 	indio_dev->num_channels = ARRAY_SIZE(bmi160_channels);
880 	indio_dev->name = name;
881 	indio_dev->modes = INDIO_DIRECT_MODE;
882 	indio_dev->info = &bmi160_info;
883 
884 	ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
885 					      iio_pollfunc_store_time,
886 					      bmi160_trigger_handler, NULL);
887 	if (ret)
888 		return ret;
889 
890 	irq = bmi160_get_irq(dev->of_node, &int_pin);
891 	if (irq > 0) {
892 		ret = bmi160_setup_irq(indio_dev, irq, int_pin);
893 		if (ret)
894 			dev_err(&indio_dev->dev, "Failed to setup IRQ %d\n",
895 				irq);
896 	} else {
897 		dev_info(&indio_dev->dev, "Not setting up IRQ trigger\n");
898 	}
899 
900 	return devm_iio_device_register(dev, indio_dev);
901 }
902 EXPORT_SYMBOL_GPL(bmi160_core_probe);
903 
904 MODULE_AUTHOR("Daniel Baluta <daniel.baluta@intel.com>");
905 MODULE_DESCRIPTION("Bosch BMI160 driver");
906 MODULE_LICENSE("GPL v2");
907