1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BMI160 - Bosch IMU (accel, gyro plus external magnetometer)
4  *
5  * Copyright (c) 2016, Intel Corporation.
6  * Copyright (c) 2019, Martin Kelly.
7  *
8  * IIO core driver for BMI160, with support for I2C/SPI busses
9  *
10  * TODO: magnetometer, hardware FIFO
11  */
12 #include <linux/module.h>
13 #include <linux/regmap.h>
14 #include <linux/delay.h>
15 #include <linux/irq.h>
16 #include <linux/property.h>
17 #include <linux/regulator/consumer.h>
18 
19 #include <linux/iio/iio.h>
20 #include <linux/iio/triggered_buffer.h>
21 #include <linux/iio/trigger_consumer.h>
22 #include <linux/iio/buffer.h>
23 #include <linux/iio/sysfs.h>
24 #include <linux/iio/trigger.h>
25 
26 #include "bmi160.h"
27 
28 #define BMI160_REG_CHIP_ID	0x00
29 #define BMI160_CHIP_ID_VAL	0xD1
30 
31 #define BMI160_REG_PMU_STATUS	0x03
32 
33 /* X axis data low byte address, the rest can be obtained using axis offset */
34 #define BMI160_REG_DATA_MAGN_XOUT_L	0x04
35 #define BMI160_REG_DATA_GYRO_XOUT_L	0x0C
36 #define BMI160_REG_DATA_ACCEL_XOUT_L	0x12
37 
38 #define BMI160_REG_ACCEL_CONFIG		0x40
39 #define BMI160_ACCEL_CONFIG_ODR_MASK	GENMASK(3, 0)
40 #define BMI160_ACCEL_CONFIG_BWP_MASK	GENMASK(6, 4)
41 
42 #define BMI160_REG_ACCEL_RANGE		0x41
43 #define BMI160_ACCEL_RANGE_2G		0x03
44 #define BMI160_ACCEL_RANGE_4G		0x05
45 #define BMI160_ACCEL_RANGE_8G		0x08
46 #define BMI160_ACCEL_RANGE_16G		0x0C
47 
48 #define BMI160_REG_GYRO_CONFIG		0x42
49 #define BMI160_GYRO_CONFIG_ODR_MASK	GENMASK(3, 0)
50 #define BMI160_GYRO_CONFIG_BWP_MASK	GENMASK(5, 4)
51 
52 #define BMI160_REG_GYRO_RANGE		0x43
53 #define BMI160_GYRO_RANGE_2000DPS	0x00
54 #define BMI160_GYRO_RANGE_1000DPS	0x01
55 #define BMI160_GYRO_RANGE_500DPS	0x02
56 #define BMI160_GYRO_RANGE_250DPS	0x03
57 #define BMI160_GYRO_RANGE_125DPS	0x04
58 
59 #define BMI160_REG_CMD			0x7E
60 #define BMI160_CMD_ACCEL_PM_SUSPEND	0x10
61 #define BMI160_CMD_ACCEL_PM_NORMAL	0x11
62 #define BMI160_CMD_ACCEL_PM_LOW_POWER	0x12
63 #define BMI160_CMD_GYRO_PM_SUSPEND	0x14
64 #define BMI160_CMD_GYRO_PM_NORMAL	0x15
65 #define BMI160_CMD_GYRO_PM_FAST_STARTUP	0x17
66 #define BMI160_CMD_SOFTRESET		0xB6
67 
68 #define BMI160_REG_INT_EN		0x51
69 #define BMI160_DRDY_INT_EN		BIT(4)
70 
71 #define BMI160_REG_INT_OUT_CTRL		0x53
72 #define BMI160_INT_OUT_CTRL_MASK	0x0f
73 #define BMI160_INT1_OUT_CTRL_SHIFT	0
74 #define BMI160_INT2_OUT_CTRL_SHIFT	4
75 #define BMI160_EDGE_TRIGGERED		BIT(0)
76 #define BMI160_ACTIVE_HIGH		BIT(1)
77 #define BMI160_OPEN_DRAIN		BIT(2)
78 #define BMI160_OUTPUT_EN		BIT(3)
79 
80 #define BMI160_REG_INT_LATCH		0x54
81 #define BMI160_INT1_LATCH_MASK		BIT(4)
82 #define BMI160_INT2_LATCH_MASK		BIT(5)
83 
84 /* INT1 and INT2 are in the opposite order as in INT_OUT_CTRL! */
85 #define BMI160_REG_INT_MAP		0x56
86 #define BMI160_INT1_MAP_DRDY_EN		0x80
87 #define BMI160_INT2_MAP_DRDY_EN		0x08
88 
89 #define BMI160_REG_DUMMY		0x7F
90 
91 #define BMI160_NORMAL_WRITE_USLEEP	2
92 #define BMI160_SUSPENDED_WRITE_USLEEP	450
93 
94 #define BMI160_ACCEL_PMU_MIN_USLEEP	3800
95 #define BMI160_GYRO_PMU_MIN_USLEEP	80000
96 #define BMI160_SOFTRESET_USLEEP		1000
97 
98 #define BMI160_CHANNEL(_type, _axis, _index) {			\
99 	.type = _type,						\
100 	.modified = 1,						\
101 	.channel2 = IIO_MOD_##_axis,				\
102 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
103 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |  \
104 		BIT(IIO_CHAN_INFO_SAMP_FREQ),			\
105 	.scan_index = _index,					\
106 	.scan_type = {						\
107 		.sign = 's',					\
108 		.realbits = 16,					\
109 		.storagebits = 16,				\
110 		.endianness = IIO_LE,				\
111 	},							\
112 	.ext_info = bmi160_ext_info,				\
113 }
114 
115 /* scan indexes follow DATA register order */
116 enum bmi160_scan_axis {
117 	BMI160_SCAN_EXT_MAGN_X = 0,
118 	BMI160_SCAN_EXT_MAGN_Y,
119 	BMI160_SCAN_EXT_MAGN_Z,
120 	BMI160_SCAN_RHALL,
121 	BMI160_SCAN_GYRO_X,
122 	BMI160_SCAN_GYRO_Y,
123 	BMI160_SCAN_GYRO_Z,
124 	BMI160_SCAN_ACCEL_X,
125 	BMI160_SCAN_ACCEL_Y,
126 	BMI160_SCAN_ACCEL_Z,
127 	BMI160_SCAN_TIMESTAMP,
128 };
129 
130 enum bmi160_sensor_type {
131 	BMI160_ACCEL	= 0,
132 	BMI160_GYRO,
133 	BMI160_EXT_MAGN,
134 	BMI160_NUM_SENSORS /* must be last */
135 };
136 
137 enum bmi160_int_pin {
138 	BMI160_PIN_INT1,
139 	BMI160_PIN_INT2
140 };
141 
142 const struct regmap_config bmi160_regmap_config = {
143 	.reg_bits = 8,
144 	.val_bits = 8,
145 };
146 EXPORT_SYMBOL_NS(bmi160_regmap_config, IIO_BMI160);
147 
148 struct bmi160_regs {
149 	u8 data; /* LSB byte register for X-axis */
150 	u8 config;
151 	u8 config_odr_mask;
152 	u8 config_bwp_mask;
153 	u8 range;
154 	u8 pmu_cmd_normal;
155 	u8 pmu_cmd_suspend;
156 };
157 
158 static struct bmi160_regs bmi160_regs[] = {
159 	[BMI160_ACCEL] = {
160 		.data	= BMI160_REG_DATA_ACCEL_XOUT_L,
161 		.config	= BMI160_REG_ACCEL_CONFIG,
162 		.config_odr_mask = BMI160_ACCEL_CONFIG_ODR_MASK,
163 		.config_bwp_mask = BMI160_ACCEL_CONFIG_BWP_MASK,
164 		.range	= BMI160_REG_ACCEL_RANGE,
165 		.pmu_cmd_normal = BMI160_CMD_ACCEL_PM_NORMAL,
166 		.pmu_cmd_suspend = BMI160_CMD_ACCEL_PM_SUSPEND,
167 	},
168 	[BMI160_GYRO] = {
169 		.data	= BMI160_REG_DATA_GYRO_XOUT_L,
170 		.config	= BMI160_REG_GYRO_CONFIG,
171 		.config_odr_mask = BMI160_GYRO_CONFIG_ODR_MASK,
172 		.config_bwp_mask = BMI160_GYRO_CONFIG_BWP_MASK,
173 		.range	= BMI160_REG_GYRO_RANGE,
174 		.pmu_cmd_normal = BMI160_CMD_GYRO_PM_NORMAL,
175 		.pmu_cmd_suspend = BMI160_CMD_GYRO_PM_SUSPEND,
176 	},
177 };
178 
179 static unsigned long bmi160_pmu_time[] = {
180 	[BMI160_ACCEL] = BMI160_ACCEL_PMU_MIN_USLEEP,
181 	[BMI160_GYRO] = BMI160_GYRO_PMU_MIN_USLEEP,
182 };
183 
184 struct bmi160_scale {
185 	u8 bits;
186 	int uscale;
187 };
188 
189 struct bmi160_odr {
190 	u8 bits;
191 	int odr;
192 	int uodr;
193 };
194 
195 static const struct bmi160_scale bmi160_accel_scale[] = {
196 	{ BMI160_ACCEL_RANGE_2G, 598},
197 	{ BMI160_ACCEL_RANGE_4G, 1197},
198 	{ BMI160_ACCEL_RANGE_8G, 2394},
199 	{ BMI160_ACCEL_RANGE_16G, 4788},
200 };
201 
202 static const struct bmi160_scale bmi160_gyro_scale[] = {
203 	{ BMI160_GYRO_RANGE_2000DPS, 1065},
204 	{ BMI160_GYRO_RANGE_1000DPS, 532},
205 	{ BMI160_GYRO_RANGE_500DPS, 266},
206 	{ BMI160_GYRO_RANGE_250DPS, 133},
207 	{ BMI160_GYRO_RANGE_125DPS, 66},
208 };
209 
210 struct bmi160_scale_item {
211 	const struct bmi160_scale *tbl;
212 	int num;
213 };
214 
215 static const struct  bmi160_scale_item bmi160_scale_table[] = {
216 	[BMI160_ACCEL] = {
217 		.tbl	= bmi160_accel_scale,
218 		.num	= ARRAY_SIZE(bmi160_accel_scale),
219 	},
220 	[BMI160_GYRO] = {
221 		.tbl	= bmi160_gyro_scale,
222 		.num	= ARRAY_SIZE(bmi160_gyro_scale),
223 	},
224 };
225 
226 static const struct bmi160_odr bmi160_accel_odr[] = {
227 	{0x01, 0, 781250},
228 	{0x02, 1, 562500},
229 	{0x03, 3, 125000},
230 	{0x04, 6, 250000},
231 	{0x05, 12, 500000},
232 	{0x06, 25, 0},
233 	{0x07, 50, 0},
234 	{0x08, 100, 0},
235 	{0x09, 200, 0},
236 	{0x0A, 400, 0},
237 	{0x0B, 800, 0},
238 	{0x0C, 1600, 0},
239 };
240 
241 static const struct bmi160_odr bmi160_gyro_odr[] = {
242 	{0x06, 25, 0},
243 	{0x07, 50, 0},
244 	{0x08, 100, 0},
245 	{0x09, 200, 0},
246 	{0x0A, 400, 0},
247 	{0x0B, 800, 0},
248 	{0x0C, 1600, 0},
249 	{0x0D, 3200, 0},
250 };
251 
252 struct bmi160_odr_item {
253 	const struct bmi160_odr *tbl;
254 	int num;
255 };
256 
257 static const struct  bmi160_odr_item bmi160_odr_table[] = {
258 	[BMI160_ACCEL] = {
259 		.tbl	= bmi160_accel_odr,
260 		.num	= ARRAY_SIZE(bmi160_accel_odr),
261 	},
262 	[BMI160_GYRO] = {
263 		.tbl	= bmi160_gyro_odr,
264 		.num	= ARRAY_SIZE(bmi160_gyro_odr),
265 	},
266 };
267 
268 static const struct iio_mount_matrix *
269 bmi160_get_mount_matrix(const struct iio_dev *indio_dev,
270 			const struct iio_chan_spec *chan)
271 {
272 	struct bmi160_data *data = iio_priv(indio_dev);
273 
274 	return &data->orientation;
275 }
276 
277 static const struct iio_chan_spec_ext_info bmi160_ext_info[] = {
278 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmi160_get_mount_matrix),
279 	{ }
280 };
281 
282 static const struct iio_chan_spec bmi160_channels[] = {
283 	BMI160_CHANNEL(IIO_ACCEL, X, BMI160_SCAN_ACCEL_X),
284 	BMI160_CHANNEL(IIO_ACCEL, Y, BMI160_SCAN_ACCEL_Y),
285 	BMI160_CHANNEL(IIO_ACCEL, Z, BMI160_SCAN_ACCEL_Z),
286 	BMI160_CHANNEL(IIO_ANGL_VEL, X, BMI160_SCAN_GYRO_X),
287 	BMI160_CHANNEL(IIO_ANGL_VEL, Y, BMI160_SCAN_GYRO_Y),
288 	BMI160_CHANNEL(IIO_ANGL_VEL, Z, BMI160_SCAN_GYRO_Z),
289 	IIO_CHAN_SOFT_TIMESTAMP(BMI160_SCAN_TIMESTAMP),
290 };
291 
292 static enum bmi160_sensor_type bmi160_to_sensor(enum iio_chan_type iio_type)
293 {
294 	switch (iio_type) {
295 	case IIO_ACCEL:
296 		return BMI160_ACCEL;
297 	case IIO_ANGL_VEL:
298 		return BMI160_GYRO;
299 	default:
300 		return -EINVAL;
301 	}
302 }
303 
304 static
305 int bmi160_set_mode(struct bmi160_data *data, enum bmi160_sensor_type t,
306 		    bool mode)
307 {
308 	int ret;
309 	u8 cmd;
310 
311 	if (mode)
312 		cmd = bmi160_regs[t].pmu_cmd_normal;
313 	else
314 		cmd = bmi160_regs[t].pmu_cmd_suspend;
315 
316 	ret = regmap_write(data->regmap, BMI160_REG_CMD, cmd);
317 	if (ret)
318 		return ret;
319 
320 	usleep_range(bmi160_pmu_time[t], bmi160_pmu_time[t] + 1000);
321 
322 	return 0;
323 }
324 
325 static
326 int bmi160_set_scale(struct bmi160_data *data, enum bmi160_sensor_type t,
327 		     int uscale)
328 {
329 	int i;
330 
331 	for (i = 0; i < bmi160_scale_table[t].num; i++)
332 		if (bmi160_scale_table[t].tbl[i].uscale == uscale)
333 			break;
334 
335 	if (i == bmi160_scale_table[t].num)
336 		return -EINVAL;
337 
338 	return regmap_write(data->regmap, bmi160_regs[t].range,
339 			    bmi160_scale_table[t].tbl[i].bits);
340 }
341 
342 static
343 int bmi160_get_scale(struct bmi160_data *data, enum bmi160_sensor_type t,
344 		     int *uscale)
345 {
346 	int i, ret, val;
347 
348 	ret = regmap_read(data->regmap, bmi160_regs[t].range, &val);
349 	if (ret)
350 		return ret;
351 
352 	for (i = 0; i < bmi160_scale_table[t].num; i++)
353 		if (bmi160_scale_table[t].tbl[i].bits == val) {
354 			*uscale = bmi160_scale_table[t].tbl[i].uscale;
355 			return 0;
356 		}
357 
358 	return -EINVAL;
359 }
360 
361 static int bmi160_get_data(struct bmi160_data *data, int chan_type,
362 			   int axis, int *val)
363 {
364 	u8 reg;
365 	int ret;
366 	__le16 sample;
367 	enum bmi160_sensor_type t = bmi160_to_sensor(chan_type);
368 
369 	reg = bmi160_regs[t].data + (axis - IIO_MOD_X) * sizeof(sample);
370 
371 	ret = regmap_bulk_read(data->regmap, reg, &sample, sizeof(sample));
372 	if (ret)
373 		return ret;
374 
375 	*val = sign_extend32(le16_to_cpu(sample), 15);
376 
377 	return 0;
378 }
379 
380 static
381 int bmi160_set_odr(struct bmi160_data *data, enum bmi160_sensor_type t,
382 		   int odr, int uodr)
383 {
384 	int i;
385 
386 	for (i = 0; i < bmi160_odr_table[t].num; i++)
387 		if (bmi160_odr_table[t].tbl[i].odr == odr &&
388 		    bmi160_odr_table[t].tbl[i].uodr == uodr)
389 			break;
390 
391 	if (i >= bmi160_odr_table[t].num)
392 		return -EINVAL;
393 
394 	return regmap_update_bits(data->regmap,
395 				  bmi160_regs[t].config,
396 				  bmi160_regs[t].config_odr_mask,
397 				  bmi160_odr_table[t].tbl[i].bits);
398 }
399 
400 static int bmi160_get_odr(struct bmi160_data *data, enum bmi160_sensor_type t,
401 			  int *odr, int *uodr)
402 {
403 	int i, val, ret;
404 
405 	ret = regmap_read(data->regmap, bmi160_regs[t].config, &val);
406 	if (ret)
407 		return ret;
408 
409 	val &= bmi160_regs[t].config_odr_mask;
410 
411 	for (i = 0; i < bmi160_odr_table[t].num; i++)
412 		if (val == bmi160_odr_table[t].tbl[i].bits)
413 			break;
414 
415 	if (i >= bmi160_odr_table[t].num)
416 		return -EINVAL;
417 
418 	*odr = bmi160_odr_table[t].tbl[i].odr;
419 	*uodr = bmi160_odr_table[t].tbl[i].uodr;
420 
421 	return 0;
422 }
423 
424 static irqreturn_t bmi160_trigger_handler(int irq, void *p)
425 {
426 	struct iio_poll_func *pf = p;
427 	struct iio_dev *indio_dev = pf->indio_dev;
428 	struct bmi160_data *data = iio_priv(indio_dev);
429 	int i, ret, j = 0, base = BMI160_REG_DATA_MAGN_XOUT_L;
430 	__le16 sample;
431 
432 	for_each_set_bit(i, indio_dev->active_scan_mask,
433 			 indio_dev->masklength) {
434 		ret = regmap_bulk_read(data->regmap, base + i * sizeof(sample),
435 				       &sample, sizeof(sample));
436 		if (ret)
437 			goto done;
438 		data->buf[j++] = sample;
439 	}
440 
441 	iio_push_to_buffers_with_timestamp(indio_dev, data->buf, pf->timestamp);
442 done:
443 	iio_trigger_notify_done(indio_dev->trig);
444 	return IRQ_HANDLED;
445 }
446 
447 static int bmi160_read_raw(struct iio_dev *indio_dev,
448 			   struct iio_chan_spec const *chan,
449 			   int *val, int *val2, long mask)
450 {
451 	int ret;
452 	struct bmi160_data *data = iio_priv(indio_dev);
453 
454 	switch (mask) {
455 	case IIO_CHAN_INFO_RAW:
456 		ret = bmi160_get_data(data, chan->type, chan->channel2, val);
457 		if (ret)
458 			return ret;
459 		return IIO_VAL_INT;
460 	case IIO_CHAN_INFO_SCALE:
461 		*val = 0;
462 		ret = bmi160_get_scale(data,
463 				       bmi160_to_sensor(chan->type), val2);
464 		return ret ? ret : IIO_VAL_INT_PLUS_MICRO;
465 	case IIO_CHAN_INFO_SAMP_FREQ:
466 		ret = bmi160_get_odr(data, bmi160_to_sensor(chan->type),
467 				     val, val2);
468 		return ret ? ret : IIO_VAL_INT_PLUS_MICRO;
469 	default:
470 		return -EINVAL;
471 	}
472 
473 	return 0;
474 }
475 
476 static int bmi160_write_raw(struct iio_dev *indio_dev,
477 			    struct iio_chan_spec const *chan,
478 			    int val, int val2, long mask)
479 {
480 	struct bmi160_data *data = iio_priv(indio_dev);
481 
482 	switch (mask) {
483 	case IIO_CHAN_INFO_SCALE:
484 		return bmi160_set_scale(data,
485 					bmi160_to_sensor(chan->type), val2);
486 	case IIO_CHAN_INFO_SAMP_FREQ:
487 		return bmi160_set_odr(data, bmi160_to_sensor(chan->type),
488 				      val, val2);
489 	default:
490 		return -EINVAL;
491 	}
492 
493 	return 0;
494 }
495 
496 static
497 IIO_CONST_ATTR(in_accel_sampling_frequency_available,
498 	       "0.78125 1.5625 3.125 6.25 12.5 25 50 100 200 400 800 1600");
499 static
500 IIO_CONST_ATTR(in_anglvel_sampling_frequency_available,
501 	       "25 50 100 200 400 800 1600 3200");
502 static
503 IIO_CONST_ATTR(in_accel_scale_available,
504 	       "0.000598 0.001197 0.002394 0.004788");
505 static
506 IIO_CONST_ATTR(in_anglvel_scale_available,
507 	       "0.001065 0.000532 0.000266 0.000133 0.000066");
508 
509 static struct attribute *bmi160_attrs[] = {
510 	&iio_const_attr_in_accel_sampling_frequency_available.dev_attr.attr,
511 	&iio_const_attr_in_anglvel_sampling_frequency_available.dev_attr.attr,
512 	&iio_const_attr_in_accel_scale_available.dev_attr.attr,
513 	&iio_const_attr_in_anglvel_scale_available.dev_attr.attr,
514 	NULL,
515 };
516 
517 static const struct attribute_group bmi160_attrs_group = {
518 	.attrs = bmi160_attrs,
519 };
520 
521 static const struct iio_info bmi160_info = {
522 	.read_raw = bmi160_read_raw,
523 	.write_raw = bmi160_write_raw,
524 	.attrs = &bmi160_attrs_group,
525 };
526 
527 static int bmi160_write_conf_reg(struct regmap *regmap, unsigned int reg,
528 				 unsigned int mask, unsigned int bits,
529 				 unsigned int write_usleep)
530 {
531 	int ret;
532 	unsigned int val;
533 
534 	ret = regmap_read(regmap, reg, &val);
535 	if (ret)
536 		return ret;
537 
538 	val = (val & ~mask) | bits;
539 
540 	ret = regmap_write(regmap, reg, val);
541 	if (ret)
542 		return ret;
543 
544 	/*
545 	 * We need to wait after writing before we can write again. See the
546 	 * datasheet, page 93.
547 	 */
548 	usleep_range(write_usleep, write_usleep + 1000);
549 
550 	return 0;
551 }
552 
553 static int bmi160_config_pin(struct regmap *regmap, enum bmi160_int_pin pin,
554 			     bool open_drain, u8 irq_mask,
555 			     unsigned long write_usleep)
556 {
557 	int ret;
558 	struct device *dev = regmap_get_device(regmap);
559 	u8 int_out_ctrl_shift;
560 	u8 int_latch_mask;
561 	u8 int_map_mask;
562 	u8 int_out_ctrl_mask;
563 	u8 int_out_ctrl_bits;
564 	const char *pin_name;
565 
566 	switch (pin) {
567 	case BMI160_PIN_INT1:
568 		int_out_ctrl_shift = BMI160_INT1_OUT_CTRL_SHIFT;
569 		int_latch_mask = BMI160_INT1_LATCH_MASK;
570 		int_map_mask = BMI160_INT1_MAP_DRDY_EN;
571 		break;
572 	case BMI160_PIN_INT2:
573 		int_out_ctrl_shift = BMI160_INT2_OUT_CTRL_SHIFT;
574 		int_latch_mask = BMI160_INT2_LATCH_MASK;
575 		int_map_mask = BMI160_INT2_MAP_DRDY_EN;
576 		break;
577 	}
578 	int_out_ctrl_mask = BMI160_INT_OUT_CTRL_MASK << int_out_ctrl_shift;
579 
580 	/*
581 	 * Enable the requested pin with the right settings:
582 	 * - Push-pull/open-drain
583 	 * - Active low/high
584 	 * - Edge/level triggered
585 	 */
586 	int_out_ctrl_bits = BMI160_OUTPUT_EN;
587 	if (open_drain)
588 		/* Default is push-pull. */
589 		int_out_ctrl_bits |= BMI160_OPEN_DRAIN;
590 	int_out_ctrl_bits |= irq_mask;
591 	int_out_ctrl_bits <<= int_out_ctrl_shift;
592 
593 	ret = bmi160_write_conf_reg(regmap, BMI160_REG_INT_OUT_CTRL,
594 				    int_out_ctrl_mask, int_out_ctrl_bits,
595 				    write_usleep);
596 	if (ret)
597 		return ret;
598 
599 	/* Set the pin to input mode with no latching. */
600 	ret = bmi160_write_conf_reg(regmap, BMI160_REG_INT_LATCH,
601 				    int_latch_mask, int_latch_mask,
602 				    write_usleep);
603 	if (ret)
604 		return ret;
605 
606 	/* Map interrupts to the requested pin. */
607 	ret = bmi160_write_conf_reg(regmap, BMI160_REG_INT_MAP,
608 				    int_map_mask, int_map_mask,
609 				    write_usleep);
610 	if (ret) {
611 		switch (pin) {
612 		case BMI160_PIN_INT1:
613 			pin_name = "INT1";
614 			break;
615 		case BMI160_PIN_INT2:
616 			pin_name = "INT2";
617 			break;
618 		}
619 		dev_err(dev, "Failed to configure %s IRQ pin", pin_name);
620 	}
621 
622 	return ret;
623 }
624 
625 int bmi160_enable_irq(struct regmap *regmap, bool enable)
626 {
627 	unsigned int enable_bit = 0;
628 
629 	if (enable)
630 		enable_bit = BMI160_DRDY_INT_EN;
631 
632 	return bmi160_write_conf_reg(regmap, BMI160_REG_INT_EN,
633 				     BMI160_DRDY_INT_EN, enable_bit,
634 				     BMI160_NORMAL_WRITE_USLEEP);
635 }
636 EXPORT_SYMBOL_NS(bmi160_enable_irq, IIO_BMI160);
637 
638 static int bmi160_get_irq(struct fwnode_handle *fwnode, enum bmi160_int_pin *pin)
639 {
640 	int irq;
641 
642 	/* Use INT1 if possible, otherwise fall back to INT2. */
643 	irq = fwnode_irq_get_byname(fwnode, "INT1");
644 	if (irq > 0) {
645 		*pin = BMI160_PIN_INT1;
646 		return irq;
647 	}
648 
649 	irq = fwnode_irq_get_byname(fwnode, "INT2");
650 	if (irq > 0)
651 		*pin = BMI160_PIN_INT2;
652 
653 	return irq;
654 }
655 
656 static int bmi160_config_device_irq(struct iio_dev *indio_dev, int irq_type,
657 				    enum bmi160_int_pin pin)
658 {
659 	bool open_drain;
660 	u8 irq_mask;
661 	struct bmi160_data *data = iio_priv(indio_dev);
662 	struct device *dev = regmap_get_device(data->regmap);
663 
664 	/* Level-triggered, active-low is the default if we set all zeroes. */
665 	if (irq_type == IRQF_TRIGGER_RISING)
666 		irq_mask = BMI160_ACTIVE_HIGH | BMI160_EDGE_TRIGGERED;
667 	else if (irq_type == IRQF_TRIGGER_FALLING)
668 		irq_mask = BMI160_EDGE_TRIGGERED;
669 	else if (irq_type == IRQF_TRIGGER_HIGH)
670 		irq_mask = BMI160_ACTIVE_HIGH;
671 	else if (irq_type == IRQF_TRIGGER_LOW)
672 		irq_mask = 0;
673 	else {
674 		dev_err(&indio_dev->dev,
675 			"Invalid interrupt type 0x%x specified\n", irq_type);
676 		return -EINVAL;
677 	}
678 
679 	open_drain = device_property_read_bool(dev, "drive-open-drain");
680 
681 	return bmi160_config_pin(data->regmap, pin, open_drain, irq_mask,
682 				 BMI160_NORMAL_WRITE_USLEEP);
683 }
684 
685 static int bmi160_setup_irq(struct iio_dev *indio_dev, int irq,
686 			    enum bmi160_int_pin pin)
687 {
688 	struct irq_data *desc;
689 	u32 irq_type;
690 	int ret;
691 
692 	desc = irq_get_irq_data(irq);
693 	if (!desc) {
694 		dev_err(&indio_dev->dev, "Could not find IRQ %d\n", irq);
695 		return -EINVAL;
696 	}
697 
698 	irq_type = irqd_get_trigger_type(desc);
699 
700 	ret = bmi160_config_device_irq(indio_dev, irq_type, pin);
701 	if (ret)
702 		return ret;
703 
704 	return bmi160_probe_trigger(indio_dev, irq, irq_type);
705 }
706 
707 static int bmi160_chip_init(struct bmi160_data *data, bool use_spi)
708 {
709 	int ret;
710 	unsigned int val;
711 	struct device *dev = regmap_get_device(data->regmap);
712 
713 	ret = regulator_bulk_enable(ARRAY_SIZE(data->supplies), data->supplies);
714 	if (ret) {
715 		dev_err(dev, "Failed to enable regulators: %d\n", ret);
716 		return ret;
717 	}
718 
719 	ret = regmap_write(data->regmap, BMI160_REG_CMD, BMI160_CMD_SOFTRESET);
720 	if (ret)
721 		goto disable_regulator;
722 
723 	usleep_range(BMI160_SOFTRESET_USLEEP, BMI160_SOFTRESET_USLEEP + 1);
724 
725 	/*
726 	 * CS rising edge is needed before starting SPI, so do a dummy read
727 	 * See Section 3.2.1, page 86 of the datasheet
728 	 */
729 	if (use_spi) {
730 		ret = regmap_read(data->regmap, BMI160_REG_DUMMY, &val);
731 		if (ret)
732 			goto disable_regulator;
733 	}
734 
735 	ret = regmap_read(data->regmap, BMI160_REG_CHIP_ID, &val);
736 	if (ret) {
737 		dev_err(dev, "Error reading chip id\n");
738 		goto disable_regulator;
739 	}
740 	if (val != BMI160_CHIP_ID_VAL) {
741 		dev_err(dev, "Wrong chip id, got %x expected %x\n",
742 			val, BMI160_CHIP_ID_VAL);
743 		ret = -ENODEV;
744 		goto disable_regulator;
745 	}
746 
747 	ret = bmi160_set_mode(data, BMI160_ACCEL, true);
748 	if (ret)
749 		goto disable_regulator;
750 
751 	ret = bmi160_set_mode(data, BMI160_GYRO, true);
752 	if (ret)
753 		goto disable_accel;
754 
755 	return 0;
756 
757 disable_accel:
758 	bmi160_set_mode(data, BMI160_ACCEL, false);
759 
760 disable_regulator:
761 	regulator_bulk_disable(ARRAY_SIZE(data->supplies), data->supplies);
762 	return ret;
763 }
764 
765 static int bmi160_data_rdy_trigger_set_state(struct iio_trigger *trig,
766 					     bool enable)
767 {
768 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
769 	struct bmi160_data *data = iio_priv(indio_dev);
770 
771 	return bmi160_enable_irq(data->regmap, enable);
772 }
773 
774 static const struct iio_trigger_ops bmi160_trigger_ops = {
775 	.set_trigger_state = &bmi160_data_rdy_trigger_set_state,
776 };
777 
778 int bmi160_probe_trigger(struct iio_dev *indio_dev, int irq, u32 irq_type)
779 {
780 	struct bmi160_data *data = iio_priv(indio_dev);
781 	int ret;
782 
783 	data->trig = devm_iio_trigger_alloc(&indio_dev->dev, "%s-dev%d",
784 					    indio_dev->name,
785 					    iio_device_id(indio_dev));
786 
787 	if (data->trig == NULL)
788 		return -ENOMEM;
789 
790 	ret = devm_request_irq(&indio_dev->dev, irq,
791 			       &iio_trigger_generic_data_rdy_poll,
792 			       irq_type, "bmi160", data->trig);
793 	if (ret)
794 		return ret;
795 
796 	data->trig->dev.parent = regmap_get_device(data->regmap);
797 	data->trig->ops = &bmi160_trigger_ops;
798 	iio_trigger_set_drvdata(data->trig, indio_dev);
799 
800 	ret = devm_iio_trigger_register(&indio_dev->dev, data->trig);
801 	if (ret)
802 		return ret;
803 
804 	indio_dev->trig = iio_trigger_get(data->trig);
805 
806 	return 0;
807 }
808 
809 static void bmi160_chip_uninit(void *data)
810 {
811 	struct bmi160_data *bmi_data = data;
812 	struct device *dev = regmap_get_device(bmi_data->regmap);
813 	int ret;
814 
815 	bmi160_set_mode(bmi_data, BMI160_GYRO, false);
816 	bmi160_set_mode(bmi_data, BMI160_ACCEL, false);
817 
818 	ret = regulator_bulk_disable(ARRAY_SIZE(bmi_data->supplies),
819 				     bmi_data->supplies);
820 	if (ret)
821 		dev_err(dev, "Failed to disable regulators: %d\n", ret);
822 }
823 
824 int bmi160_core_probe(struct device *dev, struct regmap *regmap,
825 		      const char *name, bool use_spi)
826 {
827 	struct iio_dev *indio_dev;
828 	struct bmi160_data *data;
829 	int irq;
830 	enum bmi160_int_pin int_pin;
831 	int ret;
832 
833 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
834 	if (!indio_dev)
835 		return -ENOMEM;
836 
837 	data = iio_priv(indio_dev);
838 	dev_set_drvdata(dev, indio_dev);
839 	data->regmap = regmap;
840 
841 	data->supplies[0].supply = "vdd";
842 	data->supplies[1].supply = "vddio";
843 	ret = devm_regulator_bulk_get(dev,
844 				      ARRAY_SIZE(data->supplies),
845 				      data->supplies);
846 	if (ret) {
847 		dev_err(dev, "Failed to get regulators: %d\n", ret);
848 		return ret;
849 	}
850 
851 	ret = iio_read_mount_matrix(dev, &data->orientation);
852 	if (ret)
853 		return ret;
854 
855 	ret = bmi160_chip_init(data, use_spi);
856 	if (ret)
857 		return ret;
858 
859 	ret = devm_add_action_or_reset(dev, bmi160_chip_uninit, data);
860 	if (ret)
861 		return ret;
862 
863 	indio_dev->channels = bmi160_channels;
864 	indio_dev->num_channels = ARRAY_SIZE(bmi160_channels);
865 	indio_dev->name = name;
866 	indio_dev->modes = INDIO_DIRECT_MODE;
867 	indio_dev->info = &bmi160_info;
868 
869 	ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
870 					      iio_pollfunc_store_time,
871 					      bmi160_trigger_handler, NULL);
872 	if (ret)
873 		return ret;
874 
875 	irq = bmi160_get_irq(dev_fwnode(dev), &int_pin);
876 	if (irq > 0) {
877 		ret = bmi160_setup_irq(indio_dev, irq, int_pin);
878 		if (ret)
879 			dev_err(&indio_dev->dev, "Failed to setup IRQ %d\n",
880 				irq);
881 	} else {
882 		dev_info(&indio_dev->dev, "Not setting up IRQ trigger\n");
883 	}
884 
885 	return devm_iio_device_register(dev, indio_dev);
886 }
887 EXPORT_SYMBOL_NS_GPL(bmi160_core_probe, IIO_BMI160);
888 
889 MODULE_AUTHOR("Daniel Baluta <daniel.baluta@intel.com>");
890 MODULE_DESCRIPTION("Bosch BMI160 driver");
891 MODULE_LICENSE("GPL v2");
892