1 /* 2 * AFE4403 Heart Rate Monitors and Low-Cost Pulse Oximeters 3 * 4 * Copyright (C) 2015-2016 Texas Instruments Incorporated - http://www.ti.com/ 5 * Andrew F. Davis <afd@ti.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, but 12 * WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 */ 16 17 #include <linux/device.h> 18 #include <linux/err.h> 19 #include <linux/interrupt.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/regmap.h> 23 #include <linux/spi/spi.h> 24 #include <linux/sysfs.h> 25 #include <linux/regulator/consumer.h> 26 27 #include <linux/iio/iio.h> 28 #include <linux/iio/sysfs.h> 29 #include <linux/iio/buffer.h> 30 #include <linux/iio/trigger.h> 31 #include <linux/iio/triggered_buffer.h> 32 #include <linux/iio/trigger_consumer.h> 33 34 #include "afe440x.h" 35 36 #define AFE4403_DRIVER_NAME "afe4403" 37 38 /* AFE4403 Registers */ 39 #define AFE4403_TIAGAIN 0x20 40 #define AFE4403_TIA_AMB_GAIN 0x21 41 42 enum afe4403_fields { 43 /* Gains */ 44 F_RF_LED1, F_CF_LED1, 45 F_RF_LED, F_CF_LED, 46 47 /* LED Current */ 48 F_ILED1, F_ILED2, 49 50 /* sentinel */ 51 F_MAX_FIELDS 52 }; 53 54 static const struct reg_field afe4403_reg_fields[] = { 55 /* Gains */ 56 [F_RF_LED1] = REG_FIELD(AFE4403_TIAGAIN, 0, 2), 57 [F_CF_LED1] = REG_FIELD(AFE4403_TIAGAIN, 3, 7), 58 [F_RF_LED] = REG_FIELD(AFE4403_TIA_AMB_GAIN, 0, 2), 59 [F_CF_LED] = REG_FIELD(AFE4403_TIA_AMB_GAIN, 3, 7), 60 /* LED Current */ 61 [F_ILED1] = REG_FIELD(AFE440X_LEDCNTRL, 0, 7), 62 [F_ILED2] = REG_FIELD(AFE440X_LEDCNTRL, 8, 15), 63 }; 64 65 /** 66 * struct afe4403_data - AFE4403 device instance data 67 * @dev: Device structure 68 * @spi: SPI device handle 69 * @regmap: Register map of the device 70 * @fields: Register fields of the device 71 * @regulator: Pointer to the regulator for the IC 72 * @trig: IIO trigger for this device 73 * @irq: ADC_RDY line interrupt number 74 */ 75 struct afe4403_data { 76 struct device *dev; 77 struct spi_device *spi; 78 struct regmap *regmap; 79 struct regmap_field *fields[F_MAX_FIELDS]; 80 struct regulator *regulator; 81 struct iio_trigger *trig; 82 int irq; 83 }; 84 85 enum afe4403_chan_id { 86 LED2 = 1, 87 ALED2, 88 LED1, 89 ALED1, 90 LED2_ALED2, 91 LED1_ALED1, 92 }; 93 94 static const unsigned int afe4403_channel_values[] = { 95 [LED2] = AFE440X_LED2VAL, 96 [ALED2] = AFE440X_ALED2VAL, 97 [LED1] = AFE440X_LED1VAL, 98 [ALED1] = AFE440X_ALED1VAL, 99 [LED2_ALED2] = AFE440X_LED2_ALED2VAL, 100 [LED1_ALED1] = AFE440X_LED1_ALED1VAL, 101 }; 102 103 static const unsigned int afe4403_channel_leds[] = { 104 [LED2] = F_ILED2, 105 [LED1] = F_ILED1, 106 }; 107 108 static const struct iio_chan_spec afe4403_channels[] = { 109 /* ADC values */ 110 AFE440X_INTENSITY_CHAN(LED2, 0), 111 AFE440X_INTENSITY_CHAN(ALED2, 0), 112 AFE440X_INTENSITY_CHAN(LED1, 0), 113 AFE440X_INTENSITY_CHAN(ALED1, 0), 114 AFE440X_INTENSITY_CHAN(LED2_ALED2, 0), 115 AFE440X_INTENSITY_CHAN(LED1_ALED1, 0), 116 /* LED current */ 117 AFE440X_CURRENT_CHAN(LED2), 118 AFE440X_CURRENT_CHAN(LED1), 119 }; 120 121 static const struct afe440x_val_table afe4403_res_table[] = { 122 { 500000 }, { 250000 }, { 100000 }, { 50000 }, 123 { 25000 }, { 10000 }, { 1000000 }, { 0 }, 124 }; 125 AFE440X_TABLE_ATTR(in_intensity_resistance_available, afe4403_res_table); 126 127 static const struct afe440x_val_table afe4403_cap_table[] = { 128 { 0, 5000 }, { 0, 10000 }, { 0, 20000 }, { 0, 25000 }, 129 { 0, 30000 }, { 0, 35000 }, { 0, 45000 }, { 0, 50000 }, 130 { 0, 55000 }, { 0, 60000 }, { 0, 70000 }, { 0, 75000 }, 131 { 0, 80000 }, { 0, 85000 }, { 0, 95000 }, { 0, 100000 }, 132 { 0, 155000 }, { 0, 160000 }, { 0, 170000 }, { 0, 175000 }, 133 { 0, 180000 }, { 0, 185000 }, { 0, 195000 }, { 0, 200000 }, 134 { 0, 205000 }, { 0, 210000 }, { 0, 220000 }, { 0, 225000 }, 135 { 0, 230000 }, { 0, 235000 }, { 0, 245000 }, { 0, 250000 }, 136 }; 137 AFE440X_TABLE_ATTR(in_intensity_capacitance_available, afe4403_cap_table); 138 139 static ssize_t afe440x_show_register(struct device *dev, 140 struct device_attribute *attr, 141 char *buf) 142 { 143 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 144 struct afe4403_data *afe = iio_priv(indio_dev); 145 struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr); 146 unsigned int reg_val; 147 int vals[2]; 148 int ret; 149 150 ret = regmap_field_read(afe->fields[afe440x_attr->field], ®_val); 151 if (ret) 152 return ret; 153 154 if (reg_val >= afe440x_attr->table_size) 155 return -EINVAL; 156 157 vals[0] = afe440x_attr->val_table[reg_val].integer; 158 vals[1] = afe440x_attr->val_table[reg_val].fract; 159 160 return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, 2, vals); 161 } 162 163 static ssize_t afe440x_store_register(struct device *dev, 164 struct device_attribute *attr, 165 const char *buf, size_t count) 166 { 167 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 168 struct afe4403_data *afe = iio_priv(indio_dev); 169 struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr); 170 int val, integer, fract, ret; 171 172 ret = iio_str_to_fixpoint(buf, 100000, &integer, &fract); 173 if (ret) 174 return ret; 175 176 for (val = 0; val < afe440x_attr->table_size; val++) 177 if (afe440x_attr->val_table[val].integer == integer && 178 afe440x_attr->val_table[val].fract == fract) 179 break; 180 if (val == afe440x_attr->table_size) 181 return -EINVAL; 182 183 ret = regmap_field_write(afe->fields[afe440x_attr->field], val); 184 if (ret) 185 return ret; 186 187 return count; 188 } 189 190 static AFE440X_ATTR(in_intensity1_resistance, F_RF_LED, afe4403_res_table); 191 static AFE440X_ATTR(in_intensity1_capacitance, F_CF_LED, afe4403_cap_table); 192 193 static AFE440X_ATTR(in_intensity2_resistance, F_RF_LED, afe4403_res_table); 194 static AFE440X_ATTR(in_intensity2_capacitance, F_CF_LED, afe4403_cap_table); 195 196 static AFE440X_ATTR(in_intensity3_resistance, F_RF_LED1, afe4403_res_table); 197 static AFE440X_ATTR(in_intensity3_capacitance, F_CF_LED1, afe4403_cap_table); 198 199 static AFE440X_ATTR(in_intensity4_resistance, F_RF_LED1, afe4403_res_table); 200 static AFE440X_ATTR(in_intensity4_capacitance, F_CF_LED1, afe4403_cap_table); 201 202 static struct attribute *afe440x_attributes[] = { 203 &dev_attr_in_intensity_resistance_available.attr, 204 &dev_attr_in_intensity_capacitance_available.attr, 205 &afe440x_attr_in_intensity1_resistance.dev_attr.attr, 206 &afe440x_attr_in_intensity1_capacitance.dev_attr.attr, 207 &afe440x_attr_in_intensity2_resistance.dev_attr.attr, 208 &afe440x_attr_in_intensity2_capacitance.dev_attr.attr, 209 &afe440x_attr_in_intensity3_resistance.dev_attr.attr, 210 &afe440x_attr_in_intensity3_capacitance.dev_attr.attr, 211 &afe440x_attr_in_intensity4_resistance.dev_attr.attr, 212 &afe440x_attr_in_intensity4_capacitance.dev_attr.attr, 213 NULL 214 }; 215 216 static const struct attribute_group afe440x_attribute_group = { 217 .attrs = afe440x_attributes 218 }; 219 220 static int afe4403_read(struct afe4403_data *afe, unsigned int reg, u32 *val) 221 { 222 u8 tx[4] = {AFE440X_CONTROL0, 0x0, 0x0, AFE440X_CONTROL0_READ}; 223 u8 rx[3]; 224 int ret; 225 226 /* Enable reading from the device */ 227 ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0); 228 if (ret) 229 return ret; 230 231 ret = spi_write_then_read(afe->spi, ®, 1, rx, 3); 232 if (ret) 233 return ret; 234 235 *val = (rx[0] << 16) | 236 (rx[1] << 8) | 237 (rx[2]); 238 239 /* Disable reading from the device */ 240 tx[3] = AFE440X_CONTROL0_WRITE; 241 ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0); 242 if (ret) 243 return ret; 244 245 return 0; 246 } 247 248 static int afe4403_read_raw(struct iio_dev *indio_dev, 249 struct iio_chan_spec const *chan, 250 int *val, int *val2, long mask) 251 { 252 struct afe4403_data *afe = iio_priv(indio_dev); 253 unsigned int reg = afe4403_channel_values[chan->address]; 254 unsigned int field = afe4403_channel_leds[chan->address]; 255 int ret; 256 257 switch (chan->type) { 258 case IIO_INTENSITY: 259 switch (mask) { 260 case IIO_CHAN_INFO_RAW: 261 ret = afe4403_read(afe, reg, val); 262 if (ret) 263 return ret; 264 return IIO_VAL_INT; 265 } 266 break; 267 case IIO_CURRENT: 268 switch (mask) { 269 case IIO_CHAN_INFO_RAW: 270 ret = regmap_field_read(afe->fields[field], val); 271 if (ret) 272 return ret; 273 return IIO_VAL_INT; 274 case IIO_CHAN_INFO_SCALE: 275 *val = 0; 276 *val2 = 800000; 277 return IIO_VAL_INT_PLUS_MICRO; 278 } 279 break; 280 default: 281 break; 282 } 283 284 return -EINVAL; 285 } 286 287 static int afe4403_write_raw(struct iio_dev *indio_dev, 288 struct iio_chan_spec const *chan, 289 int val, int val2, long mask) 290 { 291 struct afe4403_data *afe = iio_priv(indio_dev); 292 unsigned int field = afe4403_channel_leds[chan->address]; 293 294 switch (chan->type) { 295 case IIO_CURRENT: 296 switch (mask) { 297 case IIO_CHAN_INFO_RAW: 298 return regmap_field_write(afe->fields[field], val); 299 } 300 break; 301 default: 302 break; 303 } 304 305 return -EINVAL; 306 } 307 308 static const struct iio_info afe4403_iio_info = { 309 .attrs = &afe440x_attribute_group, 310 .read_raw = afe4403_read_raw, 311 .write_raw = afe4403_write_raw, 312 }; 313 314 static irqreturn_t afe4403_trigger_handler(int irq, void *private) 315 { 316 struct iio_poll_func *pf = private; 317 struct iio_dev *indio_dev = pf->indio_dev; 318 struct afe4403_data *afe = iio_priv(indio_dev); 319 int ret, bit, i = 0; 320 s32 buffer[8]; 321 u8 tx[4] = {AFE440X_CONTROL0, 0x0, 0x0, AFE440X_CONTROL0_READ}; 322 u8 rx[3]; 323 324 /* Enable reading from the device */ 325 ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0); 326 if (ret) 327 goto err; 328 329 for_each_set_bit(bit, indio_dev->active_scan_mask, 330 indio_dev->masklength) { 331 ret = spi_write_then_read(afe->spi, 332 &afe4403_channel_values[bit], 1, 333 rx, 3); 334 if (ret) 335 goto err; 336 337 buffer[i++] = (rx[0] << 16) | 338 (rx[1] << 8) | 339 (rx[2]); 340 } 341 342 /* Disable reading from the device */ 343 tx[3] = AFE440X_CONTROL0_WRITE; 344 ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0); 345 if (ret) 346 goto err; 347 348 iio_push_to_buffers_with_timestamp(indio_dev, buffer, pf->timestamp); 349 err: 350 iio_trigger_notify_done(indio_dev->trig); 351 352 return IRQ_HANDLED; 353 } 354 355 static const struct iio_trigger_ops afe4403_trigger_ops = { 356 }; 357 358 #define AFE4403_TIMING_PAIRS \ 359 { AFE440X_LED2STC, 0x000050 }, \ 360 { AFE440X_LED2ENDC, 0x0003e7 }, \ 361 { AFE440X_LED1LEDSTC, 0x0007d0 }, \ 362 { AFE440X_LED1LEDENDC, 0x000bb7 }, \ 363 { AFE440X_ALED2STC, 0x000438 }, \ 364 { AFE440X_ALED2ENDC, 0x0007cf }, \ 365 { AFE440X_LED1STC, 0x000820 }, \ 366 { AFE440X_LED1ENDC, 0x000bb7 }, \ 367 { AFE440X_LED2LEDSTC, 0x000000 }, \ 368 { AFE440X_LED2LEDENDC, 0x0003e7 }, \ 369 { AFE440X_ALED1STC, 0x000c08 }, \ 370 { AFE440X_ALED1ENDC, 0x000f9f }, \ 371 { AFE440X_LED2CONVST, 0x0003ef }, \ 372 { AFE440X_LED2CONVEND, 0x0007cf }, \ 373 { AFE440X_ALED2CONVST, 0x0007d7 }, \ 374 { AFE440X_ALED2CONVEND, 0x000bb7 }, \ 375 { AFE440X_LED1CONVST, 0x000bbf }, \ 376 { AFE440X_LED1CONVEND, 0x009c3f }, \ 377 { AFE440X_ALED1CONVST, 0x000fa7 }, \ 378 { AFE440X_ALED1CONVEND, 0x001387 }, \ 379 { AFE440X_ADCRSTSTCT0, 0x0003e8 }, \ 380 { AFE440X_ADCRSTENDCT0, 0x0003eb }, \ 381 { AFE440X_ADCRSTSTCT1, 0x0007d0 }, \ 382 { AFE440X_ADCRSTENDCT1, 0x0007d3 }, \ 383 { AFE440X_ADCRSTSTCT2, 0x000bb8 }, \ 384 { AFE440X_ADCRSTENDCT2, 0x000bbb }, \ 385 { AFE440X_ADCRSTSTCT3, 0x000fa0 }, \ 386 { AFE440X_ADCRSTENDCT3, 0x000fa3 }, \ 387 { AFE440X_PRPCOUNT, 0x009c3f }, \ 388 { AFE440X_PDNCYCLESTC, 0x001518 }, \ 389 { AFE440X_PDNCYCLEENDC, 0x00991f } 390 391 static const struct reg_sequence afe4403_reg_sequences[] = { 392 AFE4403_TIMING_PAIRS, 393 { AFE440X_CONTROL1, AFE440X_CONTROL1_TIMEREN }, 394 { AFE4403_TIAGAIN, AFE440X_TIAGAIN_ENSEPGAIN }, 395 }; 396 397 static const struct regmap_range afe4403_yes_ranges[] = { 398 regmap_reg_range(AFE440X_LED2VAL, AFE440X_LED1_ALED1VAL), 399 }; 400 401 static const struct regmap_access_table afe4403_volatile_table = { 402 .yes_ranges = afe4403_yes_ranges, 403 .n_yes_ranges = ARRAY_SIZE(afe4403_yes_ranges), 404 }; 405 406 static const struct regmap_config afe4403_regmap_config = { 407 .reg_bits = 8, 408 .val_bits = 24, 409 410 .max_register = AFE440X_PDNCYCLEENDC, 411 .cache_type = REGCACHE_RBTREE, 412 .volatile_table = &afe4403_volatile_table, 413 }; 414 415 static const struct of_device_id afe4403_of_match[] = { 416 { .compatible = "ti,afe4403", }, 417 { /* sentinel */ } 418 }; 419 MODULE_DEVICE_TABLE(of, afe4403_of_match); 420 421 static int __maybe_unused afe4403_suspend(struct device *dev) 422 { 423 struct iio_dev *indio_dev = spi_get_drvdata(to_spi_device(dev)); 424 struct afe4403_data *afe = iio_priv(indio_dev); 425 int ret; 426 427 ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2, 428 AFE440X_CONTROL2_PDN_AFE, 429 AFE440X_CONTROL2_PDN_AFE); 430 if (ret) 431 return ret; 432 433 ret = regulator_disable(afe->regulator); 434 if (ret) { 435 dev_err(dev, "Unable to disable regulator\n"); 436 return ret; 437 } 438 439 return 0; 440 } 441 442 static int __maybe_unused afe4403_resume(struct device *dev) 443 { 444 struct iio_dev *indio_dev = spi_get_drvdata(to_spi_device(dev)); 445 struct afe4403_data *afe = iio_priv(indio_dev); 446 int ret; 447 448 ret = regulator_enable(afe->regulator); 449 if (ret) { 450 dev_err(dev, "Unable to enable regulator\n"); 451 return ret; 452 } 453 454 ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2, 455 AFE440X_CONTROL2_PDN_AFE, 0); 456 if (ret) 457 return ret; 458 459 return 0; 460 } 461 462 static SIMPLE_DEV_PM_OPS(afe4403_pm_ops, afe4403_suspend, afe4403_resume); 463 464 static int afe4403_probe(struct spi_device *spi) 465 { 466 struct iio_dev *indio_dev; 467 struct afe4403_data *afe; 468 int i, ret; 469 470 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*afe)); 471 if (!indio_dev) 472 return -ENOMEM; 473 474 afe = iio_priv(indio_dev); 475 spi_set_drvdata(spi, indio_dev); 476 477 afe->dev = &spi->dev; 478 afe->spi = spi; 479 afe->irq = spi->irq; 480 481 afe->regmap = devm_regmap_init_spi(spi, &afe4403_regmap_config); 482 if (IS_ERR(afe->regmap)) { 483 dev_err(afe->dev, "Unable to allocate register map\n"); 484 return PTR_ERR(afe->regmap); 485 } 486 487 for (i = 0; i < F_MAX_FIELDS; i++) { 488 afe->fields[i] = devm_regmap_field_alloc(afe->dev, afe->regmap, 489 afe4403_reg_fields[i]); 490 if (IS_ERR(afe->fields[i])) { 491 dev_err(afe->dev, "Unable to allocate regmap fields\n"); 492 return PTR_ERR(afe->fields[i]); 493 } 494 } 495 496 afe->regulator = devm_regulator_get(afe->dev, "tx_sup"); 497 if (IS_ERR(afe->regulator)) { 498 dev_err(afe->dev, "Unable to get regulator\n"); 499 return PTR_ERR(afe->regulator); 500 } 501 ret = regulator_enable(afe->regulator); 502 if (ret) { 503 dev_err(afe->dev, "Unable to enable regulator\n"); 504 return ret; 505 } 506 507 ret = regmap_write(afe->regmap, AFE440X_CONTROL0, 508 AFE440X_CONTROL0_SW_RESET); 509 if (ret) { 510 dev_err(afe->dev, "Unable to reset device\n"); 511 goto err_disable_reg; 512 } 513 514 ret = regmap_multi_reg_write(afe->regmap, afe4403_reg_sequences, 515 ARRAY_SIZE(afe4403_reg_sequences)); 516 if (ret) { 517 dev_err(afe->dev, "Unable to set register defaults\n"); 518 goto err_disable_reg; 519 } 520 521 indio_dev->modes = INDIO_DIRECT_MODE; 522 indio_dev->dev.parent = afe->dev; 523 indio_dev->channels = afe4403_channels; 524 indio_dev->num_channels = ARRAY_SIZE(afe4403_channels); 525 indio_dev->name = AFE4403_DRIVER_NAME; 526 indio_dev->info = &afe4403_iio_info; 527 528 if (afe->irq > 0) { 529 afe->trig = devm_iio_trigger_alloc(afe->dev, 530 "%s-dev%d", 531 indio_dev->name, 532 indio_dev->id); 533 if (!afe->trig) { 534 dev_err(afe->dev, "Unable to allocate IIO trigger\n"); 535 ret = -ENOMEM; 536 goto err_disable_reg; 537 } 538 539 iio_trigger_set_drvdata(afe->trig, indio_dev); 540 541 afe->trig->ops = &afe4403_trigger_ops; 542 afe->trig->dev.parent = afe->dev; 543 544 ret = iio_trigger_register(afe->trig); 545 if (ret) { 546 dev_err(afe->dev, "Unable to register IIO trigger\n"); 547 goto err_disable_reg; 548 } 549 550 ret = devm_request_threaded_irq(afe->dev, afe->irq, 551 iio_trigger_generic_data_rdy_poll, 552 NULL, IRQF_ONESHOT, 553 AFE4403_DRIVER_NAME, 554 afe->trig); 555 if (ret) { 556 dev_err(afe->dev, "Unable to request IRQ\n"); 557 goto err_trig; 558 } 559 } 560 561 ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time, 562 afe4403_trigger_handler, NULL); 563 if (ret) { 564 dev_err(afe->dev, "Unable to setup buffer\n"); 565 goto err_trig; 566 } 567 568 ret = iio_device_register(indio_dev); 569 if (ret) { 570 dev_err(afe->dev, "Unable to register IIO device\n"); 571 goto err_buff; 572 } 573 574 return 0; 575 576 err_buff: 577 iio_triggered_buffer_cleanup(indio_dev); 578 err_trig: 579 if (afe->irq > 0) 580 iio_trigger_unregister(afe->trig); 581 err_disable_reg: 582 regulator_disable(afe->regulator); 583 584 return ret; 585 } 586 587 static int afe4403_remove(struct spi_device *spi) 588 { 589 struct iio_dev *indio_dev = spi_get_drvdata(spi); 590 struct afe4403_data *afe = iio_priv(indio_dev); 591 int ret; 592 593 iio_device_unregister(indio_dev); 594 595 iio_triggered_buffer_cleanup(indio_dev); 596 597 if (afe->irq > 0) 598 iio_trigger_unregister(afe->trig); 599 600 ret = regulator_disable(afe->regulator); 601 if (ret) { 602 dev_err(afe->dev, "Unable to disable regulator\n"); 603 return ret; 604 } 605 606 return 0; 607 } 608 609 static const struct spi_device_id afe4403_ids[] = { 610 { "afe4403", 0 }, 611 { /* sentinel */ } 612 }; 613 MODULE_DEVICE_TABLE(spi, afe4403_ids); 614 615 static struct spi_driver afe4403_spi_driver = { 616 .driver = { 617 .name = AFE4403_DRIVER_NAME, 618 .of_match_table = afe4403_of_match, 619 .pm = &afe4403_pm_ops, 620 }, 621 .probe = afe4403_probe, 622 .remove = afe4403_remove, 623 .id_table = afe4403_ids, 624 }; 625 module_spi_driver(afe4403_spi_driver); 626 627 MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>"); 628 MODULE_DESCRIPTION("TI AFE4403 Heart Rate Monitor and Pulse Oximeter AFE"); 629 MODULE_LICENSE("GPL v2"); 630