1 /* 2 * MPU3050 gyroscope driver 3 * 4 * Copyright (C) 2016 Linaro Ltd. 5 * Author: Linus Walleij <linus.walleij@linaro.org> 6 * 7 * Based on the input subsystem driver, Copyright (C) 2011 Wistron Co.Ltd 8 * Joseph Lai <joseph_lai@wistron.com> and trimmed down by 9 * Alan Cox <alan@linux.intel.com> in turn based on bma023.c. 10 * Device behaviour based on a misc driver posted by Nathan Royer in 2011. 11 * 12 * TODO: add support for setting up the low pass 3dB frequency. 13 */ 14 15 #include <linux/bitops.h> 16 #include <linux/delay.h> 17 #include <linux/err.h> 18 #include <linux/iio/buffer.h> 19 #include <linux/iio/iio.h> 20 #include <linux/iio/sysfs.h> 21 #include <linux/iio/trigger.h> 22 #include <linux/iio/trigger_consumer.h> 23 #include <linux/iio/triggered_buffer.h> 24 #include <linux/interrupt.h> 25 #include <linux/module.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/random.h> 28 #include <linux/slab.h> 29 30 #include "mpu3050.h" 31 32 #define MPU3050_CHIP_ID 0x69 33 34 /* 35 * Register map: anything suffixed *_H is a big-endian high byte and always 36 * followed by the corresponding low byte (*_L) even though these are not 37 * explicitly included in the register definitions. 38 */ 39 #define MPU3050_CHIP_ID_REG 0x00 40 #define MPU3050_PRODUCT_ID_REG 0x01 41 #define MPU3050_XG_OFFS_TC 0x05 42 #define MPU3050_YG_OFFS_TC 0x08 43 #define MPU3050_ZG_OFFS_TC 0x0B 44 #define MPU3050_X_OFFS_USR_H 0x0C 45 #define MPU3050_Y_OFFS_USR_H 0x0E 46 #define MPU3050_Z_OFFS_USR_H 0x10 47 #define MPU3050_FIFO_EN 0x12 48 #define MPU3050_AUX_VDDIO 0x13 49 #define MPU3050_SLV_ADDR 0x14 50 #define MPU3050_SMPLRT_DIV 0x15 51 #define MPU3050_DLPF_FS_SYNC 0x16 52 #define MPU3050_INT_CFG 0x17 53 #define MPU3050_AUX_ADDR 0x18 54 #define MPU3050_INT_STATUS 0x1A 55 #define MPU3050_TEMP_H 0x1B 56 #define MPU3050_XOUT_H 0x1D 57 #define MPU3050_YOUT_H 0x1F 58 #define MPU3050_ZOUT_H 0x21 59 #define MPU3050_DMP_CFG1 0x35 60 #define MPU3050_DMP_CFG2 0x36 61 #define MPU3050_BANK_SEL 0x37 62 #define MPU3050_MEM_START_ADDR 0x38 63 #define MPU3050_MEM_R_W 0x39 64 #define MPU3050_FIFO_COUNT_H 0x3A 65 #define MPU3050_FIFO_R 0x3C 66 #define MPU3050_USR_CTRL 0x3D 67 #define MPU3050_PWR_MGM 0x3E 68 69 /* MPU memory bank read options */ 70 #define MPU3050_MEM_PRFTCH BIT(5) 71 #define MPU3050_MEM_USER_BANK BIT(4) 72 /* Bits 8-11 select memory bank */ 73 #define MPU3050_MEM_RAM_BANK_0 0 74 #define MPU3050_MEM_RAM_BANK_1 1 75 #define MPU3050_MEM_RAM_BANK_2 2 76 #define MPU3050_MEM_RAM_BANK_3 3 77 #define MPU3050_MEM_OTP_BANK_0 4 78 79 #define MPU3050_AXIS_REGS(axis) (MPU3050_XOUT_H + (axis * 2)) 80 81 /* Register bits */ 82 83 /* FIFO Enable */ 84 #define MPU3050_FIFO_EN_FOOTER BIT(0) 85 #define MPU3050_FIFO_EN_AUX_ZOUT BIT(1) 86 #define MPU3050_FIFO_EN_AUX_YOUT BIT(2) 87 #define MPU3050_FIFO_EN_AUX_XOUT BIT(3) 88 #define MPU3050_FIFO_EN_GYRO_ZOUT BIT(4) 89 #define MPU3050_FIFO_EN_GYRO_YOUT BIT(5) 90 #define MPU3050_FIFO_EN_GYRO_XOUT BIT(6) 91 #define MPU3050_FIFO_EN_TEMP_OUT BIT(7) 92 93 /* 94 * Digital Low Pass filter (DLPF) 95 * Full Scale (FS) 96 * and Synchronization 97 */ 98 #define MPU3050_EXT_SYNC_NONE 0x00 99 #define MPU3050_EXT_SYNC_TEMP 0x20 100 #define MPU3050_EXT_SYNC_GYROX 0x40 101 #define MPU3050_EXT_SYNC_GYROY 0x60 102 #define MPU3050_EXT_SYNC_GYROZ 0x80 103 #define MPU3050_EXT_SYNC_ACCELX 0xA0 104 #define MPU3050_EXT_SYNC_ACCELY 0xC0 105 #define MPU3050_EXT_SYNC_ACCELZ 0xE0 106 #define MPU3050_EXT_SYNC_MASK 0xE0 107 #define MPU3050_EXT_SYNC_SHIFT 5 108 109 #define MPU3050_FS_250DPS 0x00 110 #define MPU3050_FS_500DPS 0x08 111 #define MPU3050_FS_1000DPS 0x10 112 #define MPU3050_FS_2000DPS 0x18 113 #define MPU3050_FS_MASK 0x18 114 #define MPU3050_FS_SHIFT 3 115 116 #define MPU3050_DLPF_CFG_256HZ_NOLPF2 0x00 117 #define MPU3050_DLPF_CFG_188HZ 0x01 118 #define MPU3050_DLPF_CFG_98HZ 0x02 119 #define MPU3050_DLPF_CFG_42HZ 0x03 120 #define MPU3050_DLPF_CFG_20HZ 0x04 121 #define MPU3050_DLPF_CFG_10HZ 0x05 122 #define MPU3050_DLPF_CFG_5HZ 0x06 123 #define MPU3050_DLPF_CFG_2100HZ_NOLPF 0x07 124 #define MPU3050_DLPF_CFG_MASK 0x07 125 #define MPU3050_DLPF_CFG_SHIFT 0 126 127 /* Interrupt config */ 128 #define MPU3050_INT_RAW_RDY_EN BIT(0) 129 #define MPU3050_INT_DMP_DONE_EN BIT(1) 130 #define MPU3050_INT_MPU_RDY_EN BIT(2) 131 #define MPU3050_INT_ANYRD_2CLEAR BIT(4) 132 #define MPU3050_INT_LATCH_EN BIT(5) 133 #define MPU3050_INT_OPEN BIT(6) 134 #define MPU3050_INT_ACTL BIT(7) 135 /* Interrupt status */ 136 #define MPU3050_INT_STATUS_RAW_RDY BIT(0) 137 #define MPU3050_INT_STATUS_DMP_DONE BIT(1) 138 #define MPU3050_INT_STATUS_MPU_RDY BIT(2) 139 #define MPU3050_INT_STATUS_FIFO_OVFLW BIT(7) 140 /* USR_CTRL */ 141 #define MPU3050_USR_CTRL_FIFO_EN BIT(6) 142 #define MPU3050_USR_CTRL_AUX_IF_EN BIT(5) 143 #define MPU3050_USR_CTRL_AUX_IF_RST BIT(3) 144 #define MPU3050_USR_CTRL_FIFO_RST BIT(1) 145 #define MPU3050_USR_CTRL_GYRO_RST BIT(0) 146 /* PWR_MGM */ 147 #define MPU3050_PWR_MGM_PLL_X 0x01 148 #define MPU3050_PWR_MGM_PLL_Y 0x02 149 #define MPU3050_PWR_MGM_PLL_Z 0x03 150 #define MPU3050_PWR_MGM_CLKSEL_MASK 0x07 151 #define MPU3050_PWR_MGM_STBY_ZG BIT(3) 152 #define MPU3050_PWR_MGM_STBY_YG BIT(4) 153 #define MPU3050_PWR_MGM_STBY_XG BIT(5) 154 #define MPU3050_PWR_MGM_SLEEP BIT(6) 155 #define MPU3050_PWR_MGM_RESET BIT(7) 156 #define MPU3050_PWR_MGM_MASK 0xff 157 158 /* 159 * Fullscale precision is (for finest precision) +/- 250 deg/s, so the full 160 * scale is actually 500 deg/s. All 16 bits are then used to cover this scale, 161 * in two's complement. 162 */ 163 static unsigned int mpu3050_fs_precision[] = { 164 IIO_DEGREE_TO_RAD(250), 165 IIO_DEGREE_TO_RAD(500), 166 IIO_DEGREE_TO_RAD(1000), 167 IIO_DEGREE_TO_RAD(2000) 168 }; 169 170 /* 171 * Regulator names 172 */ 173 static const char mpu3050_reg_vdd[] = "vdd"; 174 static const char mpu3050_reg_vlogic[] = "vlogic"; 175 176 static unsigned int mpu3050_get_freq(struct mpu3050 *mpu3050) 177 { 178 unsigned int freq; 179 180 if (mpu3050->lpf == MPU3050_DLPF_CFG_256HZ_NOLPF2) 181 freq = 8000; 182 else 183 freq = 1000; 184 freq /= (mpu3050->divisor + 1); 185 186 return freq; 187 } 188 189 static int mpu3050_start_sampling(struct mpu3050 *mpu3050) 190 { 191 __be16 raw_val[3]; 192 int ret; 193 int i; 194 195 /* Reset */ 196 ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM, 197 MPU3050_PWR_MGM_RESET, MPU3050_PWR_MGM_RESET); 198 if (ret) 199 return ret; 200 201 /* Turn on the Z-axis PLL */ 202 ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM, 203 MPU3050_PWR_MGM_CLKSEL_MASK, 204 MPU3050_PWR_MGM_PLL_Z); 205 if (ret) 206 return ret; 207 208 /* Write calibration offset registers */ 209 for (i = 0; i < 3; i++) 210 raw_val[i] = cpu_to_be16(mpu3050->calibration[i]); 211 212 ret = regmap_bulk_write(mpu3050->map, MPU3050_X_OFFS_USR_H, raw_val, 213 sizeof(raw_val)); 214 if (ret) 215 return ret; 216 217 /* Set low pass filter (sample rate), sync and full scale */ 218 ret = regmap_write(mpu3050->map, MPU3050_DLPF_FS_SYNC, 219 MPU3050_EXT_SYNC_NONE << MPU3050_EXT_SYNC_SHIFT | 220 mpu3050->fullscale << MPU3050_FS_SHIFT | 221 mpu3050->lpf << MPU3050_DLPF_CFG_SHIFT); 222 if (ret) 223 return ret; 224 225 /* Set up sampling frequency */ 226 ret = regmap_write(mpu3050->map, MPU3050_SMPLRT_DIV, mpu3050->divisor); 227 if (ret) 228 return ret; 229 230 /* 231 * Max 50 ms start-up time after setting DLPF_FS_SYNC 232 * according to the data sheet, then wait for the next sample 233 * at this frequency T = 1000/f ms. 234 */ 235 msleep(50 + 1000 / mpu3050_get_freq(mpu3050)); 236 237 return 0; 238 } 239 240 static int mpu3050_set_8khz_samplerate(struct mpu3050 *mpu3050) 241 { 242 int ret; 243 u8 divisor; 244 enum mpu3050_lpf lpf; 245 246 lpf = mpu3050->lpf; 247 divisor = mpu3050->divisor; 248 249 mpu3050->lpf = LPF_256_HZ_NOLPF; /* 8 kHz base frequency */ 250 mpu3050->divisor = 0; /* Divide by 1 */ 251 ret = mpu3050_start_sampling(mpu3050); 252 253 mpu3050->lpf = lpf; 254 mpu3050->divisor = divisor; 255 256 return ret; 257 } 258 259 static int mpu3050_read_raw(struct iio_dev *indio_dev, 260 struct iio_chan_spec const *chan, 261 int *val, int *val2, 262 long mask) 263 { 264 struct mpu3050 *mpu3050 = iio_priv(indio_dev); 265 int ret; 266 __be16 raw_val; 267 268 switch (mask) { 269 case IIO_CHAN_INFO_OFFSET: 270 switch (chan->type) { 271 case IIO_TEMP: 272 /* The temperature scaling is (x+23000)/280 Celsius */ 273 *val = 23000; 274 return IIO_VAL_INT; 275 default: 276 return -EINVAL; 277 } 278 case IIO_CHAN_INFO_CALIBBIAS: 279 switch (chan->type) { 280 case IIO_ANGL_VEL: 281 *val = mpu3050->calibration[chan->scan_index-1]; 282 return IIO_VAL_INT; 283 default: 284 return -EINVAL; 285 } 286 case IIO_CHAN_INFO_SAMP_FREQ: 287 *val = mpu3050_get_freq(mpu3050); 288 return IIO_VAL_INT; 289 case IIO_CHAN_INFO_SCALE: 290 switch (chan->type) { 291 case IIO_TEMP: 292 /* Millidegrees, see about temperature scaling above */ 293 *val = 1000; 294 *val2 = 280; 295 return IIO_VAL_FRACTIONAL; 296 case IIO_ANGL_VEL: 297 /* 298 * Convert to the corresponding full scale in 299 * radians. All 16 bits are used with sign to 300 * span the available scale: to account for the one 301 * missing value if we multiply by 1/S16_MAX, instead 302 * multiply with 2/U16_MAX. 303 */ 304 *val = mpu3050_fs_precision[mpu3050->fullscale] * 2; 305 *val2 = U16_MAX; 306 return IIO_VAL_FRACTIONAL; 307 default: 308 return -EINVAL; 309 } 310 case IIO_CHAN_INFO_RAW: 311 /* Resume device */ 312 pm_runtime_get_sync(mpu3050->dev); 313 mutex_lock(&mpu3050->lock); 314 315 ret = mpu3050_set_8khz_samplerate(mpu3050); 316 if (ret) 317 goto out_read_raw_unlock; 318 319 switch (chan->type) { 320 case IIO_TEMP: 321 ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H, 322 &raw_val, sizeof(raw_val)); 323 if (ret) { 324 dev_err(mpu3050->dev, 325 "error reading temperature\n"); 326 goto out_read_raw_unlock; 327 } 328 329 *val = be16_to_cpu(raw_val); 330 ret = IIO_VAL_INT; 331 332 goto out_read_raw_unlock; 333 case IIO_ANGL_VEL: 334 ret = regmap_bulk_read(mpu3050->map, 335 MPU3050_AXIS_REGS(chan->scan_index-1), 336 &raw_val, 337 sizeof(raw_val)); 338 if (ret) { 339 dev_err(mpu3050->dev, 340 "error reading axis data\n"); 341 goto out_read_raw_unlock; 342 } 343 344 *val = be16_to_cpu(raw_val); 345 ret = IIO_VAL_INT; 346 347 goto out_read_raw_unlock; 348 default: 349 ret = -EINVAL; 350 goto out_read_raw_unlock; 351 } 352 default: 353 break; 354 } 355 356 return -EINVAL; 357 358 out_read_raw_unlock: 359 mutex_unlock(&mpu3050->lock); 360 pm_runtime_mark_last_busy(mpu3050->dev); 361 pm_runtime_put_autosuspend(mpu3050->dev); 362 363 return ret; 364 } 365 366 static int mpu3050_write_raw(struct iio_dev *indio_dev, 367 const struct iio_chan_spec *chan, 368 int val, int val2, long mask) 369 { 370 struct mpu3050 *mpu3050 = iio_priv(indio_dev); 371 /* 372 * Couldn't figure out a way to precalculate these at compile time. 373 */ 374 unsigned int fs250 = 375 DIV_ROUND_CLOSEST(mpu3050_fs_precision[0] * 1000000 * 2, 376 U16_MAX); 377 unsigned int fs500 = 378 DIV_ROUND_CLOSEST(mpu3050_fs_precision[1] * 1000000 * 2, 379 U16_MAX); 380 unsigned int fs1000 = 381 DIV_ROUND_CLOSEST(mpu3050_fs_precision[2] * 1000000 * 2, 382 U16_MAX); 383 unsigned int fs2000 = 384 DIV_ROUND_CLOSEST(mpu3050_fs_precision[3] * 1000000 * 2, 385 U16_MAX); 386 387 switch (mask) { 388 case IIO_CHAN_INFO_CALIBBIAS: 389 if (chan->type != IIO_ANGL_VEL) 390 return -EINVAL; 391 mpu3050->calibration[chan->scan_index-1] = val; 392 return 0; 393 case IIO_CHAN_INFO_SAMP_FREQ: 394 /* 395 * The max samplerate is 8000 Hz, the minimum 396 * 1000 / 256 ~= 4 Hz 397 */ 398 if (val < 4 || val > 8000) 399 return -EINVAL; 400 401 /* 402 * Above 1000 Hz we must turn off the digital low pass filter 403 * so we get a base frequency of 8kHz to the divider 404 */ 405 if (val > 1000) { 406 mpu3050->lpf = LPF_256_HZ_NOLPF; 407 mpu3050->divisor = DIV_ROUND_CLOSEST(8000, val) - 1; 408 return 0; 409 } 410 411 mpu3050->lpf = LPF_188_HZ; 412 mpu3050->divisor = DIV_ROUND_CLOSEST(1000, val) - 1; 413 return 0; 414 case IIO_CHAN_INFO_SCALE: 415 if (chan->type != IIO_ANGL_VEL) 416 return -EINVAL; 417 /* 418 * We support +/-250, +/-500, +/-1000 and +/2000 deg/s 419 * which means we need to round to the closest radians 420 * which will be roughly +/-4.3, +/-8.7, +/-17.5, +/-35 421 * rad/s. The scale is then for the 16 bits used to cover 422 * it 2/(2^16) of that. 423 */ 424 425 /* Just too large, set the max range */ 426 if (val != 0) { 427 mpu3050->fullscale = FS_2000_DPS; 428 return 0; 429 } 430 431 /* 432 * Now we're dealing with fractions below zero in millirad/s 433 * do some integer interpolation and match with the closest 434 * fullscale in the table. 435 */ 436 if (val2 <= fs250 || 437 val2 < ((fs500 + fs250) / 2)) 438 mpu3050->fullscale = FS_250_DPS; 439 else if (val2 <= fs500 || 440 val2 < ((fs1000 + fs500) / 2)) 441 mpu3050->fullscale = FS_500_DPS; 442 else if (val2 <= fs1000 || 443 val2 < ((fs2000 + fs1000) / 2)) 444 mpu3050->fullscale = FS_1000_DPS; 445 else 446 /* Catch-all */ 447 mpu3050->fullscale = FS_2000_DPS; 448 return 0; 449 default: 450 break; 451 } 452 453 return -EINVAL; 454 } 455 456 static irqreturn_t mpu3050_trigger_handler(int irq, void *p) 457 { 458 const struct iio_poll_func *pf = p; 459 struct iio_dev *indio_dev = pf->indio_dev; 460 struct mpu3050 *mpu3050 = iio_priv(indio_dev); 461 int ret; 462 /* 463 * Temperature 1*16 bits 464 * Three axes 3*16 bits 465 * Timestamp 64 bits (4*16 bits) 466 * Sum total 8*16 bits 467 */ 468 __be16 hw_values[8]; 469 s64 timestamp; 470 unsigned int datums_from_fifo = 0; 471 472 /* 473 * If we're using the hardware trigger, get the precise timestamp from 474 * the top half of the threaded IRQ handler. Otherwise get the 475 * timestamp here so it will be close in time to the actual values 476 * read from the registers. 477 */ 478 if (iio_trigger_using_own(indio_dev)) 479 timestamp = mpu3050->hw_timestamp; 480 else 481 timestamp = iio_get_time_ns(indio_dev); 482 483 mutex_lock(&mpu3050->lock); 484 485 /* Using the hardware IRQ trigger? Check the buffer then. */ 486 if (mpu3050->hw_irq_trigger) { 487 __be16 raw_fifocnt; 488 u16 fifocnt; 489 /* X, Y, Z + temperature */ 490 unsigned int bytes_per_datum = 8; 491 bool fifo_overflow = false; 492 493 ret = regmap_bulk_read(mpu3050->map, 494 MPU3050_FIFO_COUNT_H, 495 &raw_fifocnt, 496 sizeof(raw_fifocnt)); 497 if (ret) 498 goto out_trigger_unlock; 499 fifocnt = be16_to_cpu(raw_fifocnt); 500 501 if (fifocnt == 512) { 502 dev_info(mpu3050->dev, 503 "FIFO overflow! Emptying and resetting FIFO\n"); 504 fifo_overflow = true; 505 /* Reset and enable the FIFO */ 506 ret = regmap_update_bits(mpu3050->map, 507 MPU3050_USR_CTRL, 508 MPU3050_USR_CTRL_FIFO_EN | 509 MPU3050_USR_CTRL_FIFO_RST, 510 MPU3050_USR_CTRL_FIFO_EN | 511 MPU3050_USR_CTRL_FIFO_RST); 512 if (ret) { 513 dev_info(mpu3050->dev, "error resetting FIFO\n"); 514 goto out_trigger_unlock; 515 } 516 mpu3050->pending_fifo_footer = false; 517 } 518 519 if (fifocnt) 520 dev_dbg(mpu3050->dev, 521 "%d bytes in the FIFO\n", 522 fifocnt); 523 524 while (!fifo_overflow && fifocnt > bytes_per_datum) { 525 unsigned int toread; 526 unsigned int offset; 527 __be16 fifo_values[5]; 528 529 /* 530 * If there is a FIFO footer in the pipe, first clear 531 * that out. This follows the complex algorithm in the 532 * datasheet that states that you may never leave the 533 * FIFO empty after the first reading: you have to 534 * always leave two footer bytes in it. The footer is 535 * in practice just two zero bytes. 536 */ 537 if (mpu3050->pending_fifo_footer) { 538 toread = bytes_per_datum + 2; 539 offset = 0; 540 } else { 541 toread = bytes_per_datum; 542 offset = 1; 543 /* Put in some dummy value */ 544 fifo_values[0] = 0xAAAA; 545 } 546 547 ret = regmap_bulk_read(mpu3050->map, 548 MPU3050_FIFO_R, 549 &fifo_values[offset], 550 toread); 551 552 dev_dbg(mpu3050->dev, 553 "%04x %04x %04x %04x %04x\n", 554 fifo_values[0], 555 fifo_values[1], 556 fifo_values[2], 557 fifo_values[3], 558 fifo_values[4]); 559 560 /* Index past the footer (fifo_values[0]) and push */ 561 iio_push_to_buffers_with_timestamp(indio_dev, 562 &fifo_values[1], 563 timestamp); 564 565 fifocnt -= toread; 566 datums_from_fifo++; 567 mpu3050->pending_fifo_footer = true; 568 569 /* 570 * If we're emptying the FIFO, just make sure to 571 * check if something new appeared. 572 */ 573 if (fifocnt < bytes_per_datum) { 574 ret = regmap_bulk_read(mpu3050->map, 575 MPU3050_FIFO_COUNT_H, 576 &raw_fifocnt, 577 sizeof(raw_fifocnt)); 578 if (ret) 579 goto out_trigger_unlock; 580 fifocnt = be16_to_cpu(raw_fifocnt); 581 } 582 583 if (fifocnt < bytes_per_datum) 584 dev_dbg(mpu3050->dev, 585 "%d bytes left in the FIFO\n", 586 fifocnt); 587 588 /* 589 * At this point, the timestamp that triggered the 590 * hardware interrupt is no longer valid for what 591 * we are reading (the interrupt likely fired for 592 * the value on the top of the FIFO), so set the 593 * timestamp to zero and let userspace deal with it. 594 */ 595 timestamp = 0; 596 } 597 } 598 599 /* 600 * If we picked some datums from the FIFO that's enough, else 601 * fall through and just read from the current value registers. 602 * This happens in two cases: 603 * 604 * - We are using some other trigger (external, like an HRTimer) 605 * than the sensor's own sample generator. In this case the 606 * sensor is just set to the max sampling frequency and we give 607 * the trigger a copy of the latest value every time we get here. 608 * 609 * - The hardware trigger is active but unused and we actually use 610 * another trigger which calls here with a frequency higher 611 * than what the device provides data. We will then just read 612 * duplicate values directly from the hardware registers. 613 */ 614 if (datums_from_fifo) { 615 dev_dbg(mpu3050->dev, 616 "read %d datums from the FIFO\n", 617 datums_from_fifo); 618 goto out_trigger_unlock; 619 } 620 621 ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H, &hw_values, 622 sizeof(hw_values)); 623 if (ret) { 624 dev_err(mpu3050->dev, 625 "error reading axis data\n"); 626 goto out_trigger_unlock; 627 } 628 629 iio_push_to_buffers_with_timestamp(indio_dev, hw_values, timestamp); 630 631 out_trigger_unlock: 632 mutex_unlock(&mpu3050->lock); 633 iio_trigger_notify_done(indio_dev->trig); 634 635 return IRQ_HANDLED; 636 } 637 638 static int mpu3050_buffer_preenable(struct iio_dev *indio_dev) 639 { 640 struct mpu3050 *mpu3050 = iio_priv(indio_dev); 641 642 pm_runtime_get_sync(mpu3050->dev); 643 644 /* Unless we have OUR trigger active, run at full speed */ 645 if (!mpu3050->hw_irq_trigger) 646 return mpu3050_set_8khz_samplerate(mpu3050); 647 648 return 0; 649 } 650 651 static int mpu3050_buffer_postdisable(struct iio_dev *indio_dev) 652 { 653 struct mpu3050 *mpu3050 = iio_priv(indio_dev); 654 655 pm_runtime_mark_last_busy(mpu3050->dev); 656 pm_runtime_put_autosuspend(mpu3050->dev); 657 658 return 0; 659 } 660 661 static const struct iio_buffer_setup_ops mpu3050_buffer_setup_ops = { 662 .preenable = mpu3050_buffer_preenable, 663 .postenable = iio_triggered_buffer_postenable, 664 .predisable = iio_triggered_buffer_predisable, 665 .postdisable = mpu3050_buffer_postdisable, 666 }; 667 668 static const struct iio_mount_matrix * 669 mpu3050_get_mount_matrix(const struct iio_dev *indio_dev, 670 const struct iio_chan_spec *chan) 671 { 672 struct mpu3050 *mpu3050 = iio_priv(indio_dev); 673 674 return &mpu3050->orientation; 675 } 676 677 static const struct iio_chan_spec_ext_info mpu3050_ext_info[] = { 678 IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, mpu3050_get_mount_matrix), 679 { }, 680 }; 681 682 #define MPU3050_AXIS_CHANNEL(axis, index) \ 683 { \ 684 .type = IIO_ANGL_VEL, \ 685 .modified = 1, \ 686 .channel2 = IIO_MOD_##axis, \ 687 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 688 BIT(IIO_CHAN_INFO_CALIBBIAS), \ 689 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ 690 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\ 691 .ext_info = mpu3050_ext_info, \ 692 .scan_index = index, \ 693 .scan_type = { \ 694 .sign = 's', \ 695 .realbits = 16, \ 696 .storagebits = 16, \ 697 .endianness = IIO_BE, \ 698 }, \ 699 } 700 701 static const struct iio_chan_spec mpu3050_channels[] = { 702 { 703 .type = IIO_TEMP, 704 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | 705 BIT(IIO_CHAN_INFO_SCALE) | 706 BIT(IIO_CHAN_INFO_OFFSET), 707 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), 708 .scan_index = 0, 709 .scan_type = { 710 .sign = 's', 711 .realbits = 16, 712 .storagebits = 16, 713 .endianness = IIO_BE, 714 }, 715 }, 716 MPU3050_AXIS_CHANNEL(X, 1), 717 MPU3050_AXIS_CHANNEL(Y, 2), 718 MPU3050_AXIS_CHANNEL(Z, 3), 719 IIO_CHAN_SOFT_TIMESTAMP(4), 720 }; 721 722 /* Four channels apart from timestamp, scan mask = 0x0f */ 723 static const unsigned long mpu3050_scan_masks[] = { 0xf, 0 }; 724 725 /* 726 * These are just the hardcoded factors resulting from the more elaborate 727 * calculations done with fractions in the scale raw get/set functions. 728 */ 729 static IIO_CONST_ATTR(anglevel_scale_available, 730 "0.000122070 " 731 "0.000274658 " 732 "0.000518798 " 733 "0.001068115"); 734 735 static struct attribute *mpu3050_attributes[] = { 736 &iio_const_attr_anglevel_scale_available.dev_attr.attr, 737 NULL, 738 }; 739 740 static const struct attribute_group mpu3050_attribute_group = { 741 .attrs = mpu3050_attributes, 742 }; 743 744 static const struct iio_info mpu3050_info = { 745 .read_raw = mpu3050_read_raw, 746 .write_raw = mpu3050_write_raw, 747 .attrs = &mpu3050_attribute_group, 748 }; 749 750 /** 751 * mpu3050_read_mem() - read MPU-3050 internal memory 752 * @mpu3050: device to read from 753 * @bank: target bank 754 * @addr: target address 755 * @len: number of bytes 756 * @buf: the buffer to store the read bytes in 757 */ 758 static int mpu3050_read_mem(struct mpu3050 *mpu3050, 759 u8 bank, 760 u8 addr, 761 u8 len, 762 u8 *buf) 763 { 764 int ret; 765 766 ret = regmap_write(mpu3050->map, 767 MPU3050_BANK_SEL, 768 bank); 769 if (ret) 770 return ret; 771 772 ret = regmap_write(mpu3050->map, 773 MPU3050_MEM_START_ADDR, 774 addr); 775 if (ret) 776 return ret; 777 778 return regmap_bulk_read(mpu3050->map, 779 MPU3050_MEM_R_W, 780 buf, 781 len); 782 } 783 784 static int mpu3050_hw_init(struct mpu3050 *mpu3050) 785 { 786 int ret; 787 u8 otp[8]; 788 789 /* Reset */ 790 ret = regmap_update_bits(mpu3050->map, 791 MPU3050_PWR_MGM, 792 MPU3050_PWR_MGM_RESET, 793 MPU3050_PWR_MGM_RESET); 794 if (ret) 795 return ret; 796 797 /* Turn on the PLL */ 798 ret = regmap_update_bits(mpu3050->map, 799 MPU3050_PWR_MGM, 800 MPU3050_PWR_MGM_CLKSEL_MASK, 801 MPU3050_PWR_MGM_PLL_Z); 802 if (ret) 803 return ret; 804 805 /* Disable IRQs */ 806 ret = regmap_write(mpu3050->map, 807 MPU3050_INT_CFG, 808 0); 809 if (ret) 810 return ret; 811 812 /* Read out the 8 bytes of OTP (one-time-programmable) memory */ 813 ret = mpu3050_read_mem(mpu3050, 814 (MPU3050_MEM_PRFTCH | 815 MPU3050_MEM_USER_BANK | 816 MPU3050_MEM_OTP_BANK_0), 817 0, 818 sizeof(otp), 819 otp); 820 if (ret) 821 return ret; 822 823 /* This is device-unique data so it goes into the entropy pool */ 824 add_device_randomness(otp, sizeof(otp)); 825 826 dev_info(mpu3050->dev, 827 "die ID: %04X, wafer ID: %02X, A lot ID: %04X, " 828 "W lot ID: %03X, WP ID: %01X, rev ID: %02X\n", 829 /* Die ID, bits 0-12 */ 830 (otp[1] << 8 | otp[0]) & 0x1fff, 831 /* Wafer ID, bits 13-17 */ 832 ((otp[2] << 8 | otp[1]) & 0x03e0) >> 5, 833 /* A lot ID, bits 18-33 */ 834 ((otp[4] << 16 | otp[3] << 8 | otp[2]) & 0x3fffc) >> 2, 835 /* W lot ID, bits 34-45 */ 836 ((otp[5] << 8 | otp[4]) & 0x3ffc) >> 2, 837 /* WP ID, bits 47-49 */ 838 ((otp[6] << 8 | otp[5]) & 0x0380) >> 7, 839 /* rev ID, bits 50-55 */ 840 otp[6] >> 2); 841 842 return 0; 843 } 844 845 static int mpu3050_power_up(struct mpu3050 *mpu3050) 846 { 847 int ret; 848 849 ret = regulator_bulk_enable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs); 850 if (ret) { 851 dev_err(mpu3050->dev, "cannot enable regulators\n"); 852 return ret; 853 } 854 /* 855 * 20-100 ms start-up time for register read/write according to 856 * the datasheet, be on the safe side and wait 200 ms. 857 */ 858 msleep(200); 859 860 /* Take device out of sleep mode */ 861 ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM, 862 MPU3050_PWR_MGM_SLEEP, 0); 863 if (ret) { 864 dev_err(mpu3050->dev, "error setting power mode\n"); 865 return ret; 866 } 867 msleep(10); 868 869 return 0; 870 } 871 872 static int mpu3050_power_down(struct mpu3050 *mpu3050) 873 { 874 int ret; 875 876 /* 877 * Put MPU-3050 into sleep mode before cutting regulators. 878 * This is important, because we may not be the sole user 879 * of the regulator so the power may stay on after this, and 880 * then we would be wasting power unless we go to sleep mode 881 * first. 882 */ 883 ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM, 884 MPU3050_PWR_MGM_SLEEP, MPU3050_PWR_MGM_SLEEP); 885 if (ret) 886 dev_err(mpu3050->dev, "error putting to sleep\n"); 887 888 ret = regulator_bulk_disable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs); 889 if (ret) 890 dev_err(mpu3050->dev, "error disabling regulators\n"); 891 892 return 0; 893 } 894 895 static irqreturn_t mpu3050_irq_handler(int irq, void *p) 896 { 897 struct iio_trigger *trig = p; 898 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); 899 struct mpu3050 *mpu3050 = iio_priv(indio_dev); 900 901 if (!mpu3050->hw_irq_trigger) 902 return IRQ_NONE; 903 904 /* Get the time stamp as close in time as possible */ 905 mpu3050->hw_timestamp = iio_get_time_ns(indio_dev); 906 907 return IRQ_WAKE_THREAD; 908 } 909 910 static irqreturn_t mpu3050_irq_thread(int irq, void *p) 911 { 912 struct iio_trigger *trig = p; 913 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); 914 struct mpu3050 *mpu3050 = iio_priv(indio_dev); 915 unsigned int val; 916 int ret; 917 918 /* ACK IRQ and check if it was from us */ 919 ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val); 920 if (ret) { 921 dev_err(mpu3050->dev, "error reading IRQ status\n"); 922 return IRQ_HANDLED; 923 } 924 if (!(val & MPU3050_INT_STATUS_RAW_RDY)) 925 return IRQ_NONE; 926 927 iio_trigger_poll_chained(p); 928 929 return IRQ_HANDLED; 930 } 931 932 /** 933 * mpu3050_drdy_trigger_set_state() - set data ready interrupt state 934 * @trig: trigger instance 935 * @enable: true if trigger should be enabled, false to disable 936 */ 937 static int mpu3050_drdy_trigger_set_state(struct iio_trigger *trig, 938 bool enable) 939 { 940 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); 941 struct mpu3050 *mpu3050 = iio_priv(indio_dev); 942 unsigned int val; 943 int ret; 944 945 /* Disabling trigger: disable interrupt and return */ 946 if (!enable) { 947 /* Disable all interrupts */ 948 ret = regmap_write(mpu3050->map, 949 MPU3050_INT_CFG, 950 0); 951 if (ret) 952 dev_err(mpu3050->dev, "error disabling IRQ\n"); 953 954 /* Clear IRQ flag */ 955 ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val); 956 if (ret) 957 dev_err(mpu3050->dev, "error clearing IRQ status\n"); 958 959 /* Disable all things in the FIFO and reset it */ 960 ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0); 961 if (ret) 962 dev_err(mpu3050->dev, "error disabling FIFO\n"); 963 964 ret = regmap_write(mpu3050->map, MPU3050_USR_CTRL, 965 MPU3050_USR_CTRL_FIFO_RST); 966 if (ret) 967 dev_err(mpu3050->dev, "error resetting FIFO\n"); 968 969 pm_runtime_mark_last_busy(mpu3050->dev); 970 pm_runtime_put_autosuspend(mpu3050->dev); 971 mpu3050->hw_irq_trigger = false; 972 973 return 0; 974 } else { 975 /* Else we're enabling the trigger from this point */ 976 pm_runtime_get_sync(mpu3050->dev); 977 mpu3050->hw_irq_trigger = true; 978 979 /* Disable all things in the FIFO */ 980 ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0); 981 if (ret) 982 return ret; 983 984 /* Reset and enable the FIFO */ 985 ret = regmap_update_bits(mpu3050->map, MPU3050_USR_CTRL, 986 MPU3050_USR_CTRL_FIFO_EN | 987 MPU3050_USR_CTRL_FIFO_RST, 988 MPU3050_USR_CTRL_FIFO_EN | 989 MPU3050_USR_CTRL_FIFO_RST); 990 if (ret) 991 return ret; 992 993 mpu3050->pending_fifo_footer = false; 994 995 /* Turn on the FIFO for temp+X+Y+Z */ 996 ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 997 MPU3050_FIFO_EN_TEMP_OUT | 998 MPU3050_FIFO_EN_GYRO_XOUT | 999 MPU3050_FIFO_EN_GYRO_YOUT | 1000 MPU3050_FIFO_EN_GYRO_ZOUT | 1001 MPU3050_FIFO_EN_FOOTER); 1002 if (ret) 1003 return ret; 1004 1005 /* Configure the sample engine */ 1006 ret = mpu3050_start_sampling(mpu3050); 1007 if (ret) 1008 return ret; 1009 1010 /* Clear IRQ flag */ 1011 ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val); 1012 if (ret) 1013 dev_err(mpu3050->dev, "error clearing IRQ status\n"); 1014 1015 /* Give us interrupts whenever there is new data ready */ 1016 val = MPU3050_INT_RAW_RDY_EN; 1017 1018 if (mpu3050->irq_actl) 1019 val |= MPU3050_INT_ACTL; 1020 if (mpu3050->irq_latch) 1021 val |= MPU3050_INT_LATCH_EN; 1022 if (mpu3050->irq_opendrain) 1023 val |= MPU3050_INT_OPEN; 1024 1025 ret = regmap_write(mpu3050->map, MPU3050_INT_CFG, val); 1026 if (ret) 1027 return ret; 1028 } 1029 1030 return 0; 1031 } 1032 1033 static const struct iio_trigger_ops mpu3050_trigger_ops = { 1034 .set_trigger_state = mpu3050_drdy_trigger_set_state, 1035 }; 1036 1037 static int mpu3050_trigger_probe(struct iio_dev *indio_dev, int irq) 1038 { 1039 struct mpu3050 *mpu3050 = iio_priv(indio_dev); 1040 unsigned long irq_trig; 1041 int ret; 1042 1043 mpu3050->trig = devm_iio_trigger_alloc(&indio_dev->dev, 1044 "%s-dev%d", 1045 indio_dev->name, 1046 indio_dev->id); 1047 if (!mpu3050->trig) 1048 return -ENOMEM; 1049 1050 /* Check if IRQ is open drain */ 1051 if (of_property_read_bool(mpu3050->dev->of_node, "drive-open-drain")) 1052 mpu3050->irq_opendrain = true; 1053 1054 irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq)); 1055 /* 1056 * Configure the interrupt generator hardware to supply whatever 1057 * the interrupt is configured for, edges low/high level low/high, 1058 * we can provide it all. 1059 */ 1060 switch (irq_trig) { 1061 case IRQF_TRIGGER_RISING: 1062 dev_info(&indio_dev->dev, 1063 "pulse interrupts on the rising edge\n"); 1064 break; 1065 case IRQF_TRIGGER_FALLING: 1066 mpu3050->irq_actl = true; 1067 dev_info(&indio_dev->dev, 1068 "pulse interrupts on the falling edge\n"); 1069 break; 1070 case IRQF_TRIGGER_HIGH: 1071 mpu3050->irq_latch = true; 1072 dev_info(&indio_dev->dev, 1073 "interrupts active high level\n"); 1074 /* 1075 * With level IRQs, we mask the IRQ until it is processed, 1076 * but with edge IRQs (pulses) we can queue several interrupts 1077 * in the top half. 1078 */ 1079 irq_trig |= IRQF_ONESHOT; 1080 break; 1081 case IRQF_TRIGGER_LOW: 1082 mpu3050->irq_latch = true; 1083 mpu3050->irq_actl = true; 1084 irq_trig |= IRQF_ONESHOT; 1085 dev_info(&indio_dev->dev, 1086 "interrupts active low level\n"); 1087 break; 1088 default: 1089 /* This is the most preferred mode, if possible */ 1090 dev_err(&indio_dev->dev, 1091 "unsupported IRQ trigger specified (%lx), enforce " 1092 "rising edge\n", irq_trig); 1093 irq_trig = IRQF_TRIGGER_RISING; 1094 break; 1095 } 1096 1097 /* An open drain line can be shared with several devices */ 1098 if (mpu3050->irq_opendrain) 1099 irq_trig |= IRQF_SHARED; 1100 1101 ret = request_threaded_irq(irq, 1102 mpu3050_irq_handler, 1103 mpu3050_irq_thread, 1104 irq_trig, 1105 mpu3050->trig->name, 1106 mpu3050->trig); 1107 if (ret) { 1108 dev_err(mpu3050->dev, 1109 "can't get IRQ %d, error %d\n", irq, ret); 1110 return ret; 1111 } 1112 1113 mpu3050->irq = irq; 1114 mpu3050->trig->dev.parent = mpu3050->dev; 1115 mpu3050->trig->ops = &mpu3050_trigger_ops; 1116 iio_trigger_set_drvdata(mpu3050->trig, indio_dev); 1117 1118 ret = iio_trigger_register(mpu3050->trig); 1119 if (ret) 1120 return ret; 1121 1122 indio_dev->trig = iio_trigger_get(mpu3050->trig); 1123 1124 return 0; 1125 } 1126 1127 int mpu3050_common_probe(struct device *dev, 1128 struct regmap *map, 1129 int irq, 1130 const char *name) 1131 { 1132 struct iio_dev *indio_dev; 1133 struct mpu3050 *mpu3050; 1134 unsigned int val; 1135 int ret; 1136 1137 indio_dev = devm_iio_device_alloc(dev, sizeof(*mpu3050)); 1138 if (!indio_dev) 1139 return -ENOMEM; 1140 mpu3050 = iio_priv(indio_dev); 1141 1142 mpu3050->dev = dev; 1143 mpu3050->map = map; 1144 mutex_init(&mpu3050->lock); 1145 /* Default fullscale: 2000 degrees per second */ 1146 mpu3050->fullscale = FS_2000_DPS; 1147 /* 1 kHz, divide by 100, default frequency = 10 Hz */ 1148 mpu3050->lpf = MPU3050_DLPF_CFG_188HZ; 1149 mpu3050->divisor = 99; 1150 1151 /* Read the mounting matrix, if present */ 1152 ret = of_iio_read_mount_matrix(dev, "mount-matrix", 1153 &mpu3050->orientation); 1154 if (ret) 1155 return ret; 1156 1157 /* Fetch and turn on regulators */ 1158 mpu3050->regs[0].supply = mpu3050_reg_vdd; 1159 mpu3050->regs[1].supply = mpu3050_reg_vlogic; 1160 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(mpu3050->regs), 1161 mpu3050->regs); 1162 if (ret) { 1163 dev_err(dev, "Cannot get regulators\n"); 1164 return ret; 1165 } 1166 1167 ret = mpu3050_power_up(mpu3050); 1168 if (ret) 1169 return ret; 1170 1171 ret = regmap_read(map, MPU3050_CHIP_ID_REG, &val); 1172 if (ret) { 1173 dev_err(dev, "could not read device ID\n"); 1174 ret = -ENODEV; 1175 1176 goto err_power_down; 1177 } 1178 1179 if (val != MPU3050_CHIP_ID) { 1180 dev_err(dev, "unsupported chip id %02x\n", (u8)val); 1181 ret = -ENODEV; 1182 goto err_power_down; 1183 } 1184 1185 ret = regmap_read(map, MPU3050_PRODUCT_ID_REG, &val); 1186 if (ret) { 1187 dev_err(dev, "could not read device ID\n"); 1188 ret = -ENODEV; 1189 1190 goto err_power_down; 1191 } 1192 dev_info(dev, "found MPU-3050 part no: %d, version: %d\n", 1193 ((val >> 4) & 0xf), (val & 0xf)); 1194 1195 ret = mpu3050_hw_init(mpu3050); 1196 if (ret) 1197 goto err_power_down; 1198 1199 indio_dev->dev.parent = dev; 1200 indio_dev->channels = mpu3050_channels; 1201 indio_dev->num_channels = ARRAY_SIZE(mpu3050_channels); 1202 indio_dev->info = &mpu3050_info; 1203 indio_dev->available_scan_masks = mpu3050_scan_masks; 1204 indio_dev->modes = INDIO_DIRECT_MODE; 1205 indio_dev->name = name; 1206 1207 ret = iio_triggered_buffer_setup(indio_dev, iio_pollfunc_store_time, 1208 mpu3050_trigger_handler, 1209 &mpu3050_buffer_setup_ops); 1210 if (ret) { 1211 dev_err(dev, "triggered buffer setup failed\n"); 1212 goto err_power_down; 1213 } 1214 1215 ret = iio_device_register(indio_dev); 1216 if (ret) { 1217 dev_err(dev, "device register failed\n"); 1218 goto err_cleanup_buffer; 1219 } 1220 1221 dev_set_drvdata(dev, indio_dev); 1222 1223 /* Check if we have an assigned IRQ to use as trigger */ 1224 if (irq) { 1225 ret = mpu3050_trigger_probe(indio_dev, irq); 1226 if (ret) 1227 dev_err(dev, "failed to register trigger\n"); 1228 } 1229 1230 /* Enable runtime PM */ 1231 pm_runtime_get_noresume(dev); 1232 pm_runtime_set_active(dev); 1233 pm_runtime_enable(dev); 1234 /* 1235 * Set autosuspend to two orders of magnitude larger than the 1236 * start-up time. 100ms start-up time means 10000ms autosuspend, 1237 * i.e. 10 seconds. 1238 */ 1239 pm_runtime_set_autosuspend_delay(dev, 10000); 1240 pm_runtime_use_autosuspend(dev); 1241 pm_runtime_put(dev); 1242 1243 return 0; 1244 1245 err_cleanup_buffer: 1246 iio_triggered_buffer_cleanup(indio_dev); 1247 err_power_down: 1248 mpu3050_power_down(mpu3050); 1249 1250 return ret; 1251 } 1252 EXPORT_SYMBOL(mpu3050_common_probe); 1253 1254 int mpu3050_common_remove(struct device *dev) 1255 { 1256 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1257 struct mpu3050 *mpu3050 = iio_priv(indio_dev); 1258 1259 pm_runtime_get_sync(dev); 1260 pm_runtime_put_noidle(dev); 1261 pm_runtime_disable(dev); 1262 iio_triggered_buffer_cleanup(indio_dev); 1263 if (mpu3050->irq) 1264 free_irq(mpu3050->irq, mpu3050); 1265 iio_device_unregister(indio_dev); 1266 mpu3050_power_down(mpu3050); 1267 1268 return 0; 1269 } 1270 EXPORT_SYMBOL(mpu3050_common_remove); 1271 1272 #ifdef CONFIG_PM 1273 static int mpu3050_runtime_suspend(struct device *dev) 1274 { 1275 return mpu3050_power_down(iio_priv(dev_get_drvdata(dev))); 1276 } 1277 1278 static int mpu3050_runtime_resume(struct device *dev) 1279 { 1280 return mpu3050_power_up(iio_priv(dev_get_drvdata(dev))); 1281 } 1282 #endif /* CONFIG_PM */ 1283 1284 const struct dev_pm_ops mpu3050_dev_pm_ops = { 1285 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 1286 pm_runtime_force_resume) 1287 SET_RUNTIME_PM_OPS(mpu3050_runtime_suspend, 1288 mpu3050_runtime_resume, NULL) 1289 }; 1290 EXPORT_SYMBOL(mpu3050_dev_pm_ops); 1291 1292 MODULE_AUTHOR("Linus Walleij"); 1293 MODULE_DESCRIPTION("MPU3050 gyroscope driver"); 1294 MODULE_LICENSE("GPL"); 1295