xref: /openbmc/linux/drivers/iio/gyro/mpu3050-core.c (revision 53e8558837be58c1d44d50ad87247a8c56c95c13)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * MPU3050 gyroscope driver
4  *
5  * Copyright (C) 2016 Linaro Ltd.
6  * Author: Linus Walleij <linus.walleij@linaro.org>
7  *
8  * Based on the input subsystem driver, Copyright (C) 2011 Wistron Co.Ltd
9  * Joseph Lai <joseph_lai@wistron.com> and trimmed down by
10  * Alan Cox <alan@linux.intel.com> in turn based on bma023.c.
11  * Device behaviour based on a misc driver posted by Nathan Royer in 2011.
12  *
13  * TODO: add support for setting up the low pass 3dB frequency.
14  */
15 
16 #include <linux/bitfield.h>
17 #include <linux/bitops.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/iio/buffer.h>
21 #include <linux/iio/iio.h>
22 #include <linux/iio/sysfs.h>
23 #include <linux/iio/trigger.h>
24 #include <linux/iio/trigger_consumer.h>
25 #include <linux/iio/triggered_buffer.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 
32 #include "mpu3050.h"
33 
34 #define MPU3050_CHIP_ID		0x68
35 #define MPU3050_CHIP_ID_MASK	0x7E
36 
37 /*
38  * Register map: anything suffixed *_H is a big-endian high byte and always
39  * followed by the corresponding low byte (*_L) even though these are not
40  * explicitly included in the register definitions.
41  */
42 #define MPU3050_CHIP_ID_REG	0x00
43 #define MPU3050_PRODUCT_ID_REG	0x01
44 #define MPU3050_XG_OFFS_TC	0x05
45 #define MPU3050_YG_OFFS_TC	0x08
46 #define MPU3050_ZG_OFFS_TC	0x0B
47 #define MPU3050_X_OFFS_USR_H	0x0C
48 #define MPU3050_Y_OFFS_USR_H	0x0E
49 #define MPU3050_Z_OFFS_USR_H	0x10
50 #define MPU3050_FIFO_EN		0x12
51 #define MPU3050_AUX_VDDIO	0x13
52 #define MPU3050_SLV_ADDR	0x14
53 #define MPU3050_SMPLRT_DIV	0x15
54 #define MPU3050_DLPF_FS_SYNC	0x16
55 #define MPU3050_INT_CFG		0x17
56 #define MPU3050_AUX_ADDR	0x18
57 #define MPU3050_INT_STATUS	0x1A
58 #define MPU3050_TEMP_H		0x1B
59 #define MPU3050_XOUT_H		0x1D
60 #define MPU3050_YOUT_H		0x1F
61 #define MPU3050_ZOUT_H		0x21
62 #define MPU3050_DMP_CFG1	0x35
63 #define MPU3050_DMP_CFG2	0x36
64 #define MPU3050_BANK_SEL	0x37
65 #define MPU3050_MEM_START_ADDR	0x38
66 #define MPU3050_MEM_R_W		0x39
67 #define MPU3050_FIFO_COUNT_H	0x3A
68 #define MPU3050_FIFO_R		0x3C
69 #define MPU3050_USR_CTRL	0x3D
70 #define MPU3050_PWR_MGM		0x3E
71 
72 /* MPU memory bank read options */
73 #define MPU3050_MEM_PRFTCH	BIT(5)
74 #define MPU3050_MEM_USER_BANK	BIT(4)
75 /* Bits 8-11 select memory bank */
76 #define MPU3050_MEM_RAM_BANK_0	0
77 #define MPU3050_MEM_RAM_BANK_1	1
78 #define MPU3050_MEM_RAM_BANK_2	2
79 #define MPU3050_MEM_RAM_BANK_3	3
80 #define MPU3050_MEM_OTP_BANK_0	4
81 
82 #define MPU3050_AXIS_REGS(axis) (MPU3050_XOUT_H + (axis * 2))
83 
84 /* Register bits */
85 
86 /* FIFO Enable */
87 #define MPU3050_FIFO_EN_FOOTER		BIT(0)
88 #define MPU3050_FIFO_EN_AUX_ZOUT	BIT(1)
89 #define MPU3050_FIFO_EN_AUX_YOUT	BIT(2)
90 #define MPU3050_FIFO_EN_AUX_XOUT	BIT(3)
91 #define MPU3050_FIFO_EN_GYRO_ZOUT	BIT(4)
92 #define MPU3050_FIFO_EN_GYRO_YOUT	BIT(5)
93 #define MPU3050_FIFO_EN_GYRO_XOUT	BIT(6)
94 #define MPU3050_FIFO_EN_TEMP_OUT	BIT(7)
95 
96 /*
97  * Digital Low Pass filter (DLPF)
98  * Full Scale (FS)
99  * and Synchronization
100  */
101 #define MPU3050_EXT_SYNC_NONE		0x00
102 #define MPU3050_EXT_SYNC_TEMP		0x20
103 #define MPU3050_EXT_SYNC_GYROX		0x40
104 #define MPU3050_EXT_SYNC_GYROY		0x60
105 #define MPU3050_EXT_SYNC_GYROZ		0x80
106 #define MPU3050_EXT_SYNC_ACCELX	0xA0
107 #define MPU3050_EXT_SYNC_ACCELY	0xC0
108 #define MPU3050_EXT_SYNC_ACCELZ	0xE0
109 #define MPU3050_EXT_SYNC_MASK		0xE0
110 #define MPU3050_EXT_SYNC_SHIFT		5
111 
112 #define MPU3050_FS_250DPS		0x00
113 #define MPU3050_FS_500DPS		0x08
114 #define MPU3050_FS_1000DPS		0x10
115 #define MPU3050_FS_2000DPS		0x18
116 #define MPU3050_FS_MASK			0x18
117 #define MPU3050_FS_SHIFT		3
118 
119 #define MPU3050_DLPF_CFG_256HZ_NOLPF2	0x00
120 #define MPU3050_DLPF_CFG_188HZ		0x01
121 #define MPU3050_DLPF_CFG_98HZ		0x02
122 #define MPU3050_DLPF_CFG_42HZ		0x03
123 #define MPU3050_DLPF_CFG_20HZ		0x04
124 #define MPU3050_DLPF_CFG_10HZ		0x05
125 #define MPU3050_DLPF_CFG_5HZ		0x06
126 #define MPU3050_DLPF_CFG_2100HZ_NOLPF	0x07
127 #define MPU3050_DLPF_CFG_MASK		0x07
128 #define MPU3050_DLPF_CFG_SHIFT		0
129 
130 /* Interrupt config */
131 #define MPU3050_INT_RAW_RDY_EN		BIT(0)
132 #define MPU3050_INT_DMP_DONE_EN		BIT(1)
133 #define MPU3050_INT_MPU_RDY_EN		BIT(2)
134 #define MPU3050_INT_ANYRD_2CLEAR	BIT(4)
135 #define MPU3050_INT_LATCH_EN		BIT(5)
136 #define MPU3050_INT_OPEN		BIT(6)
137 #define MPU3050_INT_ACTL		BIT(7)
138 /* Interrupt status */
139 #define MPU3050_INT_STATUS_RAW_RDY	BIT(0)
140 #define MPU3050_INT_STATUS_DMP_DONE	BIT(1)
141 #define MPU3050_INT_STATUS_MPU_RDY	BIT(2)
142 #define MPU3050_INT_STATUS_FIFO_OVFLW	BIT(7)
143 /* USR_CTRL */
144 #define MPU3050_USR_CTRL_FIFO_EN	BIT(6)
145 #define MPU3050_USR_CTRL_AUX_IF_EN	BIT(5)
146 #define MPU3050_USR_CTRL_AUX_IF_RST	BIT(3)
147 #define MPU3050_USR_CTRL_FIFO_RST	BIT(1)
148 #define MPU3050_USR_CTRL_GYRO_RST	BIT(0)
149 /* PWR_MGM */
150 #define MPU3050_PWR_MGM_PLL_X		0x01
151 #define MPU3050_PWR_MGM_PLL_Y		0x02
152 #define MPU3050_PWR_MGM_PLL_Z		0x03
153 #define MPU3050_PWR_MGM_CLKSEL_MASK	0x07
154 #define MPU3050_PWR_MGM_STBY_ZG		BIT(3)
155 #define MPU3050_PWR_MGM_STBY_YG		BIT(4)
156 #define MPU3050_PWR_MGM_STBY_XG		BIT(5)
157 #define MPU3050_PWR_MGM_SLEEP		BIT(6)
158 #define MPU3050_PWR_MGM_RESET		BIT(7)
159 #define MPU3050_PWR_MGM_MASK		0xff
160 
161 /*
162  * Fullscale precision is (for finest precision) +/- 250 deg/s, so the full
163  * scale is actually 500 deg/s. All 16 bits are then used to cover this scale,
164  * in two's complement.
165  */
166 static unsigned int mpu3050_fs_precision[] = {
167 	IIO_DEGREE_TO_RAD(250),
168 	IIO_DEGREE_TO_RAD(500),
169 	IIO_DEGREE_TO_RAD(1000),
170 	IIO_DEGREE_TO_RAD(2000)
171 };
172 
173 /*
174  * Regulator names
175  */
176 static const char mpu3050_reg_vdd[] = "vdd";
177 static const char mpu3050_reg_vlogic[] = "vlogic";
178 
179 static unsigned int mpu3050_get_freq(struct mpu3050 *mpu3050)
180 {
181 	unsigned int freq;
182 
183 	if (mpu3050->lpf == MPU3050_DLPF_CFG_256HZ_NOLPF2)
184 		freq = 8000;
185 	else
186 		freq = 1000;
187 	freq /= (mpu3050->divisor + 1);
188 
189 	return freq;
190 }
191 
192 static int mpu3050_start_sampling(struct mpu3050 *mpu3050)
193 {
194 	__be16 raw_val[3];
195 	int ret;
196 	int i;
197 
198 	/* Reset */
199 	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
200 				 MPU3050_PWR_MGM_RESET, MPU3050_PWR_MGM_RESET);
201 	if (ret)
202 		return ret;
203 
204 	/* Turn on the Z-axis PLL */
205 	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
206 				 MPU3050_PWR_MGM_CLKSEL_MASK,
207 				 MPU3050_PWR_MGM_PLL_Z);
208 	if (ret)
209 		return ret;
210 
211 	/* Write calibration offset registers */
212 	for (i = 0; i < 3; i++)
213 		raw_val[i] = cpu_to_be16(mpu3050->calibration[i]);
214 
215 	ret = regmap_bulk_write(mpu3050->map, MPU3050_X_OFFS_USR_H, raw_val,
216 				sizeof(raw_val));
217 	if (ret)
218 		return ret;
219 
220 	/* Set low pass filter (sample rate), sync and full scale */
221 	ret = regmap_write(mpu3050->map, MPU3050_DLPF_FS_SYNC,
222 			   MPU3050_EXT_SYNC_NONE << MPU3050_EXT_SYNC_SHIFT |
223 			   mpu3050->fullscale << MPU3050_FS_SHIFT |
224 			   mpu3050->lpf << MPU3050_DLPF_CFG_SHIFT);
225 	if (ret)
226 		return ret;
227 
228 	/* Set up sampling frequency */
229 	ret = regmap_write(mpu3050->map, MPU3050_SMPLRT_DIV, mpu3050->divisor);
230 	if (ret)
231 		return ret;
232 
233 	/*
234 	 * Max 50 ms start-up time after setting DLPF_FS_SYNC
235 	 * according to the data sheet, then wait for the next sample
236 	 * at this frequency T = 1000/f ms.
237 	 */
238 	msleep(50 + 1000 / mpu3050_get_freq(mpu3050));
239 
240 	return 0;
241 }
242 
243 static int mpu3050_set_8khz_samplerate(struct mpu3050 *mpu3050)
244 {
245 	int ret;
246 	u8 divisor;
247 	enum mpu3050_lpf lpf;
248 
249 	lpf = mpu3050->lpf;
250 	divisor = mpu3050->divisor;
251 
252 	mpu3050->lpf = LPF_256_HZ_NOLPF; /* 8 kHz base frequency */
253 	mpu3050->divisor = 0; /* Divide by 1 */
254 	ret = mpu3050_start_sampling(mpu3050);
255 
256 	mpu3050->lpf = lpf;
257 	mpu3050->divisor = divisor;
258 
259 	return ret;
260 }
261 
262 static int mpu3050_read_raw(struct iio_dev *indio_dev,
263 			    struct iio_chan_spec const *chan,
264 			    int *val, int *val2,
265 			    long mask)
266 {
267 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
268 	int ret;
269 	__be16 raw_val;
270 
271 	switch (mask) {
272 	case IIO_CHAN_INFO_OFFSET:
273 		switch (chan->type) {
274 		case IIO_TEMP:
275 			/*
276 			 * The temperature scaling is (x+23000)/280 Celsius
277 			 * for the "best fit straight line" temperature range
278 			 * of -30C..85C.  The 23000 includes room temperature
279 			 * offset of +35C, 280 is the precision scale and x is
280 			 * the 16-bit signed integer reported by hardware.
281 			 *
282 			 * Temperature value itself represents temperature of
283 			 * the sensor die.
284 			 */
285 			*val = 23000;
286 			return IIO_VAL_INT;
287 		default:
288 			return -EINVAL;
289 		}
290 	case IIO_CHAN_INFO_CALIBBIAS:
291 		switch (chan->type) {
292 		case IIO_ANGL_VEL:
293 			*val = mpu3050->calibration[chan->scan_index-1];
294 			return IIO_VAL_INT;
295 		default:
296 			return -EINVAL;
297 		}
298 	case IIO_CHAN_INFO_SAMP_FREQ:
299 		*val = mpu3050_get_freq(mpu3050);
300 		return IIO_VAL_INT;
301 	case IIO_CHAN_INFO_SCALE:
302 		switch (chan->type) {
303 		case IIO_TEMP:
304 			/* Millidegrees, see about temperature scaling above */
305 			*val = 1000;
306 			*val2 = 280;
307 			return IIO_VAL_FRACTIONAL;
308 		case IIO_ANGL_VEL:
309 			/*
310 			 * Convert to the corresponding full scale in
311 			 * radians. All 16 bits are used with sign to
312 			 * span the available scale: to account for the one
313 			 * missing value if we multiply by 1/S16_MAX, instead
314 			 * multiply with 2/U16_MAX.
315 			 */
316 			*val = mpu3050_fs_precision[mpu3050->fullscale] * 2;
317 			*val2 = U16_MAX;
318 			return IIO_VAL_FRACTIONAL;
319 		default:
320 			return -EINVAL;
321 		}
322 	case IIO_CHAN_INFO_RAW:
323 		/* Resume device */
324 		pm_runtime_get_sync(mpu3050->dev);
325 		mutex_lock(&mpu3050->lock);
326 
327 		ret = mpu3050_set_8khz_samplerate(mpu3050);
328 		if (ret)
329 			goto out_read_raw_unlock;
330 
331 		switch (chan->type) {
332 		case IIO_TEMP:
333 			ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H,
334 					       &raw_val, sizeof(raw_val));
335 			if (ret) {
336 				dev_err(mpu3050->dev,
337 					"error reading temperature\n");
338 				goto out_read_raw_unlock;
339 			}
340 
341 			*val = (s16)be16_to_cpu(raw_val);
342 			ret = IIO_VAL_INT;
343 
344 			goto out_read_raw_unlock;
345 		case IIO_ANGL_VEL:
346 			ret = regmap_bulk_read(mpu3050->map,
347 				       MPU3050_AXIS_REGS(chan->scan_index-1),
348 				       &raw_val,
349 				       sizeof(raw_val));
350 			if (ret) {
351 				dev_err(mpu3050->dev,
352 					"error reading axis data\n");
353 				goto out_read_raw_unlock;
354 			}
355 
356 			*val = be16_to_cpu(raw_val);
357 			ret = IIO_VAL_INT;
358 
359 			goto out_read_raw_unlock;
360 		default:
361 			ret = -EINVAL;
362 			goto out_read_raw_unlock;
363 		}
364 	default:
365 		break;
366 	}
367 
368 	return -EINVAL;
369 
370 out_read_raw_unlock:
371 	mutex_unlock(&mpu3050->lock);
372 	pm_runtime_mark_last_busy(mpu3050->dev);
373 	pm_runtime_put_autosuspend(mpu3050->dev);
374 
375 	return ret;
376 }
377 
378 static int mpu3050_write_raw(struct iio_dev *indio_dev,
379 			     const struct iio_chan_spec *chan,
380 			     int val, int val2, long mask)
381 {
382 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
383 	/*
384 	 * Couldn't figure out a way to precalculate these at compile time.
385 	 */
386 	unsigned int fs250 =
387 		DIV_ROUND_CLOSEST(mpu3050_fs_precision[0] * 1000000 * 2,
388 				  U16_MAX);
389 	unsigned int fs500 =
390 		DIV_ROUND_CLOSEST(mpu3050_fs_precision[1] * 1000000 * 2,
391 				  U16_MAX);
392 	unsigned int fs1000 =
393 		DIV_ROUND_CLOSEST(mpu3050_fs_precision[2] * 1000000 * 2,
394 				  U16_MAX);
395 	unsigned int fs2000 =
396 		DIV_ROUND_CLOSEST(mpu3050_fs_precision[3] * 1000000 * 2,
397 				  U16_MAX);
398 
399 	switch (mask) {
400 	case IIO_CHAN_INFO_CALIBBIAS:
401 		if (chan->type != IIO_ANGL_VEL)
402 			return -EINVAL;
403 		mpu3050->calibration[chan->scan_index-1] = val;
404 		return 0;
405 	case IIO_CHAN_INFO_SAMP_FREQ:
406 		/*
407 		 * The max samplerate is 8000 Hz, the minimum
408 		 * 1000 / 256 ~= 4 Hz
409 		 */
410 		if (val < 4 || val > 8000)
411 			return -EINVAL;
412 
413 		/*
414 		 * Above 1000 Hz we must turn off the digital low pass filter
415 		 * so we get a base frequency of 8kHz to the divider
416 		 */
417 		if (val > 1000) {
418 			mpu3050->lpf = LPF_256_HZ_NOLPF;
419 			mpu3050->divisor = DIV_ROUND_CLOSEST(8000, val) - 1;
420 			return 0;
421 		}
422 
423 		mpu3050->lpf = LPF_188_HZ;
424 		mpu3050->divisor = DIV_ROUND_CLOSEST(1000, val) - 1;
425 		return 0;
426 	case IIO_CHAN_INFO_SCALE:
427 		if (chan->type != IIO_ANGL_VEL)
428 			return -EINVAL;
429 		/*
430 		 * We support +/-250, +/-500, +/-1000 and +/2000 deg/s
431 		 * which means we need to round to the closest radians
432 		 * which will be roughly +/-4.3, +/-8.7, +/-17.5, +/-35
433 		 * rad/s. The scale is then for the 16 bits used to cover
434 		 * it 2/(2^16) of that.
435 		 */
436 
437 		/* Just too large, set the max range */
438 		if (val != 0) {
439 			mpu3050->fullscale = FS_2000_DPS;
440 			return 0;
441 		}
442 
443 		/*
444 		 * Now we're dealing with fractions below zero in millirad/s
445 		 * do some integer interpolation and match with the closest
446 		 * fullscale in the table.
447 		 */
448 		if (val2 <= fs250 ||
449 		    val2 < ((fs500 + fs250) / 2))
450 			mpu3050->fullscale = FS_250_DPS;
451 		else if (val2 <= fs500 ||
452 			 val2 < ((fs1000 + fs500) / 2))
453 			mpu3050->fullscale = FS_500_DPS;
454 		else if (val2 <= fs1000 ||
455 			 val2 < ((fs2000 + fs1000) / 2))
456 			mpu3050->fullscale = FS_1000_DPS;
457 		else
458 			/* Catch-all */
459 			mpu3050->fullscale = FS_2000_DPS;
460 		return 0;
461 	default:
462 		break;
463 	}
464 
465 	return -EINVAL;
466 }
467 
468 static irqreturn_t mpu3050_trigger_handler(int irq, void *p)
469 {
470 	const struct iio_poll_func *pf = p;
471 	struct iio_dev *indio_dev = pf->indio_dev;
472 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
473 	int ret;
474 	struct {
475 		__be16 chans[4];
476 		s64 timestamp __aligned(8);
477 	} scan;
478 	s64 timestamp;
479 	unsigned int datums_from_fifo = 0;
480 
481 	/*
482 	 * If we're using the hardware trigger, get the precise timestamp from
483 	 * the top half of the threaded IRQ handler. Otherwise get the
484 	 * timestamp here so it will be close in time to the actual values
485 	 * read from the registers.
486 	 */
487 	if (iio_trigger_using_own(indio_dev))
488 		timestamp = mpu3050->hw_timestamp;
489 	else
490 		timestamp = iio_get_time_ns(indio_dev);
491 
492 	mutex_lock(&mpu3050->lock);
493 
494 	/* Using the hardware IRQ trigger? Check the buffer then. */
495 	if (mpu3050->hw_irq_trigger) {
496 		__be16 raw_fifocnt;
497 		u16 fifocnt;
498 		/* X, Y, Z + temperature */
499 		unsigned int bytes_per_datum = 8;
500 		bool fifo_overflow = false;
501 
502 		ret = regmap_bulk_read(mpu3050->map,
503 				       MPU3050_FIFO_COUNT_H,
504 				       &raw_fifocnt,
505 				       sizeof(raw_fifocnt));
506 		if (ret)
507 			goto out_trigger_unlock;
508 		fifocnt = be16_to_cpu(raw_fifocnt);
509 
510 		if (fifocnt == 512) {
511 			dev_info(mpu3050->dev,
512 				 "FIFO overflow! Emptying and resetting FIFO\n");
513 			fifo_overflow = true;
514 			/* Reset and enable the FIFO */
515 			ret = regmap_update_bits(mpu3050->map,
516 						 MPU3050_USR_CTRL,
517 						 MPU3050_USR_CTRL_FIFO_EN |
518 						 MPU3050_USR_CTRL_FIFO_RST,
519 						 MPU3050_USR_CTRL_FIFO_EN |
520 						 MPU3050_USR_CTRL_FIFO_RST);
521 			if (ret) {
522 				dev_info(mpu3050->dev, "error resetting FIFO\n");
523 				goto out_trigger_unlock;
524 			}
525 			mpu3050->pending_fifo_footer = false;
526 		}
527 
528 		if (fifocnt)
529 			dev_dbg(mpu3050->dev,
530 				"%d bytes in the FIFO\n",
531 				fifocnt);
532 
533 		while (!fifo_overflow && fifocnt > bytes_per_datum) {
534 			unsigned int toread;
535 			unsigned int offset;
536 			__be16 fifo_values[5];
537 
538 			/*
539 			 * If there is a FIFO footer in the pipe, first clear
540 			 * that out. This follows the complex algorithm in the
541 			 * datasheet that states that you may never leave the
542 			 * FIFO empty after the first reading: you have to
543 			 * always leave two footer bytes in it. The footer is
544 			 * in practice just two zero bytes.
545 			 */
546 			if (mpu3050->pending_fifo_footer) {
547 				toread = bytes_per_datum + 2;
548 				offset = 0;
549 			} else {
550 				toread = bytes_per_datum;
551 				offset = 1;
552 				/* Put in some dummy value */
553 				fifo_values[0] = cpu_to_be16(0xAAAA);
554 			}
555 
556 			ret = regmap_bulk_read(mpu3050->map,
557 					       MPU3050_FIFO_R,
558 					       &fifo_values[offset],
559 					       toread);
560 			if (ret)
561 				goto out_trigger_unlock;
562 
563 			dev_dbg(mpu3050->dev,
564 				"%04x %04x %04x %04x %04x\n",
565 				fifo_values[0],
566 				fifo_values[1],
567 				fifo_values[2],
568 				fifo_values[3],
569 				fifo_values[4]);
570 
571 			/* Index past the footer (fifo_values[0]) and push */
572 			iio_push_to_buffers_with_ts_unaligned(indio_dev,
573 							      &fifo_values[1],
574 							      sizeof(__be16) * 4,
575 							      timestamp);
576 
577 			fifocnt -= toread;
578 			datums_from_fifo++;
579 			mpu3050->pending_fifo_footer = true;
580 
581 			/*
582 			 * If we're emptying the FIFO, just make sure to
583 			 * check if something new appeared.
584 			 */
585 			if (fifocnt < bytes_per_datum) {
586 				ret = regmap_bulk_read(mpu3050->map,
587 						       MPU3050_FIFO_COUNT_H,
588 						       &raw_fifocnt,
589 						       sizeof(raw_fifocnt));
590 				if (ret)
591 					goto out_trigger_unlock;
592 				fifocnt = be16_to_cpu(raw_fifocnt);
593 			}
594 
595 			if (fifocnt < bytes_per_datum)
596 				dev_dbg(mpu3050->dev,
597 					"%d bytes left in the FIFO\n",
598 					fifocnt);
599 
600 			/*
601 			 * At this point, the timestamp that triggered the
602 			 * hardware interrupt is no longer valid for what
603 			 * we are reading (the interrupt likely fired for
604 			 * the value on the top of the FIFO), so set the
605 			 * timestamp to zero and let userspace deal with it.
606 			 */
607 			timestamp = 0;
608 		}
609 	}
610 
611 	/*
612 	 * If we picked some datums from the FIFO that's enough, else
613 	 * fall through and just read from the current value registers.
614 	 * This happens in two cases:
615 	 *
616 	 * - We are using some other trigger (external, like an HRTimer)
617 	 *   than the sensor's own sample generator. In this case the
618 	 *   sensor is just set to the max sampling frequency and we give
619 	 *   the trigger a copy of the latest value every time we get here.
620 	 *
621 	 * - The hardware trigger is active but unused and we actually use
622 	 *   another trigger which calls here with a frequency higher
623 	 *   than what the device provides data. We will then just read
624 	 *   duplicate values directly from the hardware registers.
625 	 */
626 	if (datums_from_fifo) {
627 		dev_dbg(mpu3050->dev,
628 			"read %d datums from the FIFO\n",
629 			datums_from_fifo);
630 		goto out_trigger_unlock;
631 	}
632 
633 	ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H, scan.chans,
634 			       sizeof(scan.chans));
635 	if (ret) {
636 		dev_err(mpu3050->dev,
637 			"error reading axis data\n");
638 		goto out_trigger_unlock;
639 	}
640 
641 	iio_push_to_buffers_with_timestamp(indio_dev, &scan, timestamp);
642 
643 out_trigger_unlock:
644 	mutex_unlock(&mpu3050->lock);
645 	iio_trigger_notify_done(indio_dev->trig);
646 
647 	return IRQ_HANDLED;
648 }
649 
650 static int mpu3050_buffer_preenable(struct iio_dev *indio_dev)
651 {
652 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
653 
654 	pm_runtime_get_sync(mpu3050->dev);
655 
656 	/* Unless we have OUR trigger active, run at full speed */
657 	if (!mpu3050->hw_irq_trigger)
658 		return mpu3050_set_8khz_samplerate(mpu3050);
659 
660 	return 0;
661 }
662 
663 static int mpu3050_buffer_postdisable(struct iio_dev *indio_dev)
664 {
665 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
666 
667 	pm_runtime_mark_last_busy(mpu3050->dev);
668 	pm_runtime_put_autosuspend(mpu3050->dev);
669 
670 	return 0;
671 }
672 
673 static const struct iio_buffer_setup_ops mpu3050_buffer_setup_ops = {
674 	.preenable = mpu3050_buffer_preenable,
675 	.postdisable = mpu3050_buffer_postdisable,
676 };
677 
678 static const struct iio_mount_matrix *
679 mpu3050_get_mount_matrix(const struct iio_dev *indio_dev,
680 			 const struct iio_chan_spec *chan)
681 {
682 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
683 
684 	return &mpu3050->orientation;
685 }
686 
687 static const struct iio_chan_spec_ext_info mpu3050_ext_info[] = {
688 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, mpu3050_get_mount_matrix),
689 	{ },
690 };
691 
692 #define MPU3050_AXIS_CHANNEL(axis, index)				\
693 	{								\
694 		.type = IIO_ANGL_VEL,					\
695 		.modified = 1,						\
696 		.channel2 = IIO_MOD_##axis,				\
697 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
698 			BIT(IIO_CHAN_INFO_CALIBBIAS),			\
699 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),	\
700 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
701 		.ext_info = mpu3050_ext_info,				\
702 		.scan_index = index,					\
703 		.scan_type = {						\
704 			.sign = 's',					\
705 			.realbits = 16,					\
706 			.storagebits = 16,				\
707 			.endianness = IIO_BE,				\
708 		},							\
709 	}
710 
711 static const struct iio_chan_spec mpu3050_channels[] = {
712 	{
713 		.type = IIO_TEMP,
714 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
715 				      BIT(IIO_CHAN_INFO_SCALE) |
716 				      BIT(IIO_CHAN_INFO_OFFSET),
717 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
718 		.scan_index = 0,
719 		.scan_type = {
720 			.sign = 's',
721 			.realbits = 16,
722 			.storagebits = 16,
723 			.endianness = IIO_BE,
724 		},
725 	},
726 	MPU3050_AXIS_CHANNEL(X, 1),
727 	MPU3050_AXIS_CHANNEL(Y, 2),
728 	MPU3050_AXIS_CHANNEL(Z, 3),
729 	IIO_CHAN_SOFT_TIMESTAMP(4),
730 };
731 
732 /* Four channels apart from timestamp, scan mask = 0x0f */
733 static const unsigned long mpu3050_scan_masks[] = { 0xf, 0 };
734 
735 /*
736  * These are just the hardcoded factors resulting from the more elaborate
737  * calculations done with fractions in the scale raw get/set functions.
738  */
739 static IIO_CONST_ATTR(anglevel_scale_available,
740 		      "0.000122070 "
741 		      "0.000274658 "
742 		      "0.000518798 "
743 		      "0.001068115");
744 
745 static struct attribute *mpu3050_attributes[] = {
746 	&iio_const_attr_anglevel_scale_available.dev_attr.attr,
747 	NULL,
748 };
749 
750 static const struct attribute_group mpu3050_attribute_group = {
751 	.attrs = mpu3050_attributes,
752 };
753 
754 static const struct iio_info mpu3050_info = {
755 	.read_raw = mpu3050_read_raw,
756 	.write_raw = mpu3050_write_raw,
757 	.attrs = &mpu3050_attribute_group,
758 };
759 
760 /**
761  * mpu3050_read_mem() - read MPU-3050 internal memory
762  * @mpu3050: device to read from
763  * @bank: target bank
764  * @addr: target address
765  * @len: number of bytes
766  * @buf: the buffer to store the read bytes in
767  */
768 static int mpu3050_read_mem(struct mpu3050 *mpu3050,
769 			    u8 bank,
770 			    u8 addr,
771 			    u8 len,
772 			    u8 *buf)
773 {
774 	int ret;
775 
776 	ret = regmap_write(mpu3050->map,
777 			   MPU3050_BANK_SEL,
778 			   bank);
779 	if (ret)
780 		return ret;
781 
782 	ret = regmap_write(mpu3050->map,
783 			   MPU3050_MEM_START_ADDR,
784 			   addr);
785 	if (ret)
786 		return ret;
787 
788 	return regmap_bulk_read(mpu3050->map,
789 				MPU3050_MEM_R_W,
790 				buf,
791 				len);
792 }
793 
794 static int mpu3050_hw_init(struct mpu3050 *mpu3050)
795 {
796 	int ret;
797 	__le64 otp_le;
798 	u64 otp;
799 
800 	/* Reset */
801 	ret = regmap_update_bits(mpu3050->map,
802 				 MPU3050_PWR_MGM,
803 				 MPU3050_PWR_MGM_RESET,
804 				 MPU3050_PWR_MGM_RESET);
805 	if (ret)
806 		return ret;
807 
808 	/* Turn on the PLL */
809 	ret = regmap_update_bits(mpu3050->map,
810 				 MPU3050_PWR_MGM,
811 				 MPU3050_PWR_MGM_CLKSEL_MASK,
812 				 MPU3050_PWR_MGM_PLL_Z);
813 	if (ret)
814 		return ret;
815 
816 	/* Disable IRQs */
817 	ret = regmap_write(mpu3050->map,
818 			   MPU3050_INT_CFG,
819 			   0);
820 	if (ret)
821 		return ret;
822 
823 	/* Read out the 8 bytes of OTP (one-time-programmable) memory */
824 	ret = mpu3050_read_mem(mpu3050,
825 			       (MPU3050_MEM_PRFTCH |
826 				MPU3050_MEM_USER_BANK |
827 				MPU3050_MEM_OTP_BANK_0),
828 			       0,
829 			       sizeof(otp_le),
830 			       (u8 *)&otp_le);
831 	if (ret)
832 		return ret;
833 
834 	/* This is device-unique data so it goes into the entropy pool */
835 	add_device_randomness(&otp_le, sizeof(otp_le));
836 
837 	otp = le64_to_cpu(otp_le);
838 
839 	dev_info(mpu3050->dev,
840 		 "die ID: %04llX, wafer ID: %02llX, A lot ID: %04llX, "
841 		 "W lot ID: %03llX, WP ID: %01llX, rev ID: %02llX\n",
842 		 /* Die ID, bits 0-12 */
843 		 FIELD_GET(GENMASK_ULL(12, 0), otp),
844 		 /* Wafer ID, bits 13-17 */
845 		 FIELD_GET(GENMASK_ULL(17, 13), otp),
846 		 /* A lot ID, bits 18-33 */
847 		 FIELD_GET(GENMASK_ULL(33, 18), otp),
848 		 /* W lot ID, bits 34-45 */
849 		 FIELD_GET(GENMASK_ULL(45, 34), otp),
850 		 /* WP ID, bits 47-49 */
851 		 FIELD_GET(GENMASK_ULL(49, 47), otp),
852 		 /* rev ID, bits 50-55 */
853 		 FIELD_GET(GENMASK_ULL(55, 50), otp));
854 
855 	return 0;
856 }
857 
858 static int mpu3050_power_up(struct mpu3050 *mpu3050)
859 {
860 	int ret;
861 
862 	ret = regulator_bulk_enable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
863 	if (ret) {
864 		dev_err(mpu3050->dev, "cannot enable regulators\n");
865 		return ret;
866 	}
867 	/*
868 	 * 20-100 ms start-up time for register read/write according to
869 	 * the datasheet, be on the safe side and wait 200 ms.
870 	 */
871 	msleep(200);
872 
873 	/* Take device out of sleep mode */
874 	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
875 				 MPU3050_PWR_MGM_SLEEP, 0);
876 	if (ret) {
877 		dev_err(mpu3050->dev, "error setting power mode\n");
878 		return ret;
879 	}
880 	usleep_range(10000, 20000);
881 
882 	return 0;
883 }
884 
885 static int mpu3050_power_down(struct mpu3050 *mpu3050)
886 {
887 	int ret;
888 
889 	/*
890 	 * Put MPU-3050 into sleep mode before cutting regulators.
891 	 * This is important, because we may not be the sole user
892 	 * of the regulator so the power may stay on after this, and
893 	 * then we would be wasting power unless we go to sleep mode
894 	 * first.
895 	 */
896 	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
897 				 MPU3050_PWR_MGM_SLEEP, MPU3050_PWR_MGM_SLEEP);
898 	if (ret)
899 		dev_err(mpu3050->dev, "error putting to sleep\n");
900 
901 	ret = regulator_bulk_disable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
902 	if (ret)
903 		dev_err(mpu3050->dev, "error disabling regulators\n");
904 
905 	return 0;
906 }
907 
908 static irqreturn_t mpu3050_irq_handler(int irq, void *p)
909 {
910 	struct iio_trigger *trig = p;
911 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
912 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
913 
914 	if (!mpu3050->hw_irq_trigger)
915 		return IRQ_NONE;
916 
917 	/* Get the time stamp as close in time as possible */
918 	mpu3050->hw_timestamp = iio_get_time_ns(indio_dev);
919 
920 	return IRQ_WAKE_THREAD;
921 }
922 
923 static irqreturn_t mpu3050_irq_thread(int irq, void *p)
924 {
925 	struct iio_trigger *trig = p;
926 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
927 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
928 	unsigned int val;
929 	int ret;
930 
931 	/* ACK IRQ and check if it was from us */
932 	ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
933 	if (ret) {
934 		dev_err(mpu3050->dev, "error reading IRQ status\n");
935 		return IRQ_HANDLED;
936 	}
937 	if (!(val & MPU3050_INT_STATUS_RAW_RDY))
938 		return IRQ_NONE;
939 
940 	iio_trigger_poll_chained(p);
941 
942 	return IRQ_HANDLED;
943 }
944 
945 /**
946  * mpu3050_drdy_trigger_set_state() - set data ready interrupt state
947  * @trig: trigger instance
948  * @enable: true if trigger should be enabled, false to disable
949  */
950 static int mpu3050_drdy_trigger_set_state(struct iio_trigger *trig,
951 					  bool enable)
952 {
953 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
954 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
955 	unsigned int val;
956 	int ret;
957 
958 	/* Disabling trigger: disable interrupt and return */
959 	if (!enable) {
960 		/* Disable all interrupts */
961 		ret = regmap_write(mpu3050->map,
962 				   MPU3050_INT_CFG,
963 				   0);
964 		if (ret)
965 			dev_err(mpu3050->dev, "error disabling IRQ\n");
966 
967 		/* Clear IRQ flag */
968 		ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
969 		if (ret)
970 			dev_err(mpu3050->dev, "error clearing IRQ status\n");
971 
972 		/* Disable all things in the FIFO and reset it */
973 		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
974 		if (ret)
975 			dev_err(mpu3050->dev, "error disabling FIFO\n");
976 
977 		ret = regmap_write(mpu3050->map, MPU3050_USR_CTRL,
978 				   MPU3050_USR_CTRL_FIFO_RST);
979 		if (ret)
980 			dev_err(mpu3050->dev, "error resetting FIFO\n");
981 
982 		pm_runtime_mark_last_busy(mpu3050->dev);
983 		pm_runtime_put_autosuspend(mpu3050->dev);
984 		mpu3050->hw_irq_trigger = false;
985 
986 		return 0;
987 	} else {
988 		/* Else we're enabling the trigger from this point */
989 		pm_runtime_get_sync(mpu3050->dev);
990 		mpu3050->hw_irq_trigger = true;
991 
992 		/* Disable all things in the FIFO */
993 		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
994 		if (ret)
995 			return ret;
996 
997 		/* Reset and enable the FIFO */
998 		ret = regmap_update_bits(mpu3050->map, MPU3050_USR_CTRL,
999 					 MPU3050_USR_CTRL_FIFO_EN |
1000 					 MPU3050_USR_CTRL_FIFO_RST,
1001 					 MPU3050_USR_CTRL_FIFO_EN |
1002 					 MPU3050_USR_CTRL_FIFO_RST);
1003 		if (ret)
1004 			return ret;
1005 
1006 		mpu3050->pending_fifo_footer = false;
1007 
1008 		/* Turn on the FIFO for temp+X+Y+Z */
1009 		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN,
1010 				   MPU3050_FIFO_EN_TEMP_OUT |
1011 				   MPU3050_FIFO_EN_GYRO_XOUT |
1012 				   MPU3050_FIFO_EN_GYRO_YOUT |
1013 				   MPU3050_FIFO_EN_GYRO_ZOUT |
1014 				   MPU3050_FIFO_EN_FOOTER);
1015 		if (ret)
1016 			return ret;
1017 
1018 		/* Configure the sample engine */
1019 		ret = mpu3050_start_sampling(mpu3050);
1020 		if (ret)
1021 			return ret;
1022 
1023 		/* Clear IRQ flag */
1024 		ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
1025 		if (ret)
1026 			dev_err(mpu3050->dev, "error clearing IRQ status\n");
1027 
1028 		/* Give us interrupts whenever there is new data ready */
1029 		val = MPU3050_INT_RAW_RDY_EN;
1030 
1031 		if (mpu3050->irq_actl)
1032 			val |= MPU3050_INT_ACTL;
1033 		if (mpu3050->irq_latch)
1034 			val |= MPU3050_INT_LATCH_EN;
1035 		if (mpu3050->irq_opendrain)
1036 			val |= MPU3050_INT_OPEN;
1037 
1038 		ret = regmap_write(mpu3050->map, MPU3050_INT_CFG, val);
1039 		if (ret)
1040 			return ret;
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 static const struct iio_trigger_ops mpu3050_trigger_ops = {
1047 	.set_trigger_state = mpu3050_drdy_trigger_set_state,
1048 };
1049 
1050 static int mpu3050_trigger_probe(struct iio_dev *indio_dev, int irq)
1051 {
1052 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1053 	unsigned long irq_trig;
1054 	int ret;
1055 
1056 	mpu3050->trig = devm_iio_trigger_alloc(&indio_dev->dev,
1057 					       "%s-dev%d",
1058 					       indio_dev->name,
1059 					       iio_device_id(indio_dev));
1060 	if (!mpu3050->trig)
1061 		return -ENOMEM;
1062 
1063 	/* Check if IRQ is open drain */
1064 	if (of_property_read_bool(mpu3050->dev->of_node, "drive-open-drain"))
1065 		mpu3050->irq_opendrain = true;
1066 
1067 	irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
1068 	/*
1069 	 * Configure the interrupt generator hardware to supply whatever
1070 	 * the interrupt is configured for, edges low/high level low/high,
1071 	 * we can provide it all.
1072 	 */
1073 	switch (irq_trig) {
1074 	case IRQF_TRIGGER_RISING:
1075 		dev_info(&indio_dev->dev,
1076 			 "pulse interrupts on the rising edge\n");
1077 		break;
1078 	case IRQF_TRIGGER_FALLING:
1079 		mpu3050->irq_actl = true;
1080 		dev_info(&indio_dev->dev,
1081 			 "pulse interrupts on the falling edge\n");
1082 		break;
1083 	case IRQF_TRIGGER_HIGH:
1084 		mpu3050->irq_latch = true;
1085 		dev_info(&indio_dev->dev,
1086 			 "interrupts active high level\n");
1087 		/*
1088 		 * With level IRQs, we mask the IRQ until it is processed,
1089 		 * but with edge IRQs (pulses) we can queue several interrupts
1090 		 * in the top half.
1091 		 */
1092 		irq_trig |= IRQF_ONESHOT;
1093 		break;
1094 	case IRQF_TRIGGER_LOW:
1095 		mpu3050->irq_latch = true;
1096 		mpu3050->irq_actl = true;
1097 		irq_trig |= IRQF_ONESHOT;
1098 		dev_info(&indio_dev->dev,
1099 			 "interrupts active low level\n");
1100 		break;
1101 	default:
1102 		/* This is the most preferred mode, if possible */
1103 		dev_err(&indio_dev->dev,
1104 			"unsupported IRQ trigger specified (%lx), enforce "
1105 			"rising edge\n", irq_trig);
1106 		irq_trig = IRQF_TRIGGER_RISING;
1107 		break;
1108 	}
1109 
1110 	/* An open drain line can be shared with several devices */
1111 	if (mpu3050->irq_opendrain)
1112 		irq_trig |= IRQF_SHARED;
1113 
1114 	ret = request_threaded_irq(irq,
1115 				   mpu3050_irq_handler,
1116 				   mpu3050_irq_thread,
1117 				   irq_trig,
1118 				   mpu3050->trig->name,
1119 				   mpu3050->trig);
1120 	if (ret) {
1121 		dev_err(mpu3050->dev,
1122 			"can't get IRQ %d, error %d\n", irq, ret);
1123 		return ret;
1124 	}
1125 
1126 	mpu3050->irq = irq;
1127 	mpu3050->trig->dev.parent = mpu3050->dev;
1128 	mpu3050->trig->ops = &mpu3050_trigger_ops;
1129 	iio_trigger_set_drvdata(mpu3050->trig, indio_dev);
1130 
1131 	ret = iio_trigger_register(mpu3050->trig);
1132 	if (ret)
1133 		return ret;
1134 
1135 	indio_dev->trig = iio_trigger_get(mpu3050->trig);
1136 
1137 	return 0;
1138 }
1139 
1140 int mpu3050_common_probe(struct device *dev,
1141 			 struct regmap *map,
1142 			 int irq,
1143 			 const char *name)
1144 {
1145 	struct iio_dev *indio_dev;
1146 	struct mpu3050 *mpu3050;
1147 	unsigned int val;
1148 	int ret;
1149 
1150 	indio_dev = devm_iio_device_alloc(dev, sizeof(*mpu3050));
1151 	if (!indio_dev)
1152 		return -ENOMEM;
1153 	mpu3050 = iio_priv(indio_dev);
1154 
1155 	mpu3050->dev = dev;
1156 	mpu3050->map = map;
1157 	mutex_init(&mpu3050->lock);
1158 	/* Default fullscale: 2000 degrees per second */
1159 	mpu3050->fullscale = FS_2000_DPS;
1160 	/* 1 kHz, divide by 100, default frequency = 10 Hz */
1161 	mpu3050->lpf = MPU3050_DLPF_CFG_188HZ;
1162 	mpu3050->divisor = 99;
1163 
1164 	/* Read the mounting matrix, if present */
1165 	ret = iio_read_mount_matrix(dev, &mpu3050->orientation);
1166 	if (ret)
1167 		return ret;
1168 
1169 	/* Fetch and turn on regulators */
1170 	mpu3050->regs[0].supply = mpu3050_reg_vdd;
1171 	mpu3050->regs[1].supply = mpu3050_reg_vlogic;
1172 	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(mpu3050->regs),
1173 				      mpu3050->regs);
1174 	if (ret) {
1175 		dev_err(dev, "Cannot get regulators\n");
1176 		return ret;
1177 	}
1178 
1179 	ret = mpu3050_power_up(mpu3050);
1180 	if (ret)
1181 		return ret;
1182 
1183 	ret = regmap_read(map, MPU3050_CHIP_ID_REG, &val);
1184 	if (ret) {
1185 		dev_err(dev, "could not read device ID\n");
1186 		ret = -ENODEV;
1187 
1188 		goto err_power_down;
1189 	}
1190 
1191 	if ((val & MPU3050_CHIP_ID_MASK) != MPU3050_CHIP_ID) {
1192 		dev_err(dev, "unsupported chip id %02x\n",
1193 				(u8)(val & MPU3050_CHIP_ID_MASK));
1194 		ret = -ENODEV;
1195 		goto err_power_down;
1196 	}
1197 
1198 	ret = regmap_read(map, MPU3050_PRODUCT_ID_REG, &val);
1199 	if (ret) {
1200 		dev_err(dev, "could not read device ID\n");
1201 		ret = -ENODEV;
1202 
1203 		goto err_power_down;
1204 	}
1205 	dev_info(dev, "found MPU-3050 part no: %d, version: %d\n",
1206 		 ((val >> 4) & 0xf), (val & 0xf));
1207 
1208 	ret = mpu3050_hw_init(mpu3050);
1209 	if (ret)
1210 		goto err_power_down;
1211 
1212 	indio_dev->channels = mpu3050_channels;
1213 	indio_dev->num_channels = ARRAY_SIZE(mpu3050_channels);
1214 	indio_dev->info = &mpu3050_info;
1215 	indio_dev->available_scan_masks = mpu3050_scan_masks;
1216 	indio_dev->modes = INDIO_DIRECT_MODE;
1217 	indio_dev->name = name;
1218 
1219 	ret = iio_triggered_buffer_setup(indio_dev, iio_pollfunc_store_time,
1220 					 mpu3050_trigger_handler,
1221 					 &mpu3050_buffer_setup_ops);
1222 	if (ret) {
1223 		dev_err(dev, "triggered buffer setup failed\n");
1224 		goto err_power_down;
1225 	}
1226 
1227 	ret = iio_device_register(indio_dev);
1228 	if (ret) {
1229 		dev_err(dev, "device register failed\n");
1230 		goto err_cleanup_buffer;
1231 	}
1232 
1233 	dev_set_drvdata(dev, indio_dev);
1234 
1235 	/* Check if we have an assigned IRQ to use as trigger */
1236 	if (irq) {
1237 		ret = mpu3050_trigger_probe(indio_dev, irq);
1238 		if (ret)
1239 			dev_err(dev, "failed to register trigger\n");
1240 	}
1241 
1242 	/* Enable runtime PM */
1243 	pm_runtime_get_noresume(dev);
1244 	pm_runtime_set_active(dev);
1245 	pm_runtime_enable(dev);
1246 	/*
1247 	 * Set autosuspend to two orders of magnitude larger than the
1248 	 * start-up time. 100ms start-up time means 10000ms autosuspend,
1249 	 * i.e. 10 seconds.
1250 	 */
1251 	pm_runtime_set_autosuspend_delay(dev, 10000);
1252 	pm_runtime_use_autosuspend(dev);
1253 	pm_runtime_put(dev);
1254 
1255 	return 0;
1256 
1257 err_cleanup_buffer:
1258 	iio_triggered_buffer_cleanup(indio_dev);
1259 err_power_down:
1260 	mpu3050_power_down(mpu3050);
1261 
1262 	return ret;
1263 }
1264 EXPORT_SYMBOL(mpu3050_common_probe);
1265 
1266 int mpu3050_common_remove(struct device *dev)
1267 {
1268 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1269 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1270 
1271 	pm_runtime_get_sync(dev);
1272 	pm_runtime_put_noidle(dev);
1273 	pm_runtime_disable(dev);
1274 	iio_triggered_buffer_cleanup(indio_dev);
1275 	if (mpu3050->irq)
1276 		free_irq(mpu3050->irq, mpu3050);
1277 	iio_device_unregister(indio_dev);
1278 	mpu3050_power_down(mpu3050);
1279 
1280 	return 0;
1281 }
1282 EXPORT_SYMBOL(mpu3050_common_remove);
1283 
1284 #ifdef CONFIG_PM
1285 static int mpu3050_runtime_suspend(struct device *dev)
1286 {
1287 	return mpu3050_power_down(iio_priv(dev_get_drvdata(dev)));
1288 }
1289 
1290 static int mpu3050_runtime_resume(struct device *dev)
1291 {
1292 	return mpu3050_power_up(iio_priv(dev_get_drvdata(dev)));
1293 }
1294 #endif /* CONFIG_PM */
1295 
1296 const struct dev_pm_ops mpu3050_dev_pm_ops = {
1297 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1298 				pm_runtime_force_resume)
1299 	SET_RUNTIME_PM_OPS(mpu3050_runtime_suspend,
1300 			   mpu3050_runtime_resume, NULL)
1301 };
1302 EXPORT_SYMBOL(mpu3050_dev_pm_ops);
1303 
1304 MODULE_AUTHOR("Linus Walleij");
1305 MODULE_DESCRIPTION("MPU3050 gyroscope driver");
1306 MODULE_LICENSE("GPL");
1307