xref: /openbmc/linux/drivers/iio/gyro/mpu3050-core.c (revision 4da722ca)
1 /*
2  * MPU3050 gyroscope driver
3  *
4  * Copyright (C) 2016 Linaro Ltd.
5  * Author: Linus Walleij <linus.walleij@linaro.org>
6  *
7  * Based on the input subsystem driver, Copyright (C) 2011 Wistron Co.Ltd
8  * Joseph Lai <joseph_lai@wistron.com> and trimmed down by
9  * Alan Cox <alan@linux.intel.com> in turn based on bma023.c.
10  * Device behaviour based on a misc driver posted by Nathan Royer in 2011.
11  *
12  * TODO: add support for setting up the low pass 3dB frequency.
13  */
14 
15 #include <linux/bitops.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/iio/buffer.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/trigger.h>
22 #include <linux/iio/trigger_consumer.h>
23 #include <linux/iio/triggered_buffer.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/random.h>
28 #include <linux/slab.h>
29 
30 #include "mpu3050.h"
31 
32 #define MPU3050_CHIP_ID		0x69
33 
34 /*
35  * Register map: anything suffixed *_H is a big-endian high byte and always
36  * followed by the corresponding low byte (*_L) even though these are not
37  * explicitly included in the register definitions.
38  */
39 #define MPU3050_CHIP_ID_REG	0x00
40 #define MPU3050_PRODUCT_ID_REG	0x01
41 #define MPU3050_XG_OFFS_TC	0x05
42 #define MPU3050_YG_OFFS_TC	0x08
43 #define MPU3050_ZG_OFFS_TC	0x0B
44 #define MPU3050_X_OFFS_USR_H	0x0C
45 #define MPU3050_Y_OFFS_USR_H	0x0E
46 #define MPU3050_Z_OFFS_USR_H	0x10
47 #define MPU3050_FIFO_EN		0x12
48 #define MPU3050_AUX_VDDIO	0x13
49 #define MPU3050_SLV_ADDR	0x14
50 #define MPU3050_SMPLRT_DIV	0x15
51 #define MPU3050_DLPF_FS_SYNC	0x16
52 #define MPU3050_INT_CFG		0x17
53 #define MPU3050_AUX_ADDR	0x18
54 #define MPU3050_INT_STATUS	0x1A
55 #define MPU3050_TEMP_H		0x1B
56 #define MPU3050_XOUT_H		0x1D
57 #define MPU3050_YOUT_H		0x1F
58 #define MPU3050_ZOUT_H		0x21
59 #define MPU3050_DMP_CFG1	0x35
60 #define MPU3050_DMP_CFG2	0x36
61 #define MPU3050_BANK_SEL	0x37
62 #define MPU3050_MEM_START_ADDR	0x38
63 #define MPU3050_MEM_R_W		0x39
64 #define MPU3050_FIFO_COUNT_H	0x3A
65 #define MPU3050_FIFO_R		0x3C
66 #define MPU3050_USR_CTRL	0x3D
67 #define MPU3050_PWR_MGM		0x3E
68 
69 /* MPU memory bank read options */
70 #define MPU3050_MEM_PRFTCH	BIT(5)
71 #define MPU3050_MEM_USER_BANK	BIT(4)
72 /* Bits 8-11 select memory bank */
73 #define MPU3050_MEM_RAM_BANK_0	0
74 #define MPU3050_MEM_RAM_BANK_1	1
75 #define MPU3050_MEM_RAM_BANK_2	2
76 #define MPU3050_MEM_RAM_BANK_3	3
77 #define MPU3050_MEM_OTP_BANK_0	4
78 
79 #define MPU3050_AXIS_REGS(axis) (MPU3050_XOUT_H + (axis * 2))
80 
81 /* Register bits */
82 
83 /* FIFO Enable */
84 #define MPU3050_FIFO_EN_FOOTER		BIT(0)
85 #define MPU3050_FIFO_EN_AUX_ZOUT	BIT(1)
86 #define MPU3050_FIFO_EN_AUX_YOUT	BIT(2)
87 #define MPU3050_FIFO_EN_AUX_XOUT	BIT(3)
88 #define MPU3050_FIFO_EN_GYRO_ZOUT	BIT(4)
89 #define MPU3050_FIFO_EN_GYRO_YOUT	BIT(5)
90 #define MPU3050_FIFO_EN_GYRO_XOUT	BIT(6)
91 #define MPU3050_FIFO_EN_TEMP_OUT	BIT(7)
92 
93 /*
94  * Digital Low Pass filter (DLPF)
95  * Full Scale (FS)
96  * and Synchronization
97  */
98 #define MPU3050_EXT_SYNC_NONE		0x00
99 #define MPU3050_EXT_SYNC_TEMP		0x20
100 #define MPU3050_EXT_SYNC_GYROX		0x40
101 #define MPU3050_EXT_SYNC_GYROY		0x60
102 #define MPU3050_EXT_SYNC_GYROZ		0x80
103 #define MPU3050_EXT_SYNC_ACCELX	0xA0
104 #define MPU3050_EXT_SYNC_ACCELY	0xC0
105 #define MPU3050_EXT_SYNC_ACCELZ	0xE0
106 #define MPU3050_EXT_SYNC_MASK		0xE0
107 #define MPU3050_EXT_SYNC_SHIFT		5
108 
109 #define MPU3050_FS_250DPS		0x00
110 #define MPU3050_FS_500DPS		0x08
111 #define MPU3050_FS_1000DPS		0x10
112 #define MPU3050_FS_2000DPS		0x18
113 #define MPU3050_FS_MASK			0x18
114 #define MPU3050_FS_SHIFT		3
115 
116 #define MPU3050_DLPF_CFG_256HZ_NOLPF2	0x00
117 #define MPU3050_DLPF_CFG_188HZ		0x01
118 #define MPU3050_DLPF_CFG_98HZ		0x02
119 #define MPU3050_DLPF_CFG_42HZ		0x03
120 #define MPU3050_DLPF_CFG_20HZ		0x04
121 #define MPU3050_DLPF_CFG_10HZ		0x05
122 #define MPU3050_DLPF_CFG_5HZ		0x06
123 #define MPU3050_DLPF_CFG_2100HZ_NOLPF	0x07
124 #define MPU3050_DLPF_CFG_MASK		0x07
125 #define MPU3050_DLPF_CFG_SHIFT		0
126 
127 /* Interrupt config */
128 #define MPU3050_INT_RAW_RDY_EN		BIT(0)
129 #define MPU3050_INT_DMP_DONE_EN		BIT(1)
130 #define MPU3050_INT_MPU_RDY_EN		BIT(2)
131 #define MPU3050_INT_ANYRD_2CLEAR	BIT(4)
132 #define MPU3050_INT_LATCH_EN		BIT(5)
133 #define MPU3050_INT_OPEN		BIT(6)
134 #define MPU3050_INT_ACTL		BIT(7)
135 /* Interrupt status */
136 #define MPU3050_INT_STATUS_RAW_RDY	BIT(0)
137 #define MPU3050_INT_STATUS_DMP_DONE	BIT(1)
138 #define MPU3050_INT_STATUS_MPU_RDY	BIT(2)
139 #define MPU3050_INT_STATUS_FIFO_OVFLW	BIT(7)
140 /* USR_CTRL */
141 #define MPU3050_USR_CTRL_FIFO_EN	BIT(6)
142 #define MPU3050_USR_CTRL_AUX_IF_EN	BIT(5)
143 #define MPU3050_USR_CTRL_AUX_IF_RST	BIT(3)
144 #define MPU3050_USR_CTRL_FIFO_RST	BIT(1)
145 #define MPU3050_USR_CTRL_GYRO_RST	BIT(0)
146 /* PWR_MGM */
147 #define MPU3050_PWR_MGM_PLL_X		0x01
148 #define MPU3050_PWR_MGM_PLL_Y		0x02
149 #define MPU3050_PWR_MGM_PLL_Z		0x03
150 #define MPU3050_PWR_MGM_CLKSEL_MASK	0x07
151 #define MPU3050_PWR_MGM_STBY_ZG		BIT(3)
152 #define MPU3050_PWR_MGM_STBY_YG		BIT(4)
153 #define MPU3050_PWR_MGM_STBY_XG		BIT(5)
154 #define MPU3050_PWR_MGM_SLEEP		BIT(6)
155 #define MPU3050_PWR_MGM_RESET		BIT(7)
156 #define MPU3050_PWR_MGM_MASK		0xff
157 
158 /*
159  * Fullscale precision is (for finest precision) +/- 250 deg/s, so the full
160  * scale is actually 500 deg/s. All 16 bits are then used to cover this scale,
161  * in two's complement.
162  */
163 static unsigned int mpu3050_fs_precision[] = {
164 	IIO_DEGREE_TO_RAD(250),
165 	IIO_DEGREE_TO_RAD(500),
166 	IIO_DEGREE_TO_RAD(1000),
167 	IIO_DEGREE_TO_RAD(2000)
168 };
169 
170 /*
171  * Regulator names
172  */
173 static const char mpu3050_reg_vdd[] = "vdd";
174 static const char mpu3050_reg_vlogic[] = "vlogic";
175 
176 static unsigned int mpu3050_get_freq(struct mpu3050 *mpu3050)
177 {
178 	unsigned int freq;
179 
180 	if (mpu3050->lpf == MPU3050_DLPF_CFG_256HZ_NOLPF2)
181 		freq = 8000;
182 	else
183 		freq = 1000;
184 	freq /= (mpu3050->divisor + 1);
185 
186 	return freq;
187 }
188 
189 static int mpu3050_start_sampling(struct mpu3050 *mpu3050)
190 {
191 	__be16 raw_val[3];
192 	int ret;
193 	int i;
194 
195 	/* Reset */
196 	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
197 				 MPU3050_PWR_MGM_RESET, MPU3050_PWR_MGM_RESET);
198 	if (ret)
199 		return ret;
200 
201 	/* Turn on the Z-axis PLL */
202 	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
203 				 MPU3050_PWR_MGM_CLKSEL_MASK,
204 				 MPU3050_PWR_MGM_PLL_Z);
205 	if (ret)
206 		return ret;
207 
208 	/* Write calibration offset registers */
209 	for (i = 0; i < 3; i++)
210 		raw_val[i] = cpu_to_be16(mpu3050->calibration[i]);
211 
212 	ret = regmap_bulk_write(mpu3050->map, MPU3050_X_OFFS_USR_H, raw_val,
213 				sizeof(raw_val));
214 	if (ret)
215 		return ret;
216 
217 	/* Set low pass filter (sample rate), sync and full scale */
218 	ret = regmap_write(mpu3050->map, MPU3050_DLPF_FS_SYNC,
219 			   MPU3050_EXT_SYNC_NONE << MPU3050_EXT_SYNC_SHIFT |
220 			   mpu3050->fullscale << MPU3050_FS_SHIFT |
221 			   mpu3050->lpf << MPU3050_DLPF_CFG_SHIFT);
222 	if (ret)
223 		return ret;
224 
225 	/* Set up sampling frequency */
226 	ret = regmap_write(mpu3050->map, MPU3050_SMPLRT_DIV, mpu3050->divisor);
227 	if (ret)
228 		return ret;
229 
230 	/*
231 	 * Max 50 ms start-up time after setting DLPF_FS_SYNC
232 	 * according to the data sheet, then wait for the next sample
233 	 * at this frequency T = 1000/f ms.
234 	 */
235 	msleep(50 + 1000 / mpu3050_get_freq(mpu3050));
236 
237 	return 0;
238 }
239 
240 static int mpu3050_set_8khz_samplerate(struct mpu3050 *mpu3050)
241 {
242 	int ret;
243 	u8 divisor;
244 	enum mpu3050_lpf lpf;
245 
246 	lpf = mpu3050->lpf;
247 	divisor = mpu3050->divisor;
248 
249 	mpu3050->lpf = LPF_256_HZ_NOLPF; /* 8 kHz base frequency */
250 	mpu3050->divisor = 0; /* Divide by 1 */
251 	ret = mpu3050_start_sampling(mpu3050);
252 
253 	mpu3050->lpf = lpf;
254 	mpu3050->divisor = divisor;
255 
256 	return ret;
257 }
258 
259 static int mpu3050_read_raw(struct iio_dev *indio_dev,
260 			    struct iio_chan_spec const *chan,
261 			    int *val, int *val2,
262 			    long mask)
263 {
264 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
265 	int ret;
266 	__be16 raw_val;
267 
268 	switch (mask) {
269 	case IIO_CHAN_INFO_OFFSET:
270 		switch (chan->type) {
271 		case IIO_TEMP:
272 			/* The temperature scaling is (x+23000)/280 Celsius */
273 			*val = 23000;
274 			return IIO_VAL_INT;
275 		default:
276 			return -EINVAL;
277 		}
278 	case IIO_CHAN_INFO_CALIBBIAS:
279 		switch (chan->type) {
280 		case IIO_ANGL_VEL:
281 			*val = mpu3050->calibration[chan->scan_index-1];
282 			return IIO_VAL_INT;
283 		default:
284 			return -EINVAL;
285 		}
286 	case IIO_CHAN_INFO_SAMP_FREQ:
287 		*val = mpu3050_get_freq(mpu3050);
288 		return IIO_VAL_INT;
289 	case IIO_CHAN_INFO_SCALE:
290 		switch (chan->type) {
291 		case IIO_TEMP:
292 			/* Millidegrees, see about temperature scaling above */
293 			*val = 1000;
294 			*val2 = 280;
295 			return IIO_VAL_FRACTIONAL;
296 		case IIO_ANGL_VEL:
297 			/*
298 			 * Convert to the corresponding full scale in
299 			 * radians. All 16 bits are used with sign to
300 			 * span the available scale: to account for the one
301 			 * missing value if we multiply by 1/S16_MAX, instead
302 			 * multiply with 2/U16_MAX.
303 			 */
304 			*val = mpu3050_fs_precision[mpu3050->fullscale] * 2;
305 			*val2 = U16_MAX;
306 			return IIO_VAL_FRACTIONAL;
307 		default:
308 			return -EINVAL;
309 		}
310 	case IIO_CHAN_INFO_RAW:
311 		/* Resume device */
312 		pm_runtime_get_sync(mpu3050->dev);
313 		mutex_lock(&mpu3050->lock);
314 
315 		ret = mpu3050_set_8khz_samplerate(mpu3050);
316 		if (ret)
317 			goto out_read_raw_unlock;
318 
319 		switch (chan->type) {
320 		case IIO_TEMP:
321 			ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H,
322 					       &raw_val, sizeof(raw_val));
323 			if (ret) {
324 				dev_err(mpu3050->dev,
325 					"error reading temperature\n");
326 				goto out_read_raw_unlock;
327 			}
328 
329 			*val = be16_to_cpu(raw_val);
330 			ret = IIO_VAL_INT;
331 
332 			goto out_read_raw_unlock;
333 		case IIO_ANGL_VEL:
334 			ret = regmap_bulk_read(mpu3050->map,
335 				       MPU3050_AXIS_REGS(chan->scan_index-1),
336 				       &raw_val,
337 				       sizeof(raw_val));
338 			if (ret) {
339 				dev_err(mpu3050->dev,
340 					"error reading axis data\n");
341 				goto out_read_raw_unlock;
342 			}
343 
344 			*val = be16_to_cpu(raw_val);
345 			ret = IIO_VAL_INT;
346 
347 			goto out_read_raw_unlock;
348 		default:
349 			ret = -EINVAL;
350 			goto out_read_raw_unlock;
351 		}
352 	default:
353 		break;
354 	}
355 
356 	return -EINVAL;
357 
358 out_read_raw_unlock:
359 	mutex_unlock(&mpu3050->lock);
360 	pm_runtime_mark_last_busy(mpu3050->dev);
361 	pm_runtime_put_autosuspend(mpu3050->dev);
362 
363 	return ret;
364 }
365 
366 static int mpu3050_write_raw(struct iio_dev *indio_dev,
367 			     const struct iio_chan_spec *chan,
368 			     int val, int val2, long mask)
369 {
370 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
371 	/*
372 	 * Couldn't figure out a way to precalculate these at compile time.
373 	 */
374 	unsigned int fs250 =
375 		DIV_ROUND_CLOSEST(mpu3050_fs_precision[0] * 1000000 * 2,
376 				  U16_MAX);
377 	unsigned int fs500 =
378 		DIV_ROUND_CLOSEST(mpu3050_fs_precision[1] * 1000000 * 2,
379 				  U16_MAX);
380 	unsigned int fs1000 =
381 		DIV_ROUND_CLOSEST(mpu3050_fs_precision[2] * 1000000 * 2,
382 				  U16_MAX);
383 	unsigned int fs2000 =
384 		DIV_ROUND_CLOSEST(mpu3050_fs_precision[3] * 1000000 * 2,
385 				  U16_MAX);
386 
387 	switch (mask) {
388 	case IIO_CHAN_INFO_CALIBBIAS:
389 		if (chan->type != IIO_ANGL_VEL)
390 			return -EINVAL;
391 		mpu3050->calibration[chan->scan_index-1] = val;
392 		return 0;
393 	case IIO_CHAN_INFO_SAMP_FREQ:
394 		/*
395 		 * The max samplerate is 8000 Hz, the minimum
396 		 * 1000 / 256 ~= 4 Hz
397 		 */
398 		if (val < 4 || val > 8000)
399 			return -EINVAL;
400 
401 		/*
402 		 * Above 1000 Hz we must turn off the digital low pass filter
403 		 * so we get a base frequency of 8kHz to the divider
404 		 */
405 		if (val > 1000) {
406 			mpu3050->lpf = LPF_256_HZ_NOLPF;
407 			mpu3050->divisor = DIV_ROUND_CLOSEST(8000, val) - 1;
408 			return 0;
409 		}
410 
411 		mpu3050->lpf = LPF_188_HZ;
412 		mpu3050->divisor = DIV_ROUND_CLOSEST(1000, val) - 1;
413 		return 0;
414 	case IIO_CHAN_INFO_SCALE:
415 		if (chan->type != IIO_ANGL_VEL)
416 			return -EINVAL;
417 		/*
418 		 * We support +/-250, +/-500, +/-1000 and +/2000 deg/s
419 		 * which means we need to round to the closest radians
420 		 * which will be roughly +/-4.3, +/-8.7, +/-17.5, +/-35
421 		 * rad/s. The scale is then for the 16 bits used to cover
422 		 * it 2/(2^16) of that.
423 		 */
424 
425 		/* Just too large, set the max range */
426 		if (val != 0) {
427 			mpu3050->fullscale = FS_2000_DPS;
428 			return 0;
429 		}
430 
431 		/*
432 		 * Now we're dealing with fractions below zero in millirad/s
433 		 * do some integer interpolation and match with the closest
434 		 * fullscale in the table.
435 		 */
436 		if (val2 <= fs250 ||
437 		    val2 < ((fs500 + fs250) / 2))
438 			mpu3050->fullscale = FS_250_DPS;
439 		else if (val2 <= fs500 ||
440 			 val2 < ((fs1000 + fs500) / 2))
441 			mpu3050->fullscale = FS_500_DPS;
442 		else if (val2 <= fs1000 ||
443 			 val2 < ((fs2000 + fs1000) / 2))
444 			mpu3050->fullscale = FS_1000_DPS;
445 		else
446 			/* Catch-all */
447 			mpu3050->fullscale = FS_2000_DPS;
448 		return 0;
449 	default:
450 		break;
451 	}
452 
453 	return -EINVAL;
454 }
455 
456 static irqreturn_t mpu3050_trigger_handler(int irq, void *p)
457 {
458 	const struct iio_poll_func *pf = p;
459 	struct iio_dev *indio_dev = pf->indio_dev;
460 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
461 	int ret;
462 	/*
463 	 * Temperature 1*16 bits
464 	 * Three axes 3*16 bits
465 	 * Timestamp 64 bits (4*16 bits)
466 	 * Sum total 8*16 bits
467 	 */
468 	__be16 hw_values[8];
469 	s64 timestamp;
470 	unsigned int datums_from_fifo = 0;
471 
472 	/*
473 	 * If we're using the hardware trigger, get the precise timestamp from
474 	 * the top half of the threaded IRQ handler. Otherwise get the
475 	 * timestamp here so it will be close in time to the actual values
476 	 * read from the registers.
477 	 */
478 	if (iio_trigger_using_own(indio_dev))
479 		timestamp = mpu3050->hw_timestamp;
480 	else
481 		timestamp = iio_get_time_ns(indio_dev);
482 
483 	mutex_lock(&mpu3050->lock);
484 
485 	/* Using the hardware IRQ trigger? Check the buffer then. */
486 	if (mpu3050->hw_irq_trigger) {
487 		__be16 raw_fifocnt;
488 		u16 fifocnt;
489 		/* X, Y, Z + temperature */
490 		unsigned int bytes_per_datum = 8;
491 		bool fifo_overflow = false;
492 
493 		ret = regmap_bulk_read(mpu3050->map,
494 				       MPU3050_FIFO_COUNT_H,
495 				       &raw_fifocnt,
496 				       sizeof(raw_fifocnt));
497 		if (ret)
498 			goto out_trigger_unlock;
499 		fifocnt = be16_to_cpu(raw_fifocnt);
500 
501 		if (fifocnt == 512) {
502 			dev_info(mpu3050->dev,
503 				 "FIFO overflow! Emptying and resetting FIFO\n");
504 			fifo_overflow = true;
505 			/* Reset and enable the FIFO */
506 			ret = regmap_update_bits(mpu3050->map,
507 						 MPU3050_USR_CTRL,
508 						 MPU3050_USR_CTRL_FIFO_EN |
509 						 MPU3050_USR_CTRL_FIFO_RST,
510 						 MPU3050_USR_CTRL_FIFO_EN |
511 						 MPU3050_USR_CTRL_FIFO_RST);
512 			if (ret) {
513 				dev_info(mpu3050->dev, "error resetting FIFO\n");
514 				goto out_trigger_unlock;
515 			}
516 			mpu3050->pending_fifo_footer = false;
517 		}
518 
519 		if (fifocnt)
520 			dev_dbg(mpu3050->dev,
521 				"%d bytes in the FIFO\n",
522 				fifocnt);
523 
524 		while (!fifo_overflow && fifocnt > bytes_per_datum) {
525 			unsigned int toread;
526 			unsigned int offset;
527 			__be16 fifo_values[5];
528 
529 			/*
530 			 * If there is a FIFO footer in the pipe, first clear
531 			 * that out. This follows the complex algorithm in the
532 			 * datasheet that states that you may never leave the
533 			 * FIFO empty after the first reading: you have to
534 			 * always leave two footer bytes in it. The footer is
535 			 * in practice just two zero bytes.
536 			 */
537 			if (mpu3050->pending_fifo_footer) {
538 				toread = bytes_per_datum + 2;
539 				offset = 0;
540 			} else {
541 				toread = bytes_per_datum;
542 				offset = 1;
543 				/* Put in some dummy value */
544 				fifo_values[0] = 0xAAAA;
545 			}
546 
547 			ret = regmap_bulk_read(mpu3050->map,
548 					       MPU3050_FIFO_R,
549 					       &fifo_values[offset],
550 					       toread);
551 
552 			dev_dbg(mpu3050->dev,
553 				"%04x %04x %04x %04x %04x\n",
554 				fifo_values[0],
555 				fifo_values[1],
556 				fifo_values[2],
557 				fifo_values[3],
558 				fifo_values[4]);
559 
560 			/* Index past the footer (fifo_values[0]) and push */
561 			iio_push_to_buffers_with_timestamp(indio_dev,
562 							   &fifo_values[1],
563 							   timestamp);
564 
565 			fifocnt -= toread;
566 			datums_from_fifo++;
567 			mpu3050->pending_fifo_footer = true;
568 
569 			/*
570 			 * If we're emptying the FIFO, just make sure to
571 			 * check if something new appeared.
572 			 */
573 			if (fifocnt < bytes_per_datum) {
574 				ret = regmap_bulk_read(mpu3050->map,
575 						       MPU3050_FIFO_COUNT_H,
576 						       &raw_fifocnt,
577 						       sizeof(raw_fifocnt));
578 				if (ret)
579 					goto out_trigger_unlock;
580 				fifocnt = be16_to_cpu(raw_fifocnt);
581 			}
582 
583 			if (fifocnt < bytes_per_datum)
584 				dev_dbg(mpu3050->dev,
585 					"%d bytes left in the FIFO\n",
586 					fifocnt);
587 
588 			/*
589 			 * At this point, the timestamp that triggered the
590 			 * hardware interrupt is no longer valid for what
591 			 * we are reading (the interrupt likely fired for
592 			 * the value on the top of the FIFO), so set the
593 			 * timestamp to zero and let userspace deal with it.
594 			 */
595 			timestamp = 0;
596 		}
597 	}
598 
599 	/*
600 	 * If we picked some datums from the FIFO that's enough, else
601 	 * fall through and just read from the current value registers.
602 	 * This happens in two cases:
603 	 *
604 	 * - We are using some other trigger (external, like an HRTimer)
605 	 *   than the sensor's own sample generator. In this case the
606 	 *   sensor is just set to the max sampling frequency and we give
607 	 *   the trigger a copy of the latest value every time we get here.
608 	 *
609 	 * - The hardware trigger is active but unused and we actually use
610 	 *   another trigger which calls here with a frequency higher
611 	 *   than what the device provides data. We will then just read
612 	 *   duplicate values directly from the hardware registers.
613 	 */
614 	if (datums_from_fifo) {
615 		dev_dbg(mpu3050->dev,
616 			"read %d datums from the FIFO\n",
617 			datums_from_fifo);
618 		goto out_trigger_unlock;
619 	}
620 
621 	ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H, &hw_values,
622 			       sizeof(hw_values));
623 	if (ret) {
624 		dev_err(mpu3050->dev,
625 			"error reading axis data\n");
626 		goto out_trigger_unlock;
627 	}
628 
629 	iio_push_to_buffers_with_timestamp(indio_dev, hw_values, timestamp);
630 
631 out_trigger_unlock:
632 	mutex_unlock(&mpu3050->lock);
633 	iio_trigger_notify_done(indio_dev->trig);
634 
635 	return IRQ_HANDLED;
636 }
637 
638 static int mpu3050_buffer_preenable(struct iio_dev *indio_dev)
639 {
640 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
641 
642 	pm_runtime_get_sync(mpu3050->dev);
643 
644 	/* Unless we have OUR trigger active, run at full speed */
645 	if (!mpu3050->hw_irq_trigger)
646 		return mpu3050_set_8khz_samplerate(mpu3050);
647 
648 	return 0;
649 }
650 
651 static int mpu3050_buffer_postdisable(struct iio_dev *indio_dev)
652 {
653 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
654 
655 	pm_runtime_mark_last_busy(mpu3050->dev);
656 	pm_runtime_put_autosuspend(mpu3050->dev);
657 
658 	return 0;
659 }
660 
661 static const struct iio_buffer_setup_ops mpu3050_buffer_setup_ops = {
662 	.preenable = mpu3050_buffer_preenable,
663 	.postenable = iio_triggered_buffer_postenable,
664 	.predisable = iio_triggered_buffer_predisable,
665 	.postdisable = mpu3050_buffer_postdisable,
666 };
667 
668 static const struct iio_mount_matrix *
669 mpu3050_get_mount_matrix(const struct iio_dev *indio_dev,
670 			 const struct iio_chan_spec *chan)
671 {
672 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
673 
674 	return &mpu3050->orientation;
675 }
676 
677 static const struct iio_chan_spec_ext_info mpu3050_ext_info[] = {
678 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, mpu3050_get_mount_matrix),
679 	{ },
680 };
681 
682 #define MPU3050_AXIS_CHANNEL(axis, index)				\
683 	{								\
684 		.type = IIO_ANGL_VEL,					\
685 		.modified = 1,						\
686 		.channel2 = IIO_MOD_##axis,				\
687 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
688 			BIT(IIO_CHAN_INFO_CALIBBIAS),			\
689 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),	\
690 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
691 		.ext_info = mpu3050_ext_info,				\
692 		.scan_index = index,					\
693 		.scan_type = {						\
694 			.sign = 's',					\
695 			.realbits = 16,					\
696 			.storagebits = 16,				\
697 			.endianness = IIO_BE,				\
698 		},							\
699 	}
700 
701 static const struct iio_chan_spec mpu3050_channels[] = {
702 	{
703 		.type = IIO_TEMP,
704 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
705 				      BIT(IIO_CHAN_INFO_SCALE) |
706 				      BIT(IIO_CHAN_INFO_OFFSET),
707 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
708 		.scan_index = 0,
709 		.scan_type = {
710 			.sign = 's',
711 			.realbits = 16,
712 			.storagebits = 16,
713 			.endianness = IIO_BE,
714 		},
715 	},
716 	MPU3050_AXIS_CHANNEL(X, 1),
717 	MPU3050_AXIS_CHANNEL(Y, 2),
718 	MPU3050_AXIS_CHANNEL(Z, 3),
719 	IIO_CHAN_SOFT_TIMESTAMP(4),
720 };
721 
722 /* Four channels apart from timestamp, scan mask = 0x0f */
723 static const unsigned long mpu3050_scan_masks[] = { 0xf, 0 };
724 
725 /*
726  * These are just the hardcoded factors resulting from the more elaborate
727  * calculations done with fractions in the scale raw get/set functions.
728  */
729 static IIO_CONST_ATTR(anglevel_scale_available,
730 		      "0.000122070 "
731 		      "0.000274658 "
732 		      "0.000518798 "
733 		      "0.001068115");
734 
735 static struct attribute *mpu3050_attributes[] = {
736 	&iio_const_attr_anglevel_scale_available.dev_attr.attr,
737 	NULL,
738 };
739 
740 static const struct attribute_group mpu3050_attribute_group = {
741 	.attrs = mpu3050_attributes,
742 };
743 
744 static const struct iio_info mpu3050_info = {
745 	.driver_module = THIS_MODULE,
746 	.read_raw = mpu3050_read_raw,
747 	.write_raw = mpu3050_write_raw,
748 	.attrs = &mpu3050_attribute_group,
749 };
750 
751 /**
752  * mpu3050_read_mem() - read MPU-3050 internal memory
753  * @mpu3050: device to read from
754  * @bank: target bank
755  * @addr: target address
756  * @len: number of bytes
757  * @buf: the buffer to store the read bytes in
758  */
759 static int mpu3050_read_mem(struct mpu3050 *mpu3050,
760 			    u8 bank,
761 			    u8 addr,
762 			    u8 len,
763 			    u8 *buf)
764 {
765 	int ret;
766 
767 	ret = regmap_write(mpu3050->map,
768 			   MPU3050_BANK_SEL,
769 			   bank);
770 	if (ret)
771 		return ret;
772 
773 	ret = regmap_write(mpu3050->map,
774 			   MPU3050_MEM_START_ADDR,
775 			   addr);
776 	if (ret)
777 		return ret;
778 
779 	return regmap_bulk_read(mpu3050->map,
780 				MPU3050_MEM_R_W,
781 				buf,
782 				len);
783 }
784 
785 static int mpu3050_hw_init(struct mpu3050 *mpu3050)
786 {
787 	int ret;
788 	u8 otp[8];
789 
790 	/* Reset */
791 	ret = regmap_update_bits(mpu3050->map,
792 				 MPU3050_PWR_MGM,
793 				 MPU3050_PWR_MGM_RESET,
794 				 MPU3050_PWR_MGM_RESET);
795 	if (ret)
796 		return ret;
797 
798 	/* Turn on the PLL */
799 	ret = regmap_update_bits(mpu3050->map,
800 				 MPU3050_PWR_MGM,
801 				 MPU3050_PWR_MGM_CLKSEL_MASK,
802 				 MPU3050_PWR_MGM_PLL_Z);
803 	if (ret)
804 		return ret;
805 
806 	/* Disable IRQs */
807 	ret = regmap_write(mpu3050->map,
808 			   MPU3050_INT_CFG,
809 			   0);
810 	if (ret)
811 		return ret;
812 
813 	/* Read out the 8 bytes of OTP (one-time-programmable) memory */
814 	ret = mpu3050_read_mem(mpu3050,
815 			       (MPU3050_MEM_PRFTCH |
816 				MPU3050_MEM_USER_BANK |
817 				MPU3050_MEM_OTP_BANK_0),
818 			       0,
819 			       sizeof(otp),
820 			       otp);
821 	if (ret)
822 		return ret;
823 
824 	/* This is device-unique data so it goes into the entropy pool */
825 	add_device_randomness(otp, sizeof(otp));
826 
827 	dev_info(mpu3050->dev,
828 		 "die ID: %04X, wafer ID: %02X, A lot ID: %04X, "
829 		 "W lot ID: %03X, WP ID: %01X, rev ID: %02X\n",
830 		 /* Die ID, bits 0-12 */
831 		 (otp[1] << 8 | otp[0]) & 0x1fff,
832 		 /* Wafer ID, bits 13-17 */
833 		 ((otp[2] << 8 | otp[1]) & 0x03e0) >> 5,
834 		 /* A lot ID, bits 18-33 */
835 		 ((otp[4] << 16 | otp[3] << 8 | otp[2]) & 0x3fffc) >> 2,
836 		 /* W lot ID, bits 34-45 */
837 		 ((otp[5] << 8 | otp[4]) & 0x3ffc) >> 2,
838 		 /* WP ID, bits 47-49 */
839 		 ((otp[6] << 8 | otp[5]) & 0x0380) >> 7,
840 		 /* rev ID, bits 50-55 */
841 		 otp[6] >> 2);
842 
843 	return 0;
844 }
845 
846 static int mpu3050_power_up(struct mpu3050 *mpu3050)
847 {
848 	int ret;
849 
850 	ret = regulator_bulk_enable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
851 	if (ret) {
852 		dev_err(mpu3050->dev, "cannot enable regulators\n");
853 		return ret;
854 	}
855 	/*
856 	 * 20-100 ms start-up time for register read/write according to
857 	 * the datasheet, be on the safe side and wait 200 ms.
858 	 */
859 	msleep(200);
860 
861 	/* Take device out of sleep mode */
862 	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
863 				 MPU3050_PWR_MGM_SLEEP, 0);
864 	if (ret) {
865 		dev_err(mpu3050->dev, "error setting power mode\n");
866 		return ret;
867 	}
868 	msleep(10);
869 
870 	return 0;
871 }
872 
873 static int mpu3050_power_down(struct mpu3050 *mpu3050)
874 {
875 	int ret;
876 
877 	/*
878 	 * Put MPU-3050 into sleep mode before cutting regulators.
879 	 * This is important, because we may not be the sole user
880 	 * of the regulator so the power may stay on after this, and
881 	 * then we would be wasting power unless we go to sleep mode
882 	 * first.
883 	 */
884 	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
885 				 MPU3050_PWR_MGM_SLEEP, MPU3050_PWR_MGM_SLEEP);
886 	if (ret)
887 		dev_err(mpu3050->dev, "error putting to sleep\n");
888 
889 	ret = regulator_bulk_disable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
890 	if (ret)
891 		dev_err(mpu3050->dev, "error disabling regulators\n");
892 
893 	return 0;
894 }
895 
896 static irqreturn_t mpu3050_irq_handler(int irq, void *p)
897 {
898 	struct iio_trigger *trig = p;
899 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
900 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
901 
902 	if (!mpu3050->hw_irq_trigger)
903 		return IRQ_NONE;
904 
905 	/* Get the time stamp as close in time as possible */
906 	mpu3050->hw_timestamp = iio_get_time_ns(indio_dev);
907 
908 	return IRQ_WAKE_THREAD;
909 }
910 
911 static irqreturn_t mpu3050_irq_thread(int irq, void *p)
912 {
913 	struct iio_trigger *trig = p;
914 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
915 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
916 	unsigned int val;
917 	int ret;
918 
919 	/* ACK IRQ and check if it was from us */
920 	ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
921 	if (ret) {
922 		dev_err(mpu3050->dev, "error reading IRQ status\n");
923 		return IRQ_HANDLED;
924 	}
925 	if (!(val & MPU3050_INT_STATUS_RAW_RDY))
926 		return IRQ_NONE;
927 
928 	iio_trigger_poll_chained(p);
929 
930 	return IRQ_HANDLED;
931 }
932 
933 /**
934  * mpu3050_drdy_trigger_set_state() - set data ready interrupt state
935  * @trig: trigger instance
936  * @enable: true if trigger should be enabled, false to disable
937  */
938 static int mpu3050_drdy_trigger_set_state(struct iio_trigger *trig,
939 					  bool enable)
940 {
941 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
942 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
943 	unsigned int val;
944 	int ret;
945 
946 	/* Disabling trigger: disable interrupt and return */
947 	if (!enable) {
948 		/* Disable all interrupts */
949 		ret = regmap_write(mpu3050->map,
950 				   MPU3050_INT_CFG,
951 				   0);
952 		if (ret)
953 			dev_err(mpu3050->dev, "error disabling IRQ\n");
954 
955 		/* Clear IRQ flag */
956 		ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
957 		if (ret)
958 			dev_err(mpu3050->dev, "error clearing IRQ status\n");
959 
960 		/* Disable all things in the FIFO and reset it */
961 		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
962 		if (ret)
963 			dev_err(mpu3050->dev, "error disabling FIFO\n");
964 
965 		ret = regmap_write(mpu3050->map, MPU3050_USR_CTRL,
966 				   MPU3050_USR_CTRL_FIFO_RST);
967 		if (ret)
968 			dev_err(mpu3050->dev, "error resetting FIFO\n");
969 
970 		pm_runtime_mark_last_busy(mpu3050->dev);
971 		pm_runtime_put_autosuspend(mpu3050->dev);
972 		mpu3050->hw_irq_trigger = false;
973 
974 		return 0;
975 	} else {
976 		/* Else we're enabling the trigger from this point */
977 		pm_runtime_get_sync(mpu3050->dev);
978 		mpu3050->hw_irq_trigger = true;
979 
980 		/* Disable all things in the FIFO */
981 		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
982 		if (ret)
983 			return ret;
984 
985 		/* Reset and enable the FIFO */
986 		ret = regmap_update_bits(mpu3050->map, MPU3050_USR_CTRL,
987 					 MPU3050_USR_CTRL_FIFO_EN |
988 					 MPU3050_USR_CTRL_FIFO_RST,
989 					 MPU3050_USR_CTRL_FIFO_EN |
990 					 MPU3050_USR_CTRL_FIFO_RST);
991 		if (ret)
992 			return ret;
993 
994 		mpu3050->pending_fifo_footer = false;
995 
996 		/* Turn on the FIFO for temp+X+Y+Z */
997 		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN,
998 				   MPU3050_FIFO_EN_TEMP_OUT |
999 				   MPU3050_FIFO_EN_GYRO_XOUT |
1000 				   MPU3050_FIFO_EN_GYRO_YOUT |
1001 				   MPU3050_FIFO_EN_GYRO_ZOUT |
1002 				   MPU3050_FIFO_EN_FOOTER);
1003 		if (ret)
1004 			return ret;
1005 
1006 		/* Configure the sample engine */
1007 		ret = mpu3050_start_sampling(mpu3050);
1008 		if (ret)
1009 			return ret;
1010 
1011 		/* Clear IRQ flag */
1012 		ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
1013 		if (ret)
1014 			dev_err(mpu3050->dev, "error clearing IRQ status\n");
1015 
1016 		/* Give us interrupts whenever there is new data ready */
1017 		val = MPU3050_INT_RAW_RDY_EN;
1018 
1019 		if (mpu3050->irq_actl)
1020 			val |= MPU3050_INT_ACTL;
1021 		if (mpu3050->irq_latch)
1022 			val |= MPU3050_INT_LATCH_EN;
1023 		if (mpu3050->irq_opendrain)
1024 			val |= MPU3050_INT_OPEN;
1025 
1026 		ret = regmap_write(mpu3050->map, MPU3050_INT_CFG, val);
1027 		if (ret)
1028 			return ret;
1029 	}
1030 
1031 	return 0;
1032 }
1033 
1034 static const struct iio_trigger_ops mpu3050_trigger_ops = {
1035 	.owner = THIS_MODULE,
1036 	.set_trigger_state = mpu3050_drdy_trigger_set_state,
1037 };
1038 
1039 static int mpu3050_trigger_probe(struct iio_dev *indio_dev, int irq)
1040 {
1041 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1042 	unsigned long irq_trig;
1043 	int ret;
1044 
1045 	mpu3050->trig = devm_iio_trigger_alloc(&indio_dev->dev,
1046 					       "%s-dev%d",
1047 					       indio_dev->name,
1048 					       indio_dev->id);
1049 	if (!mpu3050->trig)
1050 		return -ENOMEM;
1051 
1052 	/* Check if IRQ is open drain */
1053 	if (of_property_read_bool(mpu3050->dev->of_node, "drive-open-drain"))
1054 		mpu3050->irq_opendrain = true;
1055 
1056 	irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
1057 	/*
1058 	 * Configure the interrupt generator hardware to supply whatever
1059 	 * the interrupt is configured for, edges low/high level low/high,
1060 	 * we can provide it all.
1061 	 */
1062 	switch (irq_trig) {
1063 	case IRQF_TRIGGER_RISING:
1064 		dev_info(&indio_dev->dev,
1065 			 "pulse interrupts on the rising edge\n");
1066 		if (mpu3050->irq_opendrain) {
1067 			dev_info(&indio_dev->dev,
1068 				 "rising edge incompatible with open drain\n");
1069 			mpu3050->irq_opendrain = false;
1070 		}
1071 		break;
1072 	case IRQF_TRIGGER_FALLING:
1073 		mpu3050->irq_actl = true;
1074 		dev_info(&indio_dev->dev,
1075 			 "pulse interrupts on the falling edge\n");
1076 		break;
1077 	case IRQF_TRIGGER_HIGH:
1078 		mpu3050->irq_latch = true;
1079 		dev_info(&indio_dev->dev,
1080 			 "interrupts active high level\n");
1081 		if (mpu3050->irq_opendrain) {
1082 			dev_info(&indio_dev->dev,
1083 				 "active high incompatible with open drain\n");
1084 			mpu3050->irq_opendrain = false;
1085 		}
1086 		/*
1087 		 * With level IRQs, we mask the IRQ until it is processed,
1088 		 * but with edge IRQs (pulses) we can queue several interrupts
1089 		 * in the top half.
1090 		 */
1091 		irq_trig |= IRQF_ONESHOT;
1092 		break;
1093 	case IRQF_TRIGGER_LOW:
1094 		mpu3050->irq_latch = true;
1095 		mpu3050->irq_actl = true;
1096 		irq_trig |= IRQF_ONESHOT;
1097 		dev_info(&indio_dev->dev,
1098 			 "interrupts active low level\n");
1099 		break;
1100 	default:
1101 		/* This is the most preferred mode, if possible */
1102 		dev_err(&indio_dev->dev,
1103 			"unsupported IRQ trigger specified (%lx), enforce "
1104 			"rising edge\n", irq_trig);
1105 		irq_trig = IRQF_TRIGGER_RISING;
1106 		break;
1107 	}
1108 
1109 	/* An open drain line can be shared with several devices */
1110 	if (mpu3050->irq_opendrain)
1111 		irq_trig |= IRQF_SHARED;
1112 
1113 	ret = request_threaded_irq(irq,
1114 				   mpu3050_irq_handler,
1115 				   mpu3050_irq_thread,
1116 				   irq_trig,
1117 				   mpu3050->trig->name,
1118 				   mpu3050->trig);
1119 	if (ret) {
1120 		dev_err(mpu3050->dev,
1121 			"can't get IRQ %d, error %d\n", irq, ret);
1122 		return ret;
1123 	}
1124 
1125 	mpu3050->irq = irq;
1126 	mpu3050->trig->dev.parent = mpu3050->dev;
1127 	mpu3050->trig->ops = &mpu3050_trigger_ops;
1128 	iio_trigger_set_drvdata(mpu3050->trig, indio_dev);
1129 
1130 	ret = iio_trigger_register(mpu3050->trig);
1131 	if (ret)
1132 		return ret;
1133 
1134 	indio_dev->trig = iio_trigger_get(mpu3050->trig);
1135 
1136 	return 0;
1137 }
1138 
1139 int mpu3050_common_probe(struct device *dev,
1140 			 struct regmap *map,
1141 			 int irq,
1142 			 const char *name)
1143 {
1144 	struct iio_dev *indio_dev;
1145 	struct mpu3050 *mpu3050;
1146 	unsigned int val;
1147 	int ret;
1148 
1149 	indio_dev = devm_iio_device_alloc(dev, sizeof(*mpu3050));
1150 	if (!indio_dev)
1151 		return -ENOMEM;
1152 	mpu3050 = iio_priv(indio_dev);
1153 
1154 	mpu3050->dev = dev;
1155 	mpu3050->map = map;
1156 	mutex_init(&mpu3050->lock);
1157 	/* Default fullscale: 2000 degrees per second */
1158 	mpu3050->fullscale = FS_2000_DPS;
1159 	/* 1 kHz, divide by 100, default frequency = 10 Hz */
1160 	mpu3050->lpf = MPU3050_DLPF_CFG_188HZ;
1161 	mpu3050->divisor = 99;
1162 
1163 	/* Read the mounting matrix, if present */
1164 	ret = of_iio_read_mount_matrix(dev, "mount-matrix",
1165 				       &mpu3050->orientation);
1166 	if (ret)
1167 		return ret;
1168 
1169 	/* Fetch and turn on regulators */
1170 	mpu3050->regs[0].supply = mpu3050_reg_vdd;
1171 	mpu3050->regs[1].supply = mpu3050_reg_vlogic;
1172 	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(mpu3050->regs),
1173 				      mpu3050->regs);
1174 	if (ret) {
1175 		dev_err(dev, "Cannot get regulators\n");
1176 		return ret;
1177 	}
1178 
1179 	ret = mpu3050_power_up(mpu3050);
1180 	if (ret)
1181 		return ret;
1182 
1183 	ret = regmap_read(map, MPU3050_CHIP_ID_REG, &val);
1184 	if (ret) {
1185 		dev_err(dev, "could not read device ID\n");
1186 		ret = -ENODEV;
1187 
1188 		goto err_power_down;
1189 	}
1190 
1191 	if (val != MPU3050_CHIP_ID) {
1192 		dev_err(dev, "unsupported chip id %02x\n", (u8)val);
1193 		ret = -ENODEV;
1194 		goto err_power_down;
1195 	}
1196 
1197 	ret = regmap_read(map, MPU3050_PRODUCT_ID_REG, &val);
1198 	if (ret) {
1199 		dev_err(dev, "could not read device ID\n");
1200 		ret = -ENODEV;
1201 
1202 		goto err_power_down;
1203 	}
1204 	dev_info(dev, "found MPU-3050 part no: %d, version: %d\n",
1205 		 ((val >> 4) & 0xf), (val & 0xf));
1206 
1207 	ret = mpu3050_hw_init(mpu3050);
1208 	if (ret)
1209 		goto err_power_down;
1210 
1211 	indio_dev->dev.parent = dev;
1212 	indio_dev->channels = mpu3050_channels;
1213 	indio_dev->num_channels = ARRAY_SIZE(mpu3050_channels);
1214 	indio_dev->info = &mpu3050_info;
1215 	indio_dev->available_scan_masks = mpu3050_scan_masks;
1216 	indio_dev->modes = INDIO_DIRECT_MODE;
1217 	indio_dev->name = name;
1218 
1219 	ret = iio_triggered_buffer_setup(indio_dev, iio_pollfunc_store_time,
1220 					 mpu3050_trigger_handler,
1221 					 &mpu3050_buffer_setup_ops);
1222 	if (ret) {
1223 		dev_err(dev, "triggered buffer setup failed\n");
1224 		goto err_power_down;
1225 	}
1226 
1227 	ret = iio_device_register(indio_dev);
1228 	if (ret) {
1229 		dev_err(dev, "device register failed\n");
1230 		goto err_cleanup_buffer;
1231 	}
1232 
1233 	dev_set_drvdata(dev, indio_dev);
1234 
1235 	/* Check if we have an assigned IRQ to use as trigger */
1236 	if (irq) {
1237 		ret = mpu3050_trigger_probe(indio_dev, irq);
1238 		if (ret)
1239 			dev_err(dev, "failed to register trigger\n");
1240 	}
1241 
1242 	/* Enable runtime PM */
1243 	pm_runtime_get_noresume(dev);
1244 	pm_runtime_set_active(dev);
1245 	pm_runtime_enable(dev);
1246 	/*
1247 	 * Set autosuspend to two orders of magnitude larger than the
1248 	 * start-up time. 100ms start-up time means 10000ms autosuspend,
1249 	 * i.e. 10 seconds.
1250 	 */
1251 	pm_runtime_set_autosuspend_delay(dev, 10000);
1252 	pm_runtime_use_autosuspend(dev);
1253 	pm_runtime_put(dev);
1254 
1255 	return 0;
1256 
1257 err_cleanup_buffer:
1258 	iio_triggered_buffer_cleanup(indio_dev);
1259 err_power_down:
1260 	mpu3050_power_down(mpu3050);
1261 
1262 	return ret;
1263 }
1264 EXPORT_SYMBOL(mpu3050_common_probe);
1265 
1266 int mpu3050_common_remove(struct device *dev)
1267 {
1268 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1269 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1270 
1271 	pm_runtime_get_sync(dev);
1272 	pm_runtime_put_noidle(dev);
1273 	pm_runtime_disable(dev);
1274 	iio_triggered_buffer_cleanup(indio_dev);
1275 	if (mpu3050->irq)
1276 		free_irq(mpu3050->irq, mpu3050);
1277 	iio_device_unregister(indio_dev);
1278 	mpu3050_power_down(mpu3050);
1279 
1280 	return 0;
1281 }
1282 EXPORT_SYMBOL(mpu3050_common_remove);
1283 
1284 #ifdef CONFIG_PM
1285 static int mpu3050_runtime_suspend(struct device *dev)
1286 {
1287 	return mpu3050_power_down(iio_priv(dev_get_drvdata(dev)));
1288 }
1289 
1290 static int mpu3050_runtime_resume(struct device *dev)
1291 {
1292 	return mpu3050_power_up(iio_priv(dev_get_drvdata(dev)));
1293 }
1294 #endif /* CONFIG_PM */
1295 
1296 const struct dev_pm_ops mpu3050_dev_pm_ops = {
1297 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1298 				pm_runtime_force_resume)
1299 	SET_RUNTIME_PM_OPS(mpu3050_runtime_suspend,
1300 			   mpu3050_runtime_resume, NULL)
1301 };
1302 EXPORT_SYMBOL(mpu3050_dev_pm_ops);
1303 
1304 MODULE_AUTHOR("Linus Walleij");
1305 MODULE_DESCRIPTION("MPU3050 gyroscope driver");
1306 MODULE_LICENSE("GPL");
1307