xref: /openbmc/linux/drivers/iio/gyro/mpu3050-core.c (revision 151f4e2b)
1 /*
2  * MPU3050 gyroscope driver
3  *
4  * Copyright (C) 2016 Linaro Ltd.
5  * Author: Linus Walleij <linus.walleij@linaro.org>
6  *
7  * Based on the input subsystem driver, Copyright (C) 2011 Wistron Co.Ltd
8  * Joseph Lai <joseph_lai@wistron.com> and trimmed down by
9  * Alan Cox <alan@linux.intel.com> in turn based on bma023.c.
10  * Device behaviour based on a misc driver posted by Nathan Royer in 2011.
11  *
12  * TODO: add support for setting up the low pass 3dB frequency.
13  */
14 
15 #include <linux/bitops.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/iio/buffer.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/trigger.h>
22 #include <linux/iio/trigger_consumer.h>
23 #include <linux/iio/triggered_buffer.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/random.h>
28 #include <linux/slab.h>
29 
30 #include "mpu3050.h"
31 
32 #define MPU3050_CHIP_ID		0x68
33 #define MPU3050_CHIP_ID_MASK	0x7E
34 
35 /*
36  * Register map: anything suffixed *_H is a big-endian high byte and always
37  * followed by the corresponding low byte (*_L) even though these are not
38  * explicitly included in the register definitions.
39  */
40 #define MPU3050_CHIP_ID_REG	0x00
41 #define MPU3050_PRODUCT_ID_REG	0x01
42 #define MPU3050_XG_OFFS_TC	0x05
43 #define MPU3050_YG_OFFS_TC	0x08
44 #define MPU3050_ZG_OFFS_TC	0x0B
45 #define MPU3050_X_OFFS_USR_H	0x0C
46 #define MPU3050_Y_OFFS_USR_H	0x0E
47 #define MPU3050_Z_OFFS_USR_H	0x10
48 #define MPU3050_FIFO_EN		0x12
49 #define MPU3050_AUX_VDDIO	0x13
50 #define MPU3050_SLV_ADDR	0x14
51 #define MPU3050_SMPLRT_DIV	0x15
52 #define MPU3050_DLPF_FS_SYNC	0x16
53 #define MPU3050_INT_CFG		0x17
54 #define MPU3050_AUX_ADDR	0x18
55 #define MPU3050_INT_STATUS	0x1A
56 #define MPU3050_TEMP_H		0x1B
57 #define MPU3050_XOUT_H		0x1D
58 #define MPU3050_YOUT_H		0x1F
59 #define MPU3050_ZOUT_H		0x21
60 #define MPU3050_DMP_CFG1	0x35
61 #define MPU3050_DMP_CFG2	0x36
62 #define MPU3050_BANK_SEL	0x37
63 #define MPU3050_MEM_START_ADDR	0x38
64 #define MPU3050_MEM_R_W		0x39
65 #define MPU3050_FIFO_COUNT_H	0x3A
66 #define MPU3050_FIFO_R		0x3C
67 #define MPU3050_USR_CTRL	0x3D
68 #define MPU3050_PWR_MGM		0x3E
69 
70 /* MPU memory bank read options */
71 #define MPU3050_MEM_PRFTCH	BIT(5)
72 #define MPU3050_MEM_USER_BANK	BIT(4)
73 /* Bits 8-11 select memory bank */
74 #define MPU3050_MEM_RAM_BANK_0	0
75 #define MPU3050_MEM_RAM_BANK_1	1
76 #define MPU3050_MEM_RAM_BANK_2	2
77 #define MPU3050_MEM_RAM_BANK_3	3
78 #define MPU3050_MEM_OTP_BANK_0	4
79 
80 #define MPU3050_AXIS_REGS(axis) (MPU3050_XOUT_H + (axis * 2))
81 
82 /* Register bits */
83 
84 /* FIFO Enable */
85 #define MPU3050_FIFO_EN_FOOTER		BIT(0)
86 #define MPU3050_FIFO_EN_AUX_ZOUT	BIT(1)
87 #define MPU3050_FIFO_EN_AUX_YOUT	BIT(2)
88 #define MPU3050_FIFO_EN_AUX_XOUT	BIT(3)
89 #define MPU3050_FIFO_EN_GYRO_ZOUT	BIT(4)
90 #define MPU3050_FIFO_EN_GYRO_YOUT	BIT(5)
91 #define MPU3050_FIFO_EN_GYRO_XOUT	BIT(6)
92 #define MPU3050_FIFO_EN_TEMP_OUT	BIT(7)
93 
94 /*
95  * Digital Low Pass filter (DLPF)
96  * Full Scale (FS)
97  * and Synchronization
98  */
99 #define MPU3050_EXT_SYNC_NONE		0x00
100 #define MPU3050_EXT_SYNC_TEMP		0x20
101 #define MPU3050_EXT_SYNC_GYROX		0x40
102 #define MPU3050_EXT_SYNC_GYROY		0x60
103 #define MPU3050_EXT_SYNC_GYROZ		0x80
104 #define MPU3050_EXT_SYNC_ACCELX	0xA0
105 #define MPU3050_EXT_SYNC_ACCELY	0xC0
106 #define MPU3050_EXT_SYNC_ACCELZ	0xE0
107 #define MPU3050_EXT_SYNC_MASK		0xE0
108 #define MPU3050_EXT_SYNC_SHIFT		5
109 
110 #define MPU3050_FS_250DPS		0x00
111 #define MPU3050_FS_500DPS		0x08
112 #define MPU3050_FS_1000DPS		0x10
113 #define MPU3050_FS_2000DPS		0x18
114 #define MPU3050_FS_MASK			0x18
115 #define MPU3050_FS_SHIFT		3
116 
117 #define MPU3050_DLPF_CFG_256HZ_NOLPF2	0x00
118 #define MPU3050_DLPF_CFG_188HZ		0x01
119 #define MPU3050_DLPF_CFG_98HZ		0x02
120 #define MPU3050_DLPF_CFG_42HZ		0x03
121 #define MPU3050_DLPF_CFG_20HZ		0x04
122 #define MPU3050_DLPF_CFG_10HZ		0x05
123 #define MPU3050_DLPF_CFG_5HZ		0x06
124 #define MPU3050_DLPF_CFG_2100HZ_NOLPF	0x07
125 #define MPU3050_DLPF_CFG_MASK		0x07
126 #define MPU3050_DLPF_CFG_SHIFT		0
127 
128 /* Interrupt config */
129 #define MPU3050_INT_RAW_RDY_EN		BIT(0)
130 #define MPU3050_INT_DMP_DONE_EN		BIT(1)
131 #define MPU3050_INT_MPU_RDY_EN		BIT(2)
132 #define MPU3050_INT_ANYRD_2CLEAR	BIT(4)
133 #define MPU3050_INT_LATCH_EN		BIT(5)
134 #define MPU3050_INT_OPEN		BIT(6)
135 #define MPU3050_INT_ACTL		BIT(7)
136 /* Interrupt status */
137 #define MPU3050_INT_STATUS_RAW_RDY	BIT(0)
138 #define MPU3050_INT_STATUS_DMP_DONE	BIT(1)
139 #define MPU3050_INT_STATUS_MPU_RDY	BIT(2)
140 #define MPU3050_INT_STATUS_FIFO_OVFLW	BIT(7)
141 /* USR_CTRL */
142 #define MPU3050_USR_CTRL_FIFO_EN	BIT(6)
143 #define MPU3050_USR_CTRL_AUX_IF_EN	BIT(5)
144 #define MPU3050_USR_CTRL_AUX_IF_RST	BIT(3)
145 #define MPU3050_USR_CTRL_FIFO_RST	BIT(1)
146 #define MPU3050_USR_CTRL_GYRO_RST	BIT(0)
147 /* PWR_MGM */
148 #define MPU3050_PWR_MGM_PLL_X		0x01
149 #define MPU3050_PWR_MGM_PLL_Y		0x02
150 #define MPU3050_PWR_MGM_PLL_Z		0x03
151 #define MPU3050_PWR_MGM_CLKSEL_MASK	0x07
152 #define MPU3050_PWR_MGM_STBY_ZG		BIT(3)
153 #define MPU3050_PWR_MGM_STBY_YG		BIT(4)
154 #define MPU3050_PWR_MGM_STBY_XG		BIT(5)
155 #define MPU3050_PWR_MGM_SLEEP		BIT(6)
156 #define MPU3050_PWR_MGM_RESET		BIT(7)
157 #define MPU3050_PWR_MGM_MASK		0xff
158 
159 /*
160  * Fullscale precision is (for finest precision) +/- 250 deg/s, so the full
161  * scale is actually 500 deg/s. All 16 bits are then used to cover this scale,
162  * in two's complement.
163  */
164 static unsigned int mpu3050_fs_precision[] = {
165 	IIO_DEGREE_TO_RAD(250),
166 	IIO_DEGREE_TO_RAD(500),
167 	IIO_DEGREE_TO_RAD(1000),
168 	IIO_DEGREE_TO_RAD(2000)
169 };
170 
171 /*
172  * Regulator names
173  */
174 static const char mpu3050_reg_vdd[] = "vdd";
175 static const char mpu3050_reg_vlogic[] = "vlogic";
176 
177 static unsigned int mpu3050_get_freq(struct mpu3050 *mpu3050)
178 {
179 	unsigned int freq;
180 
181 	if (mpu3050->lpf == MPU3050_DLPF_CFG_256HZ_NOLPF2)
182 		freq = 8000;
183 	else
184 		freq = 1000;
185 	freq /= (mpu3050->divisor + 1);
186 
187 	return freq;
188 }
189 
190 static int mpu3050_start_sampling(struct mpu3050 *mpu3050)
191 {
192 	__be16 raw_val[3];
193 	int ret;
194 	int i;
195 
196 	/* Reset */
197 	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
198 				 MPU3050_PWR_MGM_RESET, MPU3050_PWR_MGM_RESET);
199 	if (ret)
200 		return ret;
201 
202 	/* Turn on the Z-axis PLL */
203 	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
204 				 MPU3050_PWR_MGM_CLKSEL_MASK,
205 				 MPU3050_PWR_MGM_PLL_Z);
206 	if (ret)
207 		return ret;
208 
209 	/* Write calibration offset registers */
210 	for (i = 0; i < 3; i++)
211 		raw_val[i] = cpu_to_be16(mpu3050->calibration[i]);
212 
213 	ret = regmap_bulk_write(mpu3050->map, MPU3050_X_OFFS_USR_H, raw_val,
214 				sizeof(raw_val));
215 	if (ret)
216 		return ret;
217 
218 	/* Set low pass filter (sample rate), sync and full scale */
219 	ret = regmap_write(mpu3050->map, MPU3050_DLPF_FS_SYNC,
220 			   MPU3050_EXT_SYNC_NONE << MPU3050_EXT_SYNC_SHIFT |
221 			   mpu3050->fullscale << MPU3050_FS_SHIFT |
222 			   mpu3050->lpf << MPU3050_DLPF_CFG_SHIFT);
223 	if (ret)
224 		return ret;
225 
226 	/* Set up sampling frequency */
227 	ret = regmap_write(mpu3050->map, MPU3050_SMPLRT_DIV, mpu3050->divisor);
228 	if (ret)
229 		return ret;
230 
231 	/*
232 	 * Max 50 ms start-up time after setting DLPF_FS_SYNC
233 	 * according to the data sheet, then wait for the next sample
234 	 * at this frequency T = 1000/f ms.
235 	 */
236 	msleep(50 + 1000 / mpu3050_get_freq(mpu3050));
237 
238 	return 0;
239 }
240 
241 static int mpu3050_set_8khz_samplerate(struct mpu3050 *mpu3050)
242 {
243 	int ret;
244 	u8 divisor;
245 	enum mpu3050_lpf lpf;
246 
247 	lpf = mpu3050->lpf;
248 	divisor = mpu3050->divisor;
249 
250 	mpu3050->lpf = LPF_256_HZ_NOLPF; /* 8 kHz base frequency */
251 	mpu3050->divisor = 0; /* Divide by 1 */
252 	ret = mpu3050_start_sampling(mpu3050);
253 
254 	mpu3050->lpf = lpf;
255 	mpu3050->divisor = divisor;
256 
257 	return ret;
258 }
259 
260 static int mpu3050_read_raw(struct iio_dev *indio_dev,
261 			    struct iio_chan_spec const *chan,
262 			    int *val, int *val2,
263 			    long mask)
264 {
265 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
266 	int ret;
267 	__be16 raw_val;
268 
269 	switch (mask) {
270 	case IIO_CHAN_INFO_OFFSET:
271 		switch (chan->type) {
272 		case IIO_TEMP:
273 			/* The temperature scaling is (x+23000)/280 Celsius */
274 			*val = 23000;
275 			return IIO_VAL_INT;
276 		default:
277 			return -EINVAL;
278 		}
279 	case IIO_CHAN_INFO_CALIBBIAS:
280 		switch (chan->type) {
281 		case IIO_ANGL_VEL:
282 			*val = mpu3050->calibration[chan->scan_index-1];
283 			return IIO_VAL_INT;
284 		default:
285 			return -EINVAL;
286 		}
287 	case IIO_CHAN_INFO_SAMP_FREQ:
288 		*val = mpu3050_get_freq(mpu3050);
289 		return IIO_VAL_INT;
290 	case IIO_CHAN_INFO_SCALE:
291 		switch (chan->type) {
292 		case IIO_TEMP:
293 			/* Millidegrees, see about temperature scaling above */
294 			*val = 1000;
295 			*val2 = 280;
296 			return IIO_VAL_FRACTIONAL;
297 		case IIO_ANGL_VEL:
298 			/*
299 			 * Convert to the corresponding full scale in
300 			 * radians. All 16 bits are used with sign to
301 			 * span the available scale: to account for the one
302 			 * missing value if we multiply by 1/S16_MAX, instead
303 			 * multiply with 2/U16_MAX.
304 			 */
305 			*val = mpu3050_fs_precision[mpu3050->fullscale] * 2;
306 			*val2 = U16_MAX;
307 			return IIO_VAL_FRACTIONAL;
308 		default:
309 			return -EINVAL;
310 		}
311 	case IIO_CHAN_INFO_RAW:
312 		/* Resume device */
313 		pm_runtime_get_sync(mpu3050->dev);
314 		mutex_lock(&mpu3050->lock);
315 
316 		ret = mpu3050_set_8khz_samplerate(mpu3050);
317 		if (ret)
318 			goto out_read_raw_unlock;
319 
320 		switch (chan->type) {
321 		case IIO_TEMP:
322 			ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H,
323 					       &raw_val, sizeof(raw_val));
324 			if (ret) {
325 				dev_err(mpu3050->dev,
326 					"error reading temperature\n");
327 				goto out_read_raw_unlock;
328 			}
329 
330 			*val = be16_to_cpu(raw_val);
331 			ret = IIO_VAL_INT;
332 
333 			goto out_read_raw_unlock;
334 		case IIO_ANGL_VEL:
335 			ret = regmap_bulk_read(mpu3050->map,
336 				       MPU3050_AXIS_REGS(chan->scan_index-1),
337 				       &raw_val,
338 				       sizeof(raw_val));
339 			if (ret) {
340 				dev_err(mpu3050->dev,
341 					"error reading axis data\n");
342 				goto out_read_raw_unlock;
343 			}
344 
345 			*val = be16_to_cpu(raw_val);
346 			ret = IIO_VAL_INT;
347 
348 			goto out_read_raw_unlock;
349 		default:
350 			ret = -EINVAL;
351 			goto out_read_raw_unlock;
352 		}
353 	default:
354 		break;
355 	}
356 
357 	return -EINVAL;
358 
359 out_read_raw_unlock:
360 	mutex_unlock(&mpu3050->lock);
361 	pm_runtime_mark_last_busy(mpu3050->dev);
362 	pm_runtime_put_autosuspend(mpu3050->dev);
363 
364 	return ret;
365 }
366 
367 static int mpu3050_write_raw(struct iio_dev *indio_dev,
368 			     const struct iio_chan_spec *chan,
369 			     int val, int val2, long mask)
370 {
371 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
372 	/*
373 	 * Couldn't figure out a way to precalculate these at compile time.
374 	 */
375 	unsigned int fs250 =
376 		DIV_ROUND_CLOSEST(mpu3050_fs_precision[0] * 1000000 * 2,
377 				  U16_MAX);
378 	unsigned int fs500 =
379 		DIV_ROUND_CLOSEST(mpu3050_fs_precision[1] * 1000000 * 2,
380 				  U16_MAX);
381 	unsigned int fs1000 =
382 		DIV_ROUND_CLOSEST(mpu3050_fs_precision[2] * 1000000 * 2,
383 				  U16_MAX);
384 	unsigned int fs2000 =
385 		DIV_ROUND_CLOSEST(mpu3050_fs_precision[3] * 1000000 * 2,
386 				  U16_MAX);
387 
388 	switch (mask) {
389 	case IIO_CHAN_INFO_CALIBBIAS:
390 		if (chan->type != IIO_ANGL_VEL)
391 			return -EINVAL;
392 		mpu3050->calibration[chan->scan_index-1] = val;
393 		return 0;
394 	case IIO_CHAN_INFO_SAMP_FREQ:
395 		/*
396 		 * The max samplerate is 8000 Hz, the minimum
397 		 * 1000 / 256 ~= 4 Hz
398 		 */
399 		if (val < 4 || val > 8000)
400 			return -EINVAL;
401 
402 		/*
403 		 * Above 1000 Hz we must turn off the digital low pass filter
404 		 * so we get a base frequency of 8kHz to the divider
405 		 */
406 		if (val > 1000) {
407 			mpu3050->lpf = LPF_256_HZ_NOLPF;
408 			mpu3050->divisor = DIV_ROUND_CLOSEST(8000, val) - 1;
409 			return 0;
410 		}
411 
412 		mpu3050->lpf = LPF_188_HZ;
413 		mpu3050->divisor = DIV_ROUND_CLOSEST(1000, val) - 1;
414 		return 0;
415 	case IIO_CHAN_INFO_SCALE:
416 		if (chan->type != IIO_ANGL_VEL)
417 			return -EINVAL;
418 		/*
419 		 * We support +/-250, +/-500, +/-1000 and +/2000 deg/s
420 		 * which means we need to round to the closest radians
421 		 * which will be roughly +/-4.3, +/-8.7, +/-17.5, +/-35
422 		 * rad/s. The scale is then for the 16 bits used to cover
423 		 * it 2/(2^16) of that.
424 		 */
425 
426 		/* Just too large, set the max range */
427 		if (val != 0) {
428 			mpu3050->fullscale = FS_2000_DPS;
429 			return 0;
430 		}
431 
432 		/*
433 		 * Now we're dealing with fractions below zero in millirad/s
434 		 * do some integer interpolation and match with the closest
435 		 * fullscale in the table.
436 		 */
437 		if (val2 <= fs250 ||
438 		    val2 < ((fs500 + fs250) / 2))
439 			mpu3050->fullscale = FS_250_DPS;
440 		else if (val2 <= fs500 ||
441 			 val2 < ((fs1000 + fs500) / 2))
442 			mpu3050->fullscale = FS_500_DPS;
443 		else if (val2 <= fs1000 ||
444 			 val2 < ((fs2000 + fs1000) / 2))
445 			mpu3050->fullscale = FS_1000_DPS;
446 		else
447 			/* Catch-all */
448 			mpu3050->fullscale = FS_2000_DPS;
449 		return 0;
450 	default:
451 		break;
452 	}
453 
454 	return -EINVAL;
455 }
456 
457 static irqreturn_t mpu3050_trigger_handler(int irq, void *p)
458 {
459 	const struct iio_poll_func *pf = p;
460 	struct iio_dev *indio_dev = pf->indio_dev;
461 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
462 	int ret;
463 	/*
464 	 * Temperature 1*16 bits
465 	 * Three axes 3*16 bits
466 	 * Timestamp 64 bits (4*16 bits)
467 	 * Sum total 8*16 bits
468 	 */
469 	__be16 hw_values[8];
470 	s64 timestamp;
471 	unsigned int datums_from_fifo = 0;
472 
473 	/*
474 	 * If we're using the hardware trigger, get the precise timestamp from
475 	 * the top half of the threaded IRQ handler. Otherwise get the
476 	 * timestamp here so it will be close in time to the actual values
477 	 * read from the registers.
478 	 */
479 	if (iio_trigger_using_own(indio_dev))
480 		timestamp = mpu3050->hw_timestamp;
481 	else
482 		timestamp = iio_get_time_ns(indio_dev);
483 
484 	mutex_lock(&mpu3050->lock);
485 
486 	/* Using the hardware IRQ trigger? Check the buffer then. */
487 	if (mpu3050->hw_irq_trigger) {
488 		__be16 raw_fifocnt;
489 		u16 fifocnt;
490 		/* X, Y, Z + temperature */
491 		unsigned int bytes_per_datum = 8;
492 		bool fifo_overflow = false;
493 
494 		ret = regmap_bulk_read(mpu3050->map,
495 				       MPU3050_FIFO_COUNT_H,
496 				       &raw_fifocnt,
497 				       sizeof(raw_fifocnt));
498 		if (ret)
499 			goto out_trigger_unlock;
500 		fifocnt = be16_to_cpu(raw_fifocnt);
501 
502 		if (fifocnt == 512) {
503 			dev_info(mpu3050->dev,
504 				 "FIFO overflow! Emptying and resetting FIFO\n");
505 			fifo_overflow = true;
506 			/* Reset and enable the FIFO */
507 			ret = regmap_update_bits(mpu3050->map,
508 						 MPU3050_USR_CTRL,
509 						 MPU3050_USR_CTRL_FIFO_EN |
510 						 MPU3050_USR_CTRL_FIFO_RST,
511 						 MPU3050_USR_CTRL_FIFO_EN |
512 						 MPU3050_USR_CTRL_FIFO_RST);
513 			if (ret) {
514 				dev_info(mpu3050->dev, "error resetting FIFO\n");
515 				goto out_trigger_unlock;
516 			}
517 			mpu3050->pending_fifo_footer = false;
518 		}
519 
520 		if (fifocnt)
521 			dev_dbg(mpu3050->dev,
522 				"%d bytes in the FIFO\n",
523 				fifocnt);
524 
525 		while (!fifo_overflow && fifocnt > bytes_per_datum) {
526 			unsigned int toread;
527 			unsigned int offset;
528 			__be16 fifo_values[5];
529 
530 			/*
531 			 * If there is a FIFO footer in the pipe, first clear
532 			 * that out. This follows the complex algorithm in the
533 			 * datasheet that states that you may never leave the
534 			 * FIFO empty after the first reading: you have to
535 			 * always leave two footer bytes in it. The footer is
536 			 * in practice just two zero bytes.
537 			 */
538 			if (mpu3050->pending_fifo_footer) {
539 				toread = bytes_per_datum + 2;
540 				offset = 0;
541 			} else {
542 				toread = bytes_per_datum;
543 				offset = 1;
544 				/* Put in some dummy value */
545 				fifo_values[0] = 0xAAAA;
546 			}
547 
548 			ret = regmap_bulk_read(mpu3050->map,
549 					       MPU3050_FIFO_R,
550 					       &fifo_values[offset],
551 					       toread);
552 
553 			dev_dbg(mpu3050->dev,
554 				"%04x %04x %04x %04x %04x\n",
555 				fifo_values[0],
556 				fifo_values[1],
557 				fifo_values[2],
558 				fifo_values[3],
559 				fifo_values[4]);
560 
561 			/* Index past the footer (fifo_values[0]) and push */
562 			iio_push_to_buffers_with_timestamp(indio_dev,
563 							   &fifo_values[1],
564 							   timestamp);
565 
566 			fifocnt -= toread;
567 			datums_from_fifo++;
568 			mpu3050->pending_fifo_footer = true;
569 
570 			/*
571 			 * If we're emptying the FIFO, just make sure to
572 			 * check if something new appeared.
573 			 */
574 			if (fifocnt < bytes_per_datum) {
575 				ret = regmap_bulk_read(mpu3050->map,
576 						       MPU3050_FIFO_COUNT_H,
577 						       &raw_fifocnt,
578 						       sizeof(raw_fifocnt));
579 				if (ret)
580 					goto out_trigger_unlock;
581 				fifocnt = be16_to_cpu(raw_fifocnt);
582 			}
583 
584 			if (fifocnt < bytes_per_datum)
585 				dev_dbg(mpu3050->dev,
586 					"%d bytes left in the FIFO\n",
587 					fifocnt);
588 
589 			/*
590 			 * At this point, the timestamp that triggered the
591 			 * hardware interrupt is no longer valid for what
592 			 * we are reading (the interrupt likely fired for
593 			 * the value on the top of the FIFO), so set the
594 			 * timestamp to zero and let userspace deal with it.
595 			 */
596 			timestamp = 0;
597 		}
598 	}
599 
600 	/*
601 	 * If we picked some datums from the FIFO that's enough, else
602 	 * fall through and just read from the current value registers.
603 	 * This happens in two cases:
604 	 *
605 	 * - We are using some other trigger (external, like an HRTimer)
606 	 *   than the sensor's own sample generator. In this case the
607 	 *   sensor is just set to the max sampling frequency and we give
608 	 *   the trigger a copy of the latest value every time we get here.
609 	 *
610 	 * - The hardware trigger is active but unused and we actually use
611 	 *   another trigger which calls here with a frequency higher
612 	 *   than what the device provides data. We will then just read
613 	 *   duplicate values directly from the hardware registers.
614 	 */
615 	if (datums_from_fifo) {
616 		dev_dbg(mpu3050->dev,
617 			"read %d datums from the FIFO\n",
618 			datums_from_fifo);
619 		goto out_trigger_unlock;
620 	}
621 
622 	ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H, &hw_values,
623 			       sizeof(hw_values));
624 	if (ret) {
625 		dev_err(mpu3050->dev,
626 			"error reading axis data\n");
627 		goto out_trigger_unlock;
628 	}
629 
630 	iio_push_to_buffers_with_timestamp(indio_dev, hw_values, timestamp);
631 
632 out_trigger_unlock:
633 	mutex_unlock(&mpu3050->lock);
634 	iio_trigger_notify_done(indio_dev->trig);
635 
636 	return IRQ_HANDLED;
637 }
638 
639 static int mpu3050_buffer_preenable(struct iio_dev *indio_dev)
640 {
641 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
642 
643 	pm_runtime_get_sync(mpu3050->dev);
644 
645 	/* Unless we have OUR trigger active, run at full speed */
646 	if (!mpu3050->hw_irq_trigger)
647 		return mpu3050_set_8khz_samplerate(mpu3050);
648 
649 	return 0;
650 }
651 
652 static int mpu3050_buffer_postdisable(struct iio_dev *indio_dev)
653 {
654 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
655 
656 	pm_runtime_mark_last_busy(mpu3050->dev);
657 	pm_runtime_put_autosuspend(mpu3050->dev);
658 
659 	return 0;
660 }
661 
662 static const struct iio_buffer_setup_ops mpu3050_buffer_setup_ops = {
663 	.preenable = mpu3050_buffer_preenable,
664 	.postenable = iio_triggered_buffer_postenable,
665 	.predisable = iio_triggered_buffer_predisable,
666 	.postdisable = mpu3050_buffer_postdisable,
667 };
668 
669 static const struct iio_mount_matrix *
670 mpu3050_get_mount_matrix(const struct iio_dev *indio_dev,
671 			 const struct iio_chan_spec *chan)
672 {
673 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
674 
675 	return &mpu3050->orientation;
676 }
677 
678 static const struct iio_chan_spec_ext_info mpu3050_ext_info[] = {
679 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, mpu3050_get_mount_matrix),
680 	{ },
681 };
682 
683 #define MPU3050_AXIS_CHANNEL(axis, index)				\
684 	{								\
685 		.type = IIO_ANGL_VEL,					\
686 		.modified = 1,						\
687 		.channel2 = IIO_MOD_##axis,				\
688 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
689 			BIT(IIO_CHAN_INFO_CALIBBIAS),			\
690 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),	\
691 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
692 		.ext_info = mpu3050_ext_info,				\
693 		.scan_index = index,					\
694 		.scan_type = {						\
695 			.sign = 's',					\
696 			.realbits = 16,					\
697 			.storagebits = 16,				\
698 			.endianness = IIO_BE,				\
699 		},							\
700 	}
701 
702 static const struct iio_chan_spec mpu3050_channels[] = {
703 	{
704 		.type = IIO_TEMP,
705 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
706 				      BIT(IIO_CHAN_INFO_SCALE) |
707 				      BIT(IIO_CHAN_INFO_OFFSET),
708 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
709 		.scan_index = 0,
710 		.scan_type = {
711 			.sign = 's',
712 			.realbits = 16,
713 			.storagebits = 16,
714 			.endianness = IIO_BE,
715 		},
716 	},
717 	MPU3050_AXIS_CHANNEL(X, 1),
718 	MPU3050_AXIS_CHANNEL(Y, 2),
719 	MPU3050_AXIS_CHANNEL(Z, 3),
720 	IIO_CHAN_SOFT_TIMESTAMP(4),
721 };
722 
723 /* Four channels apart from timestamp, scan mask = 0x0f */
724 static const unsigned long mpu3050_scan_masks[] = { 0xf, 0 };
725 
726 /*
727  * These are just the hardcoded factors resulting from the more elaborate
728  * calculations done with fractions in the scale raw get/set functions.
729  */
730 static IIO_CONST_ATTR(anglevel_scale_available,
731 		      "0.000122070 "
732 		      "0.000274658 "
733 		      "0.000518798 "
734 		      "0.001068115");
735 
736 static struct attribute *mpu3050_attributes[] = {
737 	&iio_const_attr_anglevel_scale_available.dev_attr.attr,
738 	NULL,
739 };
740 
741 static const struct attribute_group mpu3050_attribute_group = {
742 	.attrs = mpu3050_attributes,
743 };
744 
745 static const struct iio_info mpu3050_info = {
746 	.read_raw = mpu3050_read_raw,
747 	.write_raw = mpu3050_write_raw,
748 	.attrs = &mpu3050_attribute_group,
749 };
750 
751 /**
752  * mpu3050_read_mem() - read MPU-3050 internal memory
753  * @mpu3050: device to read from
754  * @bank: target bank
755  * @addr: target address
756  * @len: number of bytes
757  * @buf: the buffer to store the read bytes in
758  */
759 static int mpu3050_read_mem(struct mpu3050 *mpu3050,
760 			    u8 bank,
761 			    u8 addr,
762 			    u8 len,
763 			    u8 *buf)
764 {
765 	int ret;
766 
767 	ret = regmap_write(mpu3050->map,
768 			   MPU3050_BANK_SEL,
769 			   bank);
770 	if (ret)
771 		return ret;
772 
773 	ret = regmap_write(mpu3050->map,
774 			   MPU3050_MEM_START_ADDR,
775 			   addr);
776 	if (ret)
777 		return ret;
778 
779 	return regmap_bulk_read(mpu3050->map,
780 				MPU3050_MEM_R_W,
781 				buf,
782 				len);
783 }
784 
785 static int mpu3050_hw_init(struct mpu3050 *mpu3050)
786 {
787 	int ret;
788 	u8 otp[8];
789 
790 	/* Reset */
791 	ret = regmap_update_bits(mpu3050->map,
792 				 MPU3050_PWR_MGM,
793 				 MPU3050_PWR_MGM_RESET,
794 				 MPU3050_PWR_MGM_RESET);
795 	if (ret)
796 		return ret;
797 
798 	/* Turn on the PLL */
799 	ret = regmap_update_bits(mpu3050->map,
800 				 MPU3050_PWR_MGM,
801 				 MPU3050_PWR_MGM_CLKSEL_MASK,
802 				 MPU3050_PWR_MGM_PLL_Z);
803 	if (ret)
804 		return ret;
805 
806 	/* Disable IRQs */
807 	ret = regmap_write(mpu3050->map,
808 			   MPU3050_INT_CFG,
809 			   0);
810 	if (ret)
811 		return ret;
812 
813 	/* Read out the 8 bytes of OTP (one-time-programmable) memory */
814 	ret = mpu3050_read_mem(mpu3050,
815 			       (MPU3050_MEM_PRFTCH |
816 				MPU3050_MEM_USER_BANK |
817 				MPU3050_MEM_OTP_BANK_0),
818 			       0,
819 			       sizeof(otp),
820 			       otp);
821 	if (ret)
822 		return ret;
823 
824 	/* This is device-unique data so it goes into the entropy pool */
825 	add_device_randomness(otp, sizeof(otp));
826 
827 	dev_info(mpu3050->dev,
828 		 "die ID: %04X, wafer ID: %02X, A lot ID: %04X, "
829 		 "W lot ID: %03X, WP ID: %01X, rev ID: %02X\n",
830 		 /* Die ID, bits 0-12 */
831 		 (otp[1] << 8 | otp[0]) & 0x1fff,
832 		 /* Wafer ID, bits 13-17 */
833 		 ((otp[2] << 8 | otp[1]) & 0x03e0) >> 5,
834 		 /* A lot ID, bits 18-33 */
835 		 ((otp[4] << 16 | otp[3] << 8 | otp[2]) & 0x3fffc) >> 2,
836 		 /* W lot ID, bits 34-45 */
837 		 ((otp[5] << 8 | otp[4]) & 0x3ffc) >> 2,
838 		 /* WP ID, bits 47-49 */
839 		 ((otp[6] << 8 | otp[5]) & 0x0380) >> 7,
840 		 /* rev ID, bits 50-55 */
841 		 otp[6] >> 2);
842 
843 	return 0;
844 }
845 
846 static int mpu3050_power_up(struct mpu3050 *mpu3050)
847 {
848 	int ret;
849 
850 	ret = regulator_bulk_enable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
851 	if (ret) {
852 		dev_err(mpu3050->dev, "cannot enable regulators\n");
853 		return ret;
854 	}
855 	/*
856 	 * 20-100 ms start-up time for register read/write according to
857 	 * the datasheet, be on the safe side and wait 200 ms.
858 	 */
859 	msleep(200);
860 
861 	/* Take device out of sleep mode */
862 	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
863 				 MPU3050_PWR_MGM_SLEEP, 0);
864 	if (ret) {
865 		dev_err(mpu3050->dev, "error setting power mode\n");
866 		return ret;
867 	}
868 	usleep_range(10000, 20000);
869 
870 	return 0;
871 }
872 
873 static int mpu3050_power_down(struct mpu3050 *mpu3050)
874 {
875 	int ret;
876 
877 	/*
878 	 * Put MPU-3050 into sleep mode before cutting regulators.
879 	 * This is important, because we may not be the sole user
880 	 * of the regulator so the power may stay on after this, and
881 	 * then we would be wasting power unless we go to sleep mode
882 	 * first.
883 	 */
884 	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
885 				 MPU3050_PWR_MGM_SLEEP, MPU3050_PWR_MGM_SLEEP);
886 	if (ret)
887 		dev_err(mpu3050->dev, "error putting to sleep\n");
888 
889 	ret = regulator_bulk_disable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
890 	if (ret)
891 		dev_err(mpu3050->dev, "error disabling regulators\n");
892 
893 	return 0;
894 }
895 
896 static irqreturn_t mpu3050_irq_handler(int irq, void *p)
897 {
898 	struct iio_trigger *trig = p;
899 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
900 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
901 
902 	if (!mpu3050->hw_irq_trigger)
903 		return IRQ_NONE;
904 
905 	/* Get the time stamp as close in time as possible */
906 	mpu3050->hw_timestamp = iio_get_time_ns(indio_dev);
907 
908 	return IRQ_WAKE_THREAD;
909 }
910 
911 static irqreturn_t mpu3050_irq_thread(int irq, void *p)
912 {
913 	struct iio_trigger *trig = p;
914 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
915 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
916 	unsigned int val;
917 	int ret;
918 
919 	/* ACK IRQ and check if it was from us */
920 	ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
921 	if (ret) {
922 		dev_err(mpu3050->dev, "error reading IRQ status\n");
923 		return IRQ_HANDLED;
924 	}
925 	if (!(val & MPU3050_INT_STATUS_RAW_RDY))
926 		return IRQ_NONE;
927 
928 	iio_trigger_poll_chained(p);
929 
930 	return IRQ_HANDLED;
931 }
932 
933 /**
934  * mpu3050_drdy_trigger_set_state() - set data ready interrupt state
935  * @trig: trigger instance
936  * @enable: true if trigger should be enabled, false to disable
937  */
938 static int mpu3050_drdy_trigger_set_state(struct iio_trigger *trig,
939 					  bool enable)
940 {
941 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
942 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
943 	unsigned int val;
944 	int ret;
945 
946 	/* Disabling trigger: disable interrupt and return */
947 	if (!enable) {
948 		/* Disable all interrupts */
949 		ret = regmap_write(mpu3050->map,
950 				   MPU3050_INT_CFG,
951 				   0);
952 		if (ret)
953 			dev_err(mpu3050->dev, "error disabling IRQ\n");
954 
955 		/* Clear IRQ flag */
956 		ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
957 		if (ret)
958 			dev_err(mpu3050->dev, "error clearing IRQ status\n");
959 
960 		/* Disable all things in the FIFO and reset it */
961 		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
962 		if (ret)
963 			dev_err(mpu3050->dev, "error disabling FIFO\n");
964 
965 		ret = regmap_write(mpu3050->map, MPU3050_USR_CTRL,
966 				   MPU3050_USR_CTRL_FIFO_RST);
967 		if (ret)
968 			dev_err(mpu3050->dev, "error resetting FIFO\n");
969 
970 		pm_runtime_mark_last_busy(mpu3050->dev);
971 		pm_runtime_put_autosuspend(mpu3050->dev);
972 		mpu3050->hw_irq_trigger = false;
973 
974 		return 0;
975 	} else {
976 		/* Else we're enabling the trigger from this point */
977 		pm_runtime_get_sync(mpu3050->dev);
978 		mpu3050->hw_irq_trigger = true;
979 
980 		/* Disable all things in the FIFO */
981 		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
982 		if (ret)
983 			return ret;
984 
985 		/* Reset and enable the FIFO */
986 		ret = regmap_update_bits(mpu3050->map, MPU3050_USR_CTRL,
987 					 MPU3050_USR_CTRL_FIFO_EN |
988 					 MPU3050_USR_CTRL_FIFO_RST,
989 					 MPU3050_USR_CTRL_FIFO_EN |
990 					 MPU3050_USR_CTRL_FIFO_RST);
991 		if (ret)
992 			return ret;
993 
994 		mpu3050->pending_fifo_footer = false;
995 
996 		/* Turn on the FIFO for temp+X+Y+Z */
997 		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN,
998 				   MPU3050_FIFO_EN_TEMP_OUT |
999 				   MPU3050_FIFO_EN_GYRO_XOUT |
1000 				   MPU3050_FIFO_EN_GYRO_YOUT |
1001 				   MPU3050_FIFO_EN_GYRO_ZOUT |
1002 				   MPU3050_FIFO_EN_FOOTER);
1003 		if (ret)
1004 			return ret;
1005 
1006 		/* Configure the sample engine */
1007 		ret = mpu3050_start_sampling(mpu3050);
1008 		if (ret)
1009 			return ret;
1010 
1011 		/* Clear IRQ flag */
1012 		ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
1013 		if (ret)
1014 			dev_err(mpu3050->dev, "error clearing IRQ status\n");
1015 
1016 		/* Give us interrupts whenever there is new data ready */
1017 		val = MPU3050_INT_RAW_RDY_EN;
1018 
1019 		if (mpu3050->irq_actl)
1020 			val |= MPU3050_INT_ACTL;
1021 		if (mpu3050->irq_latch)
1022 			val |= MPU3050_INT_LATCH_EN;
1023 		if (mpu3050->irq_opendrain)
1024 			val |= MPU3050_INT_OPEN;
1025 
1026 		ret = regmap_write(mpu3050->map, MPU3050_INT_CFG, val);
1027 		if (ret)
1028 			return ret;
1029 	}
1030 
1031 	return 0;
1032 }
1033 
1034 static const struct iio_trigger_ops mpu3050_trigger_ops = {
1035 	.set_trigger_state = mpu3050_drdy_trigger_set_state,
1036 };
1037 
1038 static int mpu3050_trigger_probe(struct iio_dev *indio_dev, int irq)
1039 {
1040 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1041 	unsigned long irq_trig;
1042 	int ret;
1043 
1044 	mpu3050->trig = devm_iio_trigger_alloc(&indio_dev->dev,
1045 					       "%s-dev%d",
1046 					       indio_dev->name,
1047 					       indio_dev->id);
1048 	if (!mpu3050->trig)
1049 		return -ENOMEM;
1050 
1051 	/* Check if IRQ is open drain */
1052 	if (of_property_read_bool(mpu3050->dev->of_node, "drive-open-drain"))
1053 		mpu3050->irq_opendrain = true;
1054 
1055 	irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
1056 	/*
1057 	 * Configure the interrupt generator hardware to supply whatever
1058 	 * the interrupt is configured for, edges low/high level low/high,
1059 	 * we can provide it all.
1060 	 */
1061 	switch (irq_trig) {
1062 	case IRQF_TRIGGER_RISING:
1063 		dev_info(&indio_dev->dev,
1064 			 "pulse interrupts on the rising edge\n");
1065 		break;
1066 	case IRQF_TRIGGER_FALLING:
1067 		mpu3050->irq_actl = true;
1068 		dev_info(&indio_dev->dev,
1069 			 "pulse interrupts on the falling edge\n");
1070 		break;
1071 	case IRQF_TRIGGER_HIGH:
1072 		mpu3050->irq_latch = true;
1073 		dev_info(&indio_dev->dev,
1074 			 "interrupts active high level\n");
1075 		/*
1076 		 * With level IRQs, we mask the IRQ until it is processed,
1077 		 * but with edge IRQs (pulses) we can queue several interrupts
1078 		 * in the top half.
1079 		 */
1080 		irq_trig |= IRQF_ONESHOT;
1081 		break;
1082 	case IRQF_TRIGGER_LOW:
1083 		mpu3050->irq_latch = true;
1084 		mpu3050->irq_actl = true;
1085 		irq_trig |= IRQF_ONESHOT;
1086 		dev_info(&indio_dev->dev,
1087 			 "interrupts active low level\n");
1088 		break;
1089 	default:
1090 		/* This is the most preferred mode, if possible */
1091 		dev_err(&indio_dev->dev,
1092 			"unsupported IRQ trigger specified (%lx), enforce "
1093 			"rising edge\n", irq_trig);
1094 		irq_trig = IRQF_TRIGGER_RISING;
1095 		break;
1096 	}
1097 
1098 	/* An open drain line can be shared with several devices */
1099 	if (mpu3050->irq_opendrain)
1100 		irq_trig |= IRQF_SHARED;
1101 
1102 	ret = request_threaded_irq(irq,
1103 				   mpu3050_irq_handler,
1104 				   mpu3050_irq_thread,
1105 				   irq_trig,
1106 				   mpu3050->trig->name,
1107 				   mpu3050->trig);
1108 	if (ret) {
1109 		dev_err(mpu3050->dev,
1110 			"can't get IRQ %d, error %d\n", irq, ret);
1111 		return ret;
1112 	}
1113 
1114 	mpu3050->irq = irq;
1115 	mpu3050->trig->dev.parent = mpu3050->dev;
1116 	mpu3050->trig->ops = &mpu3050_trigger_ops;
1117 	iio_trigger_set_drvdata(mpu3050->trig, indio_dev);
1118 
1119 	ret = iio_trigger_register(mpu3050->trig);
1120 	if (ret)
1121 		return ret;
1122 
1123 	indio_dev->trig = iio_trigger_get(mpu3050->trig);
1124 
1125 	return 0;
1126 }
1127 
1128 int mpu3050_common_probe(struct device *dev,
1129 			 struct regmap *map,
1130 			 int irq,
1131 			 const char *name)
1132 {
1133 	struct iio_dev *indio_dev;
1134 	struct mpu3050 *mpu3050;
1135 	unsigned int val;
1136 	int ret;
1137 
1138 	indio_dev = devm_iio_device_alloc(dev, sizeof(*mpu3050));
1139 	if (!indio_dev)
1140 		return -ENOMEM;
1141 	mpu3050 = iio_priv(indio_dev);
1142 
1143 	mpu3050->dev = dev;
1144 	mpu3050->map = map;
1145 	mutex_init(&mpu3050->lock);
1146 	/* Default fullscale: 2000 degrees per second */
1147 	mpu3050->fullscale = FS_2000_DPS;
1148 	/* 1 kHz, divide by 100, default frequency = 10 Hz */
1149 	mpu3050->lpf = MPU3050_DLPF_CFG_188HZ;
1150 	mpu3050->divisor = 99;
1151 
1152 	/* Read the mounting matrix, if present */
1153 	ret = iio_read_mount_matrix(dev, "mount-matrix", &mpu3050->orientation);
1154 	if (ret)
1155 		return ret;
1156 
1157 	/* Fetch and turn on regulators */
1158 	mpu3050->regs[0].supply = mpu3050_reg_vdd;
1159 	mpu3050->regs[1].supply = mpu3050_reg_vlogic;
1160 	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(mpu3050->regs),
1161 				      mpu3050->regs);
1162 	if (ret) {
1163 		dev_err(dev, "Cannot get regulators\n");
1164 		return ret;
1165 	}
1166 
1167 	ret = mpu3050_power_up(mpu3050);
1168 	if (ret)
1169 		return ret;
1170 
1171 	ret = regmap_read(map, MPU3050_CHIP_ID_REG, &val);
1172 	if (ret) {
1173 		dev_err(dev, "could not read device ID\n");
1174 		ret = -ENODEV;
1175 
1176 		goto err_power_down;
1177 	}
1178 
1179 	if ((val & MPU3050_CHIP_ID_MASK) != MPU3050_CHIP_ID) {
1180 		dev_err(dev, "unsupported chip id %02x\n",
1181 				(u8)(val & MPU3050_CHIP_ID_MASK));
1182 		ret = -ENODEV;
1183 		goto err_power_down;
1184 	}
1185 
1186 	ret = regmap_read(map, MPU3050_PRODUCT_ID_REG, &val);
1187 	if (ret) {
1188 		dev_err(dev, "could not read device ID\n");
1189 		ret = -ENODEV;
1190 
1191 		goto err_power_down;
1192 	}
1193 	dev_info(dev, "found MPU-3050 part no: %d, version: %d\n",
1194 		 ((val >> 4) & 0xf), (val & 0xf));
1195 
1196 	ret = mpu3050_hw_init(mpu3050);
1197 	if (ret)
1198 		goto err_power_down;
1199 
1200 	indio_dev->dev.parent = dev;
1201 	indio_dev->channels = mpu3050_channels;
1202 	indio_dev->num_channels = ARRAY_SIZE(mpu3050_channels);
1203 	indio_dev->info = &mpu3050_info;
1204 	indio_dev->available_scan_masks = mpu3050_scan_masks;
1205 	indio_dev->modes = INDIO_DIRECT_MODE;
1206 	indio_dev->name = name;
1207 
1208 	ret = iio_triggered_buffer_setup(indio_dev, iio_pollfunc_store_time,
1209 					 mpu3050_trigger_handler,
1210 					 &mpu3050_buffer_setup_ops);
1211 	if (ret) {
1212 		dev_err(dev, "triggered buffer setup failed\n");
1213 		goto err_power_down;
1214 	}
1215 
1216 	ret = iio_device_register(indio_dev);
1217 	if (ret) {
1218 		dev_err(dev, "device register failed\n");
1219 		goto err_cleanup_buffer;
1220 	}
1221 
1222 	dev_set_drvdata(dev, indio_dev);
1223 
1224 	/* Check if we have an assigned IRQ to use as trigger */
1225 	if (irq) {
1226 		ret = mpu3050_trigger_probe(indio_dev, irq);
1227 		if (ret)
1228 			dev_err(dev, "failed to register trigger\n");
1229 	}
1230 
1231 	/* Enable runtime PM */
1232 	pm_runtime_get_noresume(dev);
1233 	pm_runtime_set_active(dev);
1234 	pm_runtime_enable(dev);
1235 	/*
1236 	 * Set autosuspend to two orders of magnitude larger than the
1237 	 * start-up time. 100ms start-up time means 10000ms autosuspend,
1238 	 * i.e. 10 seconds.
1239 	 */
1240 	pm_runtime_set_autosuspend_delay(dev, 10000);
1241 	pm_runtime_use_autosuspend(dev);
1242 	pm_runtime_put(dev);
1243 
1244 	return 0;
1245 
1246 err_cleanup_buffer:
1247 	iio_triggered_buffer_cleanup(indio_dev);
1248 err_power_down:
1249 	mpu3050_power_down(mpu3050);
1250 
1251 	return ret;
1252 }
1253 EXPORT_SYMBOL(mpu3050_common_probe);
1254 
1255 int mpu3050_common_remove(struct device *dev)
1256 {
1257 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1258 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1259 
1260 	pm_runtime_get_sync(dev);
1261 	pm_runtime_put_noidle(dev);
1262 	pm_runtime_disable(dev);
1263 	iio_triggered_buffer_cleanup(indio_dev);
1264 	if (mpu3050->irq)
1265 		free_irq(mpu3050->irq, mpu3050);
1266 	iio_device_unregister(indio_dev);
1267 	mpu3050_power_down(mpu3050);
1268 
1269 	return 0;
1270 }
1271 EXPORT_SYMBOL(mpu3050_common_remove);
1272 
1273 #ifdef CONFIG_PM
1274 static int mpu3050_runtime_suspend(struct device *dev)
1275 {
1276 	return mpu3050_power_down(iio_priv(dev_get_drvdata(dev)));
1277 }
1278 
1279 static int mpu3050_runtime_resume(struct device *dev)
1280 {
1281 	return mpu3050_power_up(iio_priv(dev_get_drvdata(dev)));
1282 }
1283 #endif /* CONFIG_PM */
1284 
1285 const struct dev_pm_ops mpu3050_dev_pm_ops = {
1286 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1287 				pm_runtime_force_resume)
1288 	SET_RUNTIME_PM_OPS(mpu3050_runtime_suspend,
1289 			   mpu3050_runtime_resume, NULL)
1290 };
1291 EXPORT_SYMBOL(mpu3050_dev_pm_ops);
1292 
1293 MODULE_AUTHOR("Linus Walleij");
1294 MODULE_DESCRIPTION("MPU3050 gyroscope driver");
1295 MODULE_LICENSE("GPL");
1296