1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Driver for NXP FXAS21002C Gyroscope - Core 4 * 5 * Copyright (C) 2019 Linaro Ltd. 6 */ 7 8 #include <linux/interrupt.h> 9 #include <linux/module.h> 10 #include <linux/pm.h> 11 #include <linux/pm_runtime.h> 12 #include <linux/property.h> 13 #include <linux/regmap.h> 14 #include <linux/regulator/consumer.h> 15 16 #include <linux/iio/events.h> 17 #include <linux/iio/iio.h> 18 #include <linux/iio/buffer.h> 19 #include <linux/iio/sysfs.h> 20 #include <linux/iio/trigger.h> 21 #include <linux/iio/trigger_consumer.h> 22 #include <linux/iio/triggered_buffer.h> 23 24 #include "fxas21002c.h" 25 26 #define FXAS21002C_CHIP_ID_1 0xD6 27 #define FXAS21002C_CHIP_ID_2 0xD7 28 29 enum fxas21002c_mode_state { 30 FXAS21002C_MODE_STANDBY, 31 FXAS21002C_MODE_READY, 32 FXAS21002C_MODE_ACTIVE, 33 }; 34 35 #define FXAS21002C_STANDBY_ACTIVE_TIME_MS 62 36 #define FXAS21002C_READY_ACTIVE_TIME_MS 7 37 38 #define FXAS21002C_ODR_LIST_MAX 10 39 40 #define FXAS21002C_SCALE_FRACTIONAL 32 41 #define FXAS21002C_RANGE_LIMIT_DOUBLE 2000 42 43 #define FXAS21002C_AXIS_TO_REG(axis) (FXAS21002C_REG_OUT_X_MSB + ((axis) * 2)) 44 45 static const struct reg_field fxas21002c_reg_fields[] = { 46 [F_DR_STATUS] = REG_FIELD(FXAS21002C_REG_STATUS, 0, 7), 47 [F_OUT_X_MSB] = REG_FIELD(FXAS21002C_REG_OUT_X_MSB, 0, 7), 48 [F_OUT_X_LSB] = REG_FIELD(FXAS21002C_REG_OUT_X_LSB, 0, 7), 49 [F_OUT_Y_MSB] = REG_FIELD(FXAS21002C_REG_OUT_Y_MSB, 0, 7), 50 [F_OUT_Y_LSB] = REG_FIELD(FXAS21002C_REG_OUT_Y_LSB, 0, 7), 51 [F_OUT_Z_MSB] = REG_FIELD(FXAS21002C_REG_OUT_Z_MSB, 0, 7), 52 [F_OUT_Z_LSB] = REG_FIELD(FXAS21002C_REG_OUT_Z_LSB, 0, 7), 53 [F_ZYX_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 7, 7), 54 [F_Z_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 6, 6), 55 [F_Y_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 5, 5), 56 [F_X_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 4, 4), 57 [F_ZYX_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 3, 3), 58 [F_Z_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 2, 2), 59 [F_Y_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 1, 1), 60 [F_X_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 0, 0), 61 [F_OVF] = REG_FIELD(FXAS21002C_REG_F_STATUS, 7, 7), 62 [F_WMKF] = REG_FIELD(FXAS21002C_REG_F_STATUS, 6, 6), 63 [F_CNT] = REG_FIELD(FXAS21002C_REG_F_STATUS, 0, 5), 64 [F_MODE] = REG_FIELD(FXAS21002C_REG_F_SETUP, 6, 7), 65 [F_WMRK] = REG_FIELD(FXAS21002C_REG_F_SETUP, 0, 5), 66 [F_EVENT] = REG_FIELD(FXAS21002C_REG_F_EVENT, 5, 5), 67 [FE_TIME] = REG_FIELD(FXAS21002C_REG_F_EVENT, 0, 4), 68 [F_BOOTEND] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 3, 3), 69 [F_SRC_FIFO] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 2, 2), 70 [F_SRC_RT] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 1, 1), 71 [F_SRC_DRDY] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 0, 0), 72 [F_WHO_AM_I] = REG_FIELD(FXAS21002C_REG_WHO_AM_I, 0, 7), 73 [F_BW] = REG_FIELD(FXAS21002C_REG_CTRL0, 6, 7), 74 [F_SPIW] = REG_FIELD(FXAS21002C_REG_CTRL0, 5, 5), 75 [F_SEL] = REG_FIELD(FXAS21002C_REG_CTRL0, 3, 4), 76 [F_HPF_EN] = REG_FIELD(FXAS21002C_REG_CTRL0, 2, 2), 77 [F_FS] = REG_FIELD(FXAS21002C_REG_CTRL0, 0, 1), 78 [F_ELE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 3, 3), 79 [F_ZTEFE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 2, 2), 80 [F_YTEFE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 1, 1), 81 [F_XTEFE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 0, 0), 82 [F_EA] = REG_FIELD(FXAS21002C_REG_RT_SRC, 6, 6), 83 [F_ZRT] = REG_FIELD(FXAS21002C_REG_RT_SRC, 5, 5), 84 [F_ZRT_POL] = REG_FIELD(FXAS21002C_REG_RT_SRC, 4, 4), 85 [F_YRT] = REG_FIELD(FXAS21002C_REG_RT_SRC, 3, 3), 86 [F_YRT_POL] = REG_FIELD(FXAS21002C_REG_RT_SRC, 2, 2), 87 [F_XRT] = REG_FIELD(FXAS21002C_REG_RT_SRC, 1, 1), 88 [F_XRT_POL] = REG_FIELD(FXAS21002C_REG_RT_SRC, 0, 0), 89 [F_DBCNTM] = REG_FIELD(FXAS21002C_REG_RT_THS, 7, 7), 90 [F_THS] = REG_FIELD(FXAS21002C_REG_RT_SRC, 0, 6), 91 [F_RT_COUNT] = REG_FIELD(FXAS21002C_REG_RT_COUNT, 0, 7), 92 [F_TEMP] = REG_FIELD(FXAS21002C_REG_TEMP, 0, 7), 93 [F_RST] = REG_FIELD(FXAS21002C_REG_CTRL1, 6, 6), 94 [F_ST] = REG_FIELD(FXAS21002C_REG_CTRL1, 5, 5), 95 [F_DR] = REG_FIELD(FXAS21002C_REG_CTRL1, 2, 4), 96 [F_ACTIVE] = REG_FIELD(FXAS21002C_REG_CTRL1, 1, 1), 97 [F_READY] = REG_FIELD(FXAS21002C_REG_CTRL1, 0, 0), 98 [F_INT_CFG_FIFO] = REG_FIELD(FXAS21002C_REG_CTRL2, 7, 7), 99 [F_INT_EN_FIFO] = REG_FIELD(FXAS21002C_REG_CTRL2, 6, 6), 100 [F_INT_CFG_RT] = REG_FIELD(FXAS21002C_REG_CTRL2, 5, 5), 101 [F_INT_EN_RT] = REG_FIELD(FXAS21002C_REG_CTRL2, 4, 4), 102 [F_INT_CFG_DRDY] = REG_FIELD(FXAS21002C_REG_CTRL2, 3, 3), 103 [F_INT_EN_DRDY] = REG_FIELD(FXAS21002C_REG_CTRL2, 2, 2), 104 [F_IPOL] = REG_FIELD(FXAS21002C_REG_CTRL2, 1, 1), 105 [F_PP_OD] = REG_FIELD(FXAS21002C_REG_CTRL2, 0, 0), 106 [F_WRAPTOONE] = REG_FIELD(FXAS21002C_REG_CTRL3, 3, 3), 107 [F_EXTCTRLEN] = REG_FIELD(FXAS21002C_REG_CTRL3, 2, 2), 108 [F_FS_DOUBLE] = REG_FIELD(FXAS21002C_REG_CTRL3, 0, 0), 109 }; 110 111 static const int fxas21002c_odr_values[] = { 112 800, 400, 200, 100, 50, 25, 12, 12 113 }; 114 115 /* 116 * These values are taken from the low-pass filter cutoff frequency calculated 117 * ODR * 0.lpf_values. So, for ODR = 800Hz with a lpf value = 0.32 118 * => LPF cutoff frequency = 800 * 0.32 = 256 Hz 119 */ 120 static const int fxas21002c_lpf_values[] = { 121 32, 16, 8 122 }; 123 124 /* 125 * These values are taken from the high-pass filter cutoff frequency calculated 126 * ODR * 0.0hpf_values. So, for ODR = 800Hz with a hpf value = 0.018750 127 * => HPF cutoff frequency = 800 * 0.018750 = 15 Hz 128 */ 129 static const int fxas21002c_hpf_values[] = { 130 18750, 9625, 4875, 2475 131 }; 132 133 static const int fxas21002c_range_values[] = { 134 4000, 2000, 1000, 500, 250 135 }; 136 137 struct fxas21002c_data { 138 u8 chip_id; 139 enum fxas21002c_mode_state mode; 140 enum fxas21002c_mode_state prev_mode; 141 142 struct mutex lock; /* serialize data access */ 143 struct regmap *regmap; 144 struct regmap_field *regmap_fields[F_MAX_FIELDS]; 145 struct iio_trigger *dready_trig; 146 s64 timestamp; 147 int irq; 148 149 struct regulator *vdd; 150 struct regulator *vddio; 151 152 /* 153 * DMA (thus cache coherency maintenance) requires the 154 * transfer buffers to live in their own cache lines. 155 */ 156 s16 buffer[8] ____cacheline_aligned; 157 }; 158 159 enum fxas21002c_channel_index { 160 CHANNEL_SCAN_INDEX_X, 161 CHANNEL_SCAN_INDEX_Y, 162 CHANNEL_SCAN_INDEX_Z, 163 CHANNEL_SCAN_MAX, 164 }; 165 166 static int fxas21002c_odr_hz_from_value(struct fxas21002c_data *data, u8 value) 167 { 168 int odr_value_max = ARRAY_SIZE(fxas21002c_odr_values) - 1; 169 170 value = min_t(u8, value, odr_value_max); 171 172 return fxas21002c_odr_values[value]; 173 } 174 175 static int fxas21002c_odr_value_from_hz(struct fxas21002c_data *data, 176 unsigned int hz) 177 { 178 int odr_table_size = ARRAY_SIZE(fxas21002c_odr_values); 179 int i; 180 181 for (i = 0; i < odr_table_size; i++) 182 if (fxas21002c_odr_values[i] == hz) 183 return i; 184 185 return -EINVAL; 186 } 187 188 static int fxas21002c_lpf_bw_from_value(struct fxas21002c_data *data, u8 value) 189 { 190 int lpf_value_max = ARRAY_SIZE(fxas21002c_lpf_values) - 1; 191 192 value = min_t(u8, value, lpf_value_max); 193 194 return fxas21002c_lpf_values[value]; 195 } 196 197 static int fxas21002c_lpf_value_from_bw(struct fxas21002c_data *data, 198 unsigned int hz) 199 { 200 int lpf_table_size = ARRAY_SIZE(fxas21002c_lpf_values); 201 int i; 202 203 for (i = 0; i < lpf_table_size; i++) 204 if (fxas21002c_lpf_values[i] == hz) 205 return i; 206 207 return -EINVAL; 208 } 209 210 static int fxas21002c_hpf_sel_from_value(struct fxas21002c_data *data, u8 value) 211 { 212 int hpf_value_max = ARRAY_SIZE(fxas21002c_hpf_values) - 1; 213 214 value = min_t(u8, value, hpf_value_max); 215 216 return fxas21002c_hpf_values[value]; 217 } 218 219 static int fxas21002c_hpf_value_from_sel(struct fxas21002c_data *data, 220 unsigned int hz) 221 { 222 int hpf_table_size = ARRAY_SIZE(fxas21002c_hpf_values); 223 int i; 224 225 for (i = 0; i < hpf_table_size; i++) 226 if (fxas21002c_hpf_values[i] == hz) 227 return i; 228 229 return -EINVAL; 230 } 231 232 static int fxas21002c_range_fs_from_value(struct fxas21002c_data *data, 233 u8 value) 234 { 235 int range_value_max = ARRAY_SIZE(fxas21002c_range_values) - 1; 236 unsigned int fs_double; 237 int ret; 238 239 /* We need to check if FS_DOUBLE is enabled to offset the value */ 240 ret = regmap_field_read(data->regmap_fields[F_FS_DOUBLE], &fs_double); 241 if (ret < 0) 242 return ret; 243 244 if (!fs_double) 245 value += 1; 246 247 value = min_t(u8, value, range_value_max); 248 249 return fxas21002c_range_values[value]; 250 } 251 252 static int fxas21002c_range_value_from_fs(struct fxas21002c_data *data, 253 unsigned int range) 254 { 255 int range_table_size = ARRAY_SIZE(fxas21002c_range_values); 256 bool found = false; 257 int fs_double = 0; 258 int ret; 259 int i; 260 261 for (i = 0; i < range_table_size; i++) 262 if (fxas21002c_range_values[i] == range) { 263 found = true; 264 break; 265 } 266 267 if (!found) 268 return -EINVAL; 269 270 if (range > FXAS21002C_RANGE_LIMIT_DOUBLE) 271 fs_double = 1; 272 273 ret = regmap_field_write(data->regmap_fields[F_FS_DOUBLE], fs_double); 274 if (ret < 0) 275 return ret; 276 277 return i; 278 } 279 280 static int fxas21002c_mode_get(struct fxas21002c_data *data) 281 { 282 unsigned int active; 283 unsigned int ready; 284 int ret; 285 286 ret = regmap_field_read(data->regmap_fields[F_ACTIVE], &active); 287 if (ret < 0) 288 return ret; 289 if (active) 290 return FXAS21002C_MODE_ACTIVE; 291 292 ret = regmap_field_read(data->regmap_fields[F_READY], &ready); 293 if (ret < 0) 294 return ret; 295 if (ready) 296 return FXAS21002C_MODE_READY; 297 298 return FXAS21002C_MODE_STANDBY; 299 } 300 301 static int fxas21002c_mode_set(struct fxas21002c_data *data, 302 enum fxas21002c_mode_state mode) 303 { 304 int ret; 305 306 if (mode == data->mode) 307 return 0; 308 309 if (mode == FXAS21002C_MODE_READY) 310 ret = regmap_field_write(data->regmap_fields[F_READY], 1); 311 else 312 ret = regmap_field_write(data->regmap_fields[F_READY], 0); 313 if (ret < 0) 314 return ret; 315 316 if (mode == FXAS21002C_MODE_ACTIVE) 317 ret = regmap_field_write(data->regmap_fields[F_ACTIVE], 1); 318 else 319 ret = regmap_field_write(data->regmap_fields[F_ACTIVE], 0); 320 if (ret < 0) 321 return ret; 322 323 /* if going to active wait the setup times */ 324 if (mode == FXAS21002C_MODE_ACTIVE && 325 data->mode == FXAS21002C_MODE_STANDBY) 326 msleep_interruptible(FXAS21002C_STANDBY_ACTIVE_TIME_MS); 327 328 if (data->mode == FXAS21002C_MODE_READY) 329 msleep_interruptible(FXAS21002C_READY_ACTIVE_TIME_MS); 330 331 data->prev_mode = data->mode; 332 data->mode = mode; 333 334 return ret; 335 } 336 337 static int fxas21002c_write(struct fxas21002c_data *data, 338 enum fxas21002c_fields field, int bits) 339 { 340 int actual_mode; 341 int ret; 342 343 mutex_lock(&data->lock); 344 345 actual_mode = fxas21002c_mode_get(data); 346 if (actual_mode < 0) { 347 ret = actual_mode; 348 goto out_unlock; 349 } 350 351 ret = fxas21002c_mode_set(data, FXAS21002C_MODE_READY); 352 if (ret < 0) 353 goto out_unlock; 354 355 ret = regmap_field_write(data->regmap_fields[field], bits); 356 if (ret < 0) 357 goto out_unlock; 358 359 ret = fxas21002c_mode_set(data, data->prev_mode); 360 361 out_unlock: 362 mutex_unlock(&data->lock); 363 364 return ret; 365 } 366 367 static int fxas21002c_pm_get(struct fxas21002c_data *data) 368 { 369 return pm_runtime_resume_and_get(regmap_get_device(data->regmap)); 370 } 371 372 static int fxas21002c_pm_put(struct fxas21002c_data *data) 373 { 374 struct device *dev = regmap_get_device(data->regmap); 375 376 pm_runtime_mark_last_busy(dev); 377 378 return pm_runtime_put_autosuspend(dev); 379 } 380 381 static int fxas21002c_temp_get(struct fxas21002c_data *data, int *val) 382 { 383 struct device *dev = regmap_get_device(data->regmap); 384 unsigned int temp; 385 int ret; 386 387 mutex_lock(&data->lock); 388 ret = fxas21002c_pm_get(data); 389 if (ret < 0) 390 goto data_unlock; 391 392 ret = regmap_field_read(data->regmap_fields[F_TEMP], &temp); 393 if (ret < 0) { 394 dev_err(dev, "failed to read temp: %d\n", ret); 395 fxas21002c_pm_put(data); 396 goto data_unlock; 397 } 398 399 *val = sign_extend32(temp, 7); 400 401 ret = fxas21002c_pm_put(data); 402 if (ret < 0) 403 goto data_unlock; 404 405 ret = IIO_VAL_INT; 406 407 data_unlock: 408 mutex_unlock(&data->lock); 409 410 return ret; 411 } 412 413 static int fxas21002c_axis_get(struct fxas21002c_data *data, 414 int index, int *val) 415 { 416 struct device *dev = regmap_get_device(data->regmap); 417 __be16 axis_be; 418 int ret; 419 420 mutex_lock(&data->lock); 421 ret = fxas21002c_pm_get(data); 422 if (ret < 0) 423 goto data_unlock; 424 425 ret = regmap_bulk_read(data->regmap, FXAS21002C_AXIS_TO_REG(index), 426 &axis_be, sizeof(axis_be)); 427 if (ret < 0) { 428 dev_err(dev, "failed to read axis: %d: %d\n", index, ret); 429 fxas21002c_pm_put(data); 430 goto data_unlock; 431 } 432 433 *val = sign_extend32(be16_to_cpu(axis_be), 15); 434 435 ret = fxas21002c_pm_put(data); 436 if (ret < 0) 437 goto data_unlock; 438 439 ret = IIO_VAL_INT; 440 441 data_unlock: 442 mutex_unlock(&data->lock); 443 444 return ret; 445 } 446 447 static int fxas21002c_odr_get(struct fxas21002c_data *data, int *odr) 448 { 449 unsigned int odr_bits; 450 int ret; 451 452 mutex_lock(&data->lock); 453 ret = regmap_field_read(data->regmap_fields[F_DR], &odr_bits); 454 if (ret < 0) 455 goto data_unlock; 456 457 *odr = fxas21002c_odr_hz_from_value(data, odr_bits); 458 459 ret = IIO_VAL_INT; 460 461 data_unlock: 462 mutex_unlock(&data->lock); 463 464 return ret; 465 } 466 467 static int fxas21002c_odr_set(struct fxas21002c_data *data, int odr) 468 { 469 int odr_bits; 470 471 odr_bits = fxas21002c_odr_value_from_hz(data, odr); 472 if (odr_bits < 0) 473 return odr_bits; 474 475 return fxas21002c_write(data, F_DR, odr_bits); 476 } 477 478 static int fxas21002c_lpf_get(struct fxas21002c_data *data, int *val2) 479 { 480 unsigned int bw_bits; 481 int ret; 482 483 mutex_lock(&data->lock); 484 ret = regmap_field_read(data->regmap_fields[F_BW], &bw_bits); 485 if (ret < 0) 486 goto data_unlock; 487 488 *val2 = fxas21002c_lpf_bw_from_value(data, bw_bits) * 10000; 489 490 ret = IIO_VAL_INT_PLUS_MICRO; 491 492 data_unlock: 493 mutex_unlock(&data->lock); 494 495 return ret; 496 } 497 498 static int fxas21002c_lpf_set(struct fxas21002c_data *data, int bw) 499 { 500 int bw_bits; 501 int odr; 502 int ret; 503 504 bw_bits = fxas21002c_lpf_value_from_bw(data, bw); 505 if (bw_bits < 0) 506 return bw_bits; 507 508 /* 509 * From table 33 of the device spec, for ODR = 25Hz and 12.5 value 0.08 510 * is not allowed and for ODR = 12.5 value 0.16 is also not allowed 511 */ 512 ret = fxas21002c_odr_get(data, &odr); 513 if (ret < 0) 514 return -EINVAL; 515 516 if ((odr == 25 && bw_bits > 0x01) || (odr == 12 && bw_bits > 0)) 517 return -EINVAL; 518 519 return fxas21002c_write(data, F_BW, bw_bits); 520 } 521 522 static int fxas21002c_hpf_get(struct fxas21002c_data *data, int *val2) 523 { 524 unsigned int sel_bits; 525 int ret; 526 527 mutex_lock(&data->lock); 528 ret = regmap_field_read(data->regmap_fields[F_SEL], &sel_bits); 529 if (ret < 0) 530 goto data_unlock; 531 532 *val2 = fxas21002c_hpf_sel_from_value(data, sel_bits); 533 534 ret = IIO_VAL_INT_PLUS_MICRO; 535 536 data_unlock: 537 mutex_unlock(&data->lock); 538 539 return ret; 540 } 541 542 static int fxas21002c_hpf_set(struct fxas21002c_data *data, int sel) 543 { 544 int sel_bits; 545 546 sel_bits = fxas21002c_hpf_value_from_sel(data, sel); 547 if (sel_bits < 0) 548 return sel_bits; 549 550 return fxas21002c_write(data, F_SEL, sel_bits); 551 } 552 553 static int fxas21002c_scale_get(struct fxas21002c_data *data, int *val) 554 { 555 int fs_bits; 556 int scale; 557 int ret; 558 559 mutex_lock(&data->lock); 560 ret = regmap_field_read(data->regmap_fields[F_FS], &fs_bits); 561 if (ret < 0) 562 goto data_unlock; 563 564 scale = fxas21002c_range_fs_from_value(data, fs_bits); 565 if (scale < 0) { 566 ret = scale; 567 goto data_unlock; 568 } 569 570 *val = scale; 571 572 data_unlock: 573 mutex_unlock(&data->lock); 574 575 return ret; 576 } 577 578 static int fxas21002c_scale_set(struct fxas21002c_data *data, int range) 579 { 580 int fs_bits; 581 582 fs_bits = fxas21002c_range_value_from_fs(data, range); 583 if (fs_bits < 0) 584 return fs_bits; 585 586 return fxas21002c_write(data, F_FS, fs_bits); 587 } 588 589 static int fxas21002c_read_raw(struct iio_dev *indio_dev, 590 struct iio_chan_spec const *chan, int *val, 591 int *val2, long mask) 592 { 593 struct fxas21002c_data *data = iio_priv(indio_dev); 594 int ret; 595 596 switch (mask) { 597 case IIO_CHAN_INFO_RAW: 598 switch (chan->type) { 599 case IIO_TEMP: 600 return fxas21002c_temp_get(data, val); 601 case IIO_ANGL_VEL: 602 return fxas21002c_axis_get(data, chan->scan_index, val); 603 default: 604 return -EINVAL; 605 } 606 case IIO_CHAN_INFO_SCALE: 607 switch (chan->type) { 608 case IIO_ANGL_VEL: 609 *val2 = FXAS21002C_SCALE_FRACTIONAL; 610 ret = fxas21002c_scale_get(data, val); 611 if (ret < 0) 612 return ret; 613 614 return IIO_VAL_FRACTIONAL; 615 default: 616 return -EINVAL; 617 } 618 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 619 *val = 0; 620 return fxas21002c_lpf_get(data, val2); 621 case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY: 622 *val = 0; 623 return fxas21002c_hpf_get(data, val2); 624 case IIO_CHAN_INFO_SAMP_FREQ: 625 *val2 = 0; 626 return fxas21002c_odr_get(data, val); 627 default: 628 return -EINVAL; 629 } 630 } 631 632 static int fxas21002c_write_raw(struct iio_dev *indio_dev, 633 struct iio_chan_spec const *chan, int val, 634 int val2, long mask) 635 { 636 struct fxas21002c_data *data = iio_priv(indio_dev); 637 int range; 638 639 switch (mask) { 640 case IIO_CHAN_INFO_SAMP_FREQ: 641 if (val2) 642 return -EINVAL; 643 644 return fxas21002c_odr_set(data, val); 645 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 646 if (val) 647 return -EINVAL; 648 649 val2 = val2 / 10000; 650 return fxas21002c_lpf_set(data, val2); 651 case IIO_CHAN_INFO_SCALE: 652 switch (chan->type) { 653 case IIO_ANGL_VEL: 654 range = (((val * 1000 + val2 / 1000) * 655 FXAS21002C_SCALE_FRACTIONAL) / 1000); 656 return fxas21002c_scale_set(data, range); 657 default: 658 return -EINVAL; 659 } 660 case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY: 661 return fxas21002c_hpf_set(data, val2); 662 default: 663 return -EINVAL; 664 } 665 } 666 667 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("12.5 25 50 100 200 400 800"); 668 669 static IIO_CONST_ATTR(in_anglvel_filter_low_pass_3db_frequency_available, 670 "0.32 0.16 0.08"); 671 672 static IIO_CONST_ATTR(in_anglvel_filter_high_pass_3db_frequency_available, 673 "0.018750 0.009625 0.004875 0.002475"); 674 675 static IIO_CONST_ATTR(in_anglvel_scale_available, 676 "125.0 62.5 31.25 15.625 7.8125"); 677 678 static struct attribute *fxas21002c_attributes[] = { 679 &iio_const_attr_sampling_frequency_available.dev_attr.attr, 680 &iio_const_attr_in_anglvel_filter_low_pass_3db_frequency_available.dev_attr.attr, 681 &iio_const_attr_in_anglvel_filter_high_pass_3db_frequency_available.dev_attr.attr, 682 &iio_const_attr_in_anglvel_scale_available.dev_attr.attr, 683 NULL, 684 }; 685 686 static const struct attribute_group fxas21002c_attrs_group = { 687 .attrs = fxas21002c_attributes, 688 }; 689 690 #define FXAS21002C_CHANNEL(_axis) { \ 691 .type = IIO_ANGL_VEL, \ 692 .modified = 1, \ 693 .channel2 = IIO_MOD_##_axis, \ 694 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 695 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ 696 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) | \ 697 BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY) | \ 698 BIT(IIO_CHAN_INFO_SAMP_FREQ), \ 699 .scan_index = CHANNEL_SCAN_INDEX_##_axis, \ 700 .scan_type = { \ 701 .sign = 's', \ 702 .realbits = 16, \ 703 .storagebits = 16, \ 704 .endianness = IIO_BE, \ 705 }, \ 706 } 707 708 static const struct iio_chan_spec fxas21002c_channels[] = { 709 { 710 .type = IIO_TEMP, 711 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), 712 .scan_index = -1, 713 }, 714 FXAS21002C_CHANNEL(X), 715 FXAS21002C_CHANNEL(Y), 716 FXAS21002C_CHANNEL(Z), 717 }; 718 719 static const struct iio_info fxas21002c_info = { 720 .attrs = &fxas21002c_attrs_group, 721 .read_raw = &fxas21002c_read_raw, 722 .write_raw = &fxas21002c_write_raw, 723 }; 724 725 static irqreturn_t fxas21002c_trigger_handler(int irq, void *p) 726 { 727 struct iio_poll_func *pf = p; 728 struct iio_dev *indio_dev = pf->indio_dev; 729 struct fxas21002c_data *data = iio_priv(indio_dev); 730 int ret; 731 732 mutex_lock(&data->lock); 733 ret = regmap_bulk_read(data->regmap, FXAS21002C_REG_OUT_X_MSB, 734 data->buffer, CHANNEL_SCAN_MAX * sizeof(s16)); 735 if (ret < 0) 736 goto out_unlock; 737 738 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer, 739 data->timestamp); 740 741 out_unlock: 742 mutex_unlock(&data->lock); 743 744 iio_trigger_notify_done(indio_dev->trig); 745 746 return IRQ_HANDLED; 747 } 748 749 static int fxas21002c_chip_init(struct fxas21002c_data *data) 750 { 751 struct device *dev = regmap_get_device(data->regmap); 752 unsigned int chip_id; 753 int ret; 754 755 ret = regmap_field_read(data->regmap_fields[F_WHO_AM_I], &chip_id); 756 if (ret < 0) 757 return ret; 758 759 if (chip_id != FXAS21002C_CHIP_ID_1 && 760 chip_id != FXAS21002C_CHIP_ID_2) { 761 dev_err(dev, "chip id 0x%02x is not supported\n", chip_id); 762 return -EINVAL; 763 } 764 765 data->chip_id = chip_id; 766 767 ret = fxas21002c_mode_set(data, FXAS21002C_MODE_STANDBY); 768 if (ret < 0) 769 return ret; 770 771 /* Set ODR to 200HZ as default */ 772 ret = fxas21002c_odr_set(data, 200); 773 if (ret < 0) 774 dev_err(dev, "failed to set ODR: %d\n", ret); 775 776 return ret; 777 } 778 779 static int fxas21002c_data_rdy_trigger_set_state(struct iio_trigger *trig, 780 bool state) 781 { 782 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); 783 struct fxas21002c_data *data = iio_priv(indio_dev); 784 785 return regmap_field_write(data->regmap_fields[F_INT_EN_DRDY], state); 786 } 787 788 static const struct iio_trigger_ops fxas21002c_trigger_ops = { 789 .set_trigger_state = &fxas21002c_data_rdy_trigger_set_state, 790 }; 791 792 static irqreturn_t fxas21002c_data_rdy_handler(int irq, void *private) 793 { 794 struct iio_dev *indio_dev = private; 795 struct fxas21002c_data *data = iio_priv(indio_dev); 796 797 data->timestamp = iio_get_time_ns(indio_dev); 798 799 return IRQ_WAKE_THREAD; 800 } 801 802 static irqreturn_t fxas21002c_data_rdy_thread(int irq, void *private) 803 { 804 struct iio_dev *indio_dev = private; 805 struct fxas21002c_data *data = iio_priv(indio_dev); 806 unsigned int data_ready; 807 int ret; 808 809 ret = regmap_field_read(data->regmap_fields[F_SRC_DRDY], &data_ready); 810 if (ret < 0) 811 return IRQ_NONE; 812 813 if (!data_ready) 814 return IRQ_NONE; 815 816 iio_trigger_poll_chained(data->dready_trig); 817 818 return IRQ_HANDLED; 819 } 820 821 static int fxas21002c_trigger_probe(struct fxas21002c_data *data) 822 { 823 struct device *dev = regmap_get_device(data->regmap); 824 struct iio_dev *indio_dev = dev_get_drvdata(dev); 825 unsigned long irq_trig; 826 bool irq_open_drain; 827 int irq1; 828 int ret; 829 830 if (!data->irq) 831 return 0; 832 833 irq1 = fwnode_irq_get_byname(dev_fwnode(dev), "INT1"); 834 if (irq1 == data->irq) { 835 dev_info(dev, "using interrupt line INT1\n"); 836 ret = regmap_field_write(data->regmap_fields[F_INT_CFG_DRDY], 837 1); 838 if (ret < 0) 839 return ret; 840 } 841 842 dev_info(dev, "using interrupt line INT2\n"); 843 844 irq_open_drain = device_property_read_bool(dev, "drive-open-drain"); 845 846 data->dready_trig = devm_iio_trigger_alloc(dev, "%s-dev%d", 847 indio_dev->name, 848 iio_device_id(indio_dev)); 849 if (!data->dready_trig) 850 return -ENOMEM; 851 852 irq_trig = irqd_get_trigger_type(irq_get_irq_data(data->irq)); 853 854 if (irq_trig == IRQF_TRIGGER_RISING) { 855 ret = regmap_field_write(data->regmap_fields[F_IPOL], 1); 856 if (ret < 0) 857 return ret; 858 } 859 860 if (irq_open_drain) 861 irq_trig |= IRQF_SHARED; 862 863 ret = devm_request_threaded_irq(dev, data->irq, 864 fxas21002c_data_rdy_handler, 865 fxas21002c_data_rdy_thread, 866 irq_trig, "fxas21002c_data_ready", 867 indio_dev); 868 if (ret < 0) 869 return ret; 870 871 data->dready_trig->ops = &fxas21002c_trigger_ops; 872 iio_trigger_set_drvdata(data->dready_trig, indio_dev); 873 874 return devm_iio_trigger_register(dev, data->dready_trig); 875 } 876 877 static int fxas21002c_power_enable(struct fxas21002c_data *data) 878 { 879 int ret; 880 881 ret = regulator_enable(data->vdd); 882 if (ret < 0) 883 return ret; 884 885 ret = regulator_enable(data->vddio); 886 if (ret < 0) { 887 regulator_disable(data->vdd); 888 return ret; 889 } 890 891 return 0; 892 } 893 894 static void fxas21002c_power_disable(struct fxas21002c_data *data) 895 { 896 regulator_disable(data->vdd); 897 regulator_disable(data->vddio); 898 } 899 900 static void fxas21002c_power_disable_action(void *_data) 901 { 902 struct fxas21002c_data *data = _data; 903 904 fxas21002c_power_disable(data); 905 } 906 907 static int fxas21002c_regulators_get(struct fxas21002c_data *data) 908 { 909 struct device *dev = regmap_get_device(data->regmap); 910 911 data->vdd = devm_regulator_get(dev->parent, "vdd"); 912 if (IS_ERR(data->vdd)) 913 return PTR_ERR(data->vdd); 914 915 data->vddio = devm_regulator_get(dev->parent, "vddio"); 916 917 return PTR_ERR_OR_ZERO(data->vddio); 918 } 919 920 int fxas21002c_core_probe(struct device *dev, struct regmap *regmap, int irq, 921 const char *name) 922 { 923 struct fxas21002c_data *data; 924 struct iio_dev *indio_dev; 925 struct regmap_field *f; 926 int i; 927 int ret; 928 929 indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); 930 if (!indio_dev) 931 return -ENOMEM; 932 933 data = iio_priv(indio_dev); 934 dev_set_drvdata(dev, indio_dev); 935 data->irq = irq; 936 data->regmap = regmap; 937 938 for (i = 0; i < F_MAX_FIELDS; i++) { 939 f = devm_regmap_field_alloc(dev, data->regmap, 940 fxas21002c_reg_fields[i]); 941 if (IS_ERR(f)) 942 return PTR_ERR(f); 943 944 data->regmap_fields[i] = f; 945 } 946 947 mutex_init(&data->lock); 948 949 ret = fxas21002c_regulators_get(data); 950 if (ret < 0) 951 return ret; 952 953 ret = fxas21002c_power_enable(data); 954 if (ret < 0) 955 return ret; 956 957 ret = devm_add_action_or_reset(dev, fxas21002c_power_disable_action, 958 data); 959 if (ret < 0) 960 return ret; 961 962 ret = fxas21002c_chip_init(data); 963 if (ret < 0) 964 return ret; 965 966 indio_dev->channels = fxas21002c_channels; 967 indio_dev->num_channels = ARRAY_SIZE(fxas21002c_channels); 968 indio_dev->name = name; 969 indio_dev->modes = INDIO_DIRECT_MODE; 970 indio_dev->info = &fxas21002c_info; 971 972 ret = fxas21002c_trigger_probe(data); 973 if (ret < 0) 974 return ret; 975 976 ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL, 977 fxas21002c_trigger_handler, NULL); 978 if (ret < 0) 979 return ret; 980 981 ret = pm_runtime_set_active(dev); 982 if (ret) 983 return ret; 984 985 pm_runtime_enable(dev); 986 pm_runtime_set_autosuspend_delay(dev, 2000); 987 pm_runtime_use_autosuspend(dev); 988 989 ret = iio_device_register(indio_dev); 990 if (ret < 0) 991 goto pm_disable; 992 993 return 0; 994 995 pm_disable: 996 pm_runtime_disable(dev); 997 pm_runtime_set_suspended(dev); 998 999 return ret; 1000 } 1001 EXPORT_SYMBOL_GPL(fxas21002c_core_probe); 1002 1003 void fxas21002c_core_remove(struct device *dev) 1004 { 1005 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1006 1007 iio_device_unregister(indio_dev); 1008 1009 pm_runtime_disable(dev); 1010 pm_runtime_set_suspended(dev); 1011 } 1012 EXPORT_SYMBOL_GPL(fxas21002c_core_remove); 1013 1014 static int __maybe_unused fxas21002c_suspend(struct device *dev) 1015 { 1016 struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev)); 1017 1018 fxas21002c_mode_set(data, FXAS21002C_MODE_STANDBY); 1019 fxas21002c_power_disable(data); 1020 1021 return 0; 1022 } 1023 1024 static int __maybe_unused fxas21002c_resume(struct device *dev) 1025 { 1026 struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev)); 1027 int ret; 1028 1029 ret = fxas21002c_power_enable(data); 1030 if (ret < 0) 1031 return ret; 1032 1033 return fxas21002c_mode_set(data, data->prev_mode); 1034 } 1035 1036 static int __maybe_unused fxas21002c_runtime_suspend(struct device *dev) 1037 { 1038 struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev)); 1039 1040 return fxas21002c_mode_set(data, FXAS21002C_MODE_READY); 1041 } 1042 1043 static int __maybe_unused fxas21002c_runtime_resume(struct device *dev) 1044 { 1045 struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev)); 1046 1047 return fxas21002c_mode_set(data, FXAS21002C_MODE_ACTIVE); 1048 } 1049 1050 const struct dev_pm_ops fxas21002c_pm_ops = { 1051 SET_SYSTEM_SLEEP_PM_OPS(fxas21002c_suspend, fxas21002c_resume) 1052 SET_RUNTIME_PM_OPS(fxas21002c_runtime_suspend, 1053 fxas21002c_runtime_resume, NULL) 1054 }; 1055 EXPORT_SYMBOL_GPL(fxas21002c_pm_ops); 1056 1057 MODULE_AUTHOR("Rui Miguel Silva <rui.silva@linaro.org>"); 1058 MODULE_LICENSE("GPL v2"); 1059 MODULE_DESCRIPTION("FXAS21002C Gyro driver"); 1060