1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Driver for NXP FXAS21002C Gyroscope - Core 4 * 5 * Copyright (C) 2019 Linaro Ltd. 6 */ 7 8 #include <linux/interrupt.h> 9 #include <linux/module.h> 10 #include <linux/of_irq.h> 11 #include <linux/pm.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/regmap.h> 14 #include <linux/regulator/consumer.h> 15 16 #include <linux/iio/events.h> 17 #include <linux/iio/iio.h> 18 #include <linux/iio/buffer.h> 19 #include <linux/iio/sysfs.h> 20 #include <linux/iio/trigger.h> 21 #include <linux/iio/trigger_consumer.h> 22 #include <linux/iio/triggered_buffer.h> 23 24 #include "fxas21002c.h" 25 26 #define FXAS21002C_CHIP_ID_1 0xD6 27 #define FXAS21002C_CHIP_ID_2 0xD7 28 29 enum fxas21002c_mode_state { 30 FXAS21002C_MODE_STANDBY, 31 FXAS21002C_MODE_READY, 32 FXAS21002C_MODE_ACTIVE, 33 }; 34 35 #define FXAS21002C_STANDBY_ACTIVE_TIME_MS 62 36 #define FXAS21002C_READY_ACTIVE_TIME_MS 7 37 38 #define FXAS21002C_ODR_LIST_MAX 10 39 40 #define FXAS21002C_SCALE_FRACTIONAL 32 41 #define FXAS21002C_RANGE_LIMIT_DOUBLE 2000 42 43 #define FXAS21002C_AXIS_TO_REG(axis) (FXAS21002C_REG_OUT_X_MSB + ((axis) * 2)) 44 45 static const struct reg_field fxas21002c_reg_fields[] = { 46 [F_DR_STATUS] = REG_FIELD(FXAS21002C_REG_STATUS, 0, 7), 47 [F_OUT_X_MSB] = REG_FIELD(FXAS21002C_REG_OUT_X_MSB, 0, 7), 48 [F_OUT_X_LSB] = REG_FIELD(FXAS21002C_REG_OUT_X_LSB, 0, 7), 49 [F_OUT_Y_MSB] = REG_FIELD(FXAS21002C_REG_OUT_Y_MSB, 0, 7), 50 [F_OUT_Y_LSB] = REG_FIELD(FXAS21002C_REG_OUT_Y_LSB, 0, 7), 51 [F_OUT_Z_MSB] = REG_FIELD(FXAS21002C_REG_OUT_Z_MSB, 0, 7), 52 [F_OUT_Z_LSB] = REG_FIELD(FXAS21002C_REG_OUT_Z_LSB, 0, 7), 53 [F_ZYX_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 7, 7), 54 [F_Z_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 6, 6), 55 [F_Y_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 5, 5), 56 [F_X_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 4, 4), 57 [F_ZYX_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 3, 3), 58 [F_Z_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 2, 2), 59 [F_Y_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 1, 1), 60 [F_X_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 0, 0), 61 [F_OVF] = REG_FIELD(FXAS21002C_REG_F_STATUS, 7, 7), 62 [F_WMKF] = REG_FIELD(FXAS21002C_REG_F_STATUS, 6, 6), 63 [F_CNT] = REG_FIELD(FXAS21002C_REG_F_STATUS, 0, 5), 64 [F_MODE] = REG_FIELD(FXAS21002C_REG_F_SETUP, 6, 7), 65 [F_WMRK] = REG_FIELD(FXAS21002C_REG_F_SETUP, 0, 5), 66 [F_EVENT] = REG_FIELD(FXAS21002C_REG_F_EVENT, 5, 5), 67 [FE_TIME] = REG_FIELD(FXAS21002C_REG_F_EVENT, 0, 4), 68 [F_BOOTEND] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 3, 3), 69 [F_SRC_FIFO] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 2, 2), 70 [F_SRC_RT] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 1, 1), 71 [F_SRC_DRDY] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 0, 0), 72 [F_WHO_AM_I] = REG_FIELD(FXAS21002C_REG_WHO_AM_I, 0, 7), 73 [F_BW] = REG_FIELD(FXAS21002C_REG_CTRL0, 6, 7), 74 [F_SPIW] = REG_FIELD(FXAS21002C_REG_CTRL0, 5, 5), 75 [F_SEL] = REG_FIELD(FXAS21002C_REG_CTRL0, 3, 4), 76 [F_HPF_EN] = REG_FIELD(FXAS21002C_REG_CTRL0, 2, 2), 77 [F_FS] = REG_FIELD(FXAS21002C_REG_CTRL0, 0, 1), 78 [F_ELE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 3, 3), 79 [F_ZTEFE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 2, 2), 80 [F_YTEFE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 1, 1), 81 [F_XTEFE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 0, 0), 82 [F_EA] = REG_FIELD(FXAS21002C_REG_RT_SRC, 6, 6), 83 [F_ZRT] = REG_FIELD(FXAS21002C_REG_RT_SRC, 5, 5), 84 [F_ZRT_POL] = REG_FIELD(FXAS21002C_REG_RT_SRC, 4, 4), 85 [F_YRT] = REG_FIELD(FXAS21002C_REG_RT_SRC, 3, 3), 86 [F_YRT_POL] = REG_FIELD(FXAS21002C_REG_RT_SRC, 2, 2), 87 [F_XRT] = REG_FIELD(FXAS21002C_REG_RT_SRC, 1, 1), 88 [F_XRT_POL] = REG_FIELD(FXAS21002C_REG_RT_SRC, 0, 0), 89 [F_DBCNTM] = REG_FIELD(FXAS21002C_REG_RT_THS, 7, 7), 90 [F_THS] = REG_FIELD(FXAS21002C_REG_RT_SRC, 0, 6), 91 [F_RT_COUNT] = REG_FIELD(FXAS21002C_REG_RT_COUNT, 0, 7), 92 [F_TEMP] = REG_FIELD(FXAS21002C_REG_TEMP, 0, 7), 93 [F_RST] = REG_FIELD(FXAS21002C_REG_CTRL1, 6, 6), 94 [F_ST] = REG_FIELD(FXAS21002C_REG_CTRL1, 5, 5), 95 [F_DR] = REG_FIELD(FXAS21002C_REG_CTRL1, 2, 4), 96 [F_ACTIVE] = REG_FIELD(FXAS21002C_REG_CTRL1, 1, 1), 97 [F_READY] = REG_FIELD(FXAS21002C_REG_CTRL1, 0, 0), 98 [F_INT_CFG_FIFO] = REG_FIELD(FXAS21002C_REG_CTRL2, 7, 7), 99 [F_INT_EN_FIFO] = REG_FIELD(FXAS21002C_REG_CTRL2, 6, 6), 100 [F_INT_CFG_RT] = REG_FIELD(FXAS21002C_REG_CTRL2, 5, 5), 101 [F_INT_EN_RT] = REG_FIELD(FXAS21002C_REG_CTRL2, 4, 4), 102 [F_INT_CFG_DRDY] = REG_FIELD(FXAS21002C_REG_CTRL2, 3, 3), 103 [F_INT_EN_DRDY] = REG_FIELD(FXAS21002C_REG_CTRL2, 2, 2), 104 [F_IPOL] = REG_FIELD(FXAS21002C_REG_CTRL2, 1, 1), 105 [F_PP_OD] = REG_FIELD(FXAS21002C_REG_CTRL2, 0, 0), 106 [F_WRAPTOONE] = REG_FIELD(FXAS21002C_REG_CTRL3, 3, 3), 107 [F_EXTCTRLEN] = REG_FIELD(FXAS21002C_REG_CTRL3, 2, 2), 108 [F_FS_DOUBLE] = REG_FIELD(FXAS21002C_REG_CTRL3, 0, 0), 109 }; 110 111 static const int fxas21002c_odr_values[] = { 112 800, 400, 200, 100, 50, 25, 12, 12 113 }; 114 115 /* 116 * These values are taken from the low-pass filter cutoff frequency calculated 117 * ODR * 0.lpf_values. So, for ODR = 800Hz with a lpf value = 0.32 118 * => LPF cutoff frequency = 800 * 0.32 = 256 Hz 119 */ 120 static const int fxas21002c_lpf_values[] = { 121 32, 16, 8 122 }; 123 124 /* 125 * These values are taken from the high-pass filter cutoff frequency calculated 126 * ODR * 0.0hpf_values. So, for ODR = 800Hz with a hpf value = 0.018750 127 * => HPF cutoff frequency = 800 * 0.018750 = 15 Hz 128 */ 129 static const int fxas21002c_hpf_values[] = { 130 18750, 9625, 4875, 2475 131 }; 132 133 static const int fxas21002c_range_values[] = { 134 4000, 2000, 1000, 500, 250 135 }; 136 137 struct fxas21002c_data { 138 u8 chip_id; 139 enum fxas21002c_mode_state mode; 140 enum fxas21002c_mode_state prev_mode; 141 142 struct mutex lock; /* serialize data access */ 143 struct regmap *regmap; 144 struct regmap_field *regmap_fields[F_MAX_FIELDS]; 145 struct iio_trigger *dready_trig; 146 s64 timestamp; 147 int irq; 148 149 struct regulator *vdd; 150 struct regulator *vddio; 151 152 /* 153 * DMA (thus cache coherency maintenance) requires the 154 * transfer buffers to live in their own cache lines. 155 */ 156 s16 buffer[8] ____cacheline_aligned; 157 }; 158 159 enum fxas21002c_channel_index { 160 CHANNEL_SCAN_INDEX_X, 161 CHANNEL_SCAN_INDEX_Y, 162 CHANNEL_SCAN_INDEX_Z, 163 CHANNEL_SCAN_MAX, 164 }; 165 166 static int fxas21002c_odr_hz_from_value(struct fxas21002c_data *data, u8 value) 167 { 168 int odr_value_max = ARRAY_SIZE(fxas21002c_odr_values) - 1; 169 170 value = min_t(u8, value, odr_value_max); 171 172 return fxas21002c_odr_values[value]; 173 } 174 175 static int fxas21002c_odr_value_from_hz(struct fxas21002c_data *data, 176 unsigned int hz) 177 { 178 int odr_table_size = ARRAY_SIZE(fxas21002c_odr_values); 179 int i; 180 181 for (i = 0; i < odr_table_size; i++) 182 if (fxas21002c_odr_values[i] == hz) 183 return i; 184 185 return -EINVAL; 186 } 187 188 static int fxas21002c_lpf_bw_from_value(struct fxas21002c_data *data, u8 value) 189 { 190 int lpf_value_max = ARRAY_SIZE(fxas21002c_lpf_values) - 1; 191 192 value = min_t(u8, value, lpf_value_max); 193 194 return fxas21002c_lpf_values[value]; 195 } 196 197 static int fxas21002c_lpf_value_from_bw(struct fxas21002c_data *data, 198 unsigned int hz) 199 { 200 int lpf_table_size = ARRAY_SIZE(fxas21002c_lpf_values); 201 int i; 202 203 for (i = 0; i < lpf_table_size; i++) 204 if (fxas21002c_lpf_values[i] == hz) 205 return i; 206 207 return -EINVAL; 208 } 209 210 static int fxas21002c_hpf_sel_from_value(struct fxas21002c_data *data, u8 value) 211 { 212 int hpf_value_max = ARRAY_SIZE(fxas21002c_hpf_values) - 1; 213 214 value = min_t(u8, value, hpf_value_max); 215 216 return fxas21002c_hpf_values[value]; 217 } 218 219 static int fxas21002c_hpf_value_from_sel(struct fxas21002c_data *data, 220 unsigned int hz) 221 { 222 int hpf_table_size = ARRAY_SIZE(fxas21002c_hpf_values); 223 int i; 224 225 for (i = 0; i < hpf_table_size; i++) 226 if (fxas21002c_hpf_values[i] == hz) 227 return i; 228 229 return -EINVAL; 230 } 231 232 static int fxas21002c_range_fs_from_value(struct fxas21002c_data *data, 233 u8 value) 234 { 235 int range_value_max = ARRAY_SIZE(fxas21002c_range_values) - 1; 236 unsigned int fs_double; 237 int ret; 238 239 /* We need to check if FS_DOUBLE is enabled to offset the value */ 240 ret = regmap_field_read(data->regmap_fields[F_FS_DOUBLE], &fs_double); 241 if (ret < 0) 242 return ret; 243 244 if (!fs_double) 245 value += 1; 246 247 value = min_t(u8, value, range_value_max); 248 249 return fxas21002c_range_values[value]; 250 } 251 252 static int fxas21002c_range_value_from_fs(struct fxas21002c_data *data, 253 unsigned int range) 254 { 255 int range_table_size = ARRAY_SIZE(fxas21002c_range_values); 256 bool found = false; 257 int fs_double = 0; 258 int ret; 259 int i; 260 261 for (i = 0; i < range_table_size; i++) 262 if (fxas21002c_range_values[i] == range) { 263 found = true; 264 break; 265 } 266 267 if (!found) 268 return -EINVAL; 269 270 if (range > FXAS21002C_RANGE_LIMIT_DOUBLE) 271 fs_double = 1; 272 273 ret = regmap_field_write(data->regmap_fields[F_FS_DOUBLE], fs_double); 274 if (ret < 0) 275 return ret; 276 277 return i; 278 } 279 280 static int fxas21002c_mode_get(struct fxas21002c_data *data) 281 { 282 unsigned int active; 283 unsigned int ready; 284 int ret; 285 286 ret = regmap_field_read(data->regmap_fields[F_ACTIVE], &active); 287 if (ret < 0) 288 return ret; 289 if (active) 290 return FXAS21002C_MODE_ACTIVE; 291 292 ret = regmap_field_read(data->regmap_fields[F_READY], &ready); 293 if (ret < 0) 294 return ret; 295 if (ready) 296 return FXAS21002C_MODE_READY; 297 298 return FXAS21002C_MODE_STANDBY; 299 } 300 301 static int fxas21002c_mode_set(struct fxas21002c_data *data, 302 enum fxas21002c_mode_state mode) 303 { 304 int ret; 305 306 if (mode == data->mode) 307 return 0; 308 309 if (mode == FXAS21002C_MODE_READY) 310 ret = regmap_field_write(data->regmap_fields[F_READY], 1); 311 else 312 ret = regmap_field_write(data->regmap_fields[F_READY], 0); 313 if (ret < 0) 314 return ret; 315 316 if (mode == FXAS21002C_MODE_ACTIVE) 317 ret = regmap_field_write(data->regmap_fields[F_ACTIVE], 1); 318 else 319 ret = regmap_field_write(data->regmap_fields[F_ACTIVE], 0); 320 if (ret < 0) 321 return ret; 322 323 /* if going to active wait the setup times */ 324 if (mode == FXAS21002C_MODE_ACTIVE && 325 data->mode == FXAS21002C_MODE_STANDBY) 326 msleep_interruptible(FXAS21002C_STANDBY_ACTIVE_TIME_MS); 327 328 if (data->mode == FXAS21002C_MODE_READY) 329 msleep_interruptible(FXAS21002C_READY_ACTIVE_TIME_MS); 330 331 data->prev_mode = data->mode; 332 data->mode = mode; 333 334 return ret; 335 } 336 337 static int fxas21002c_write(struct fxas21002c_data *data, 338 enum fxas21002c_fields field, int bits) 339 { 340 int actual_mode; 341 int ret; 342 343 mutex_lock(&data->lock); 344 345 actual_mode = fxas21002c_mode_get(data); 346 if (actual_mode < 0) { 347 ret = actual_mode; 348 goto out_unlock; 349 } 350 351 ret = fxas21002c_mode_set(data, FXAS21002C_MODE_READY); 352 if (ret < 0) 353 goto out_unlock; 354 355 ret = regmap_field_write(data->regmap_fields[field], bits); 356 if (ret < 0) 357 goto out_unlock; 358 359 ret = fxas21002c_mode_set(data, data->prev_mode); 360 361 out_unlock: 362 mutex_unlock(&data->lock); 363 364 return ret; 365 } 366 367 static int fxas21002c_pm_get(struct fxas21002c_data *data) 368 { 369 struct device *dev = regmap_get_device(data->regmap); 370 int ret; 371 372 ret = pm_runtime_get_sync(dev); 373 if (ret < 0) 374 pm_runtime_put_noidle(dev); 375 376 return ret; 377 } 378 379 static int fxas21002c_pm_put(struct fxas21002c_data *data) 380 { 381 struct device *dev = regmap_get_device(data->regmap); 382 383 pm_runtime_mark_last_busy(dev); 384 385 return pm_runtime_put_autosuspend(dev); 386 } 387 388 static int fxas21002c_temp_get(struct fxas21002c_data *data, int *val) 389 { 390 struct device *dev = regmap_get_device(data->regmap); 391 unsigned int temp; 392 int ret; 393 394 mutex_lock(&data->lock); 395 ret = fxas21002c_pm_get(data); 396 if (ret < 0) 397 goto data_unlock; 398 399 ret = regmap_field_read(data->regmap_fields[F_TEMP], &temp); 400 if (ret < 0) { 401 dev_err(dev, "failed to read temp: %d\n", ret); 402 goto data_unlock; 403 } 404 405 *val = sign_extend32(temp, 7); 406 407 ret = fxas21002c_pm_put(data); 408 if (ret < 0) 409 goto data_unlock; 410 411 ret = IIO_VAL_INT; 412 413 data_unlock: 414 mutex_unlock(&data->lock); 415 416 return ret; 417 } 418 419 static int fxas21002c_axis_get(struct fxas21002c_data *data, 420 int index, int *val) 421 { 422 struct device *dev = regmap_get_device(data->regmap); 423 __be16 axis_be; 424 int ret; 425 426 mutex_lock(&data->lock); 427 ret = fxas21002c_pm_get(data); 428 if (ret < 0) 429 goto data_unlock; 430 431 ret = regmap_bulk_read(data->regmap, FXAS21002C_AXIS_TO_REG(index), 432 &axis_be, sizeof(axis_be)); 433 if (ret < 0) { 434 dev_err(dev, "failed to read axis: %d: %d\n", index, ret); 435 goto data_unlock; 436 } 437 438 *val = sign_extend32(be16_to_cpu(axis_be), 15); 439 440 ret = fxas21002c_pm_put(data); 441 if (ret < 0) 442 goto data_unlock; 443 444 ret = IIO_VAL_INT; 445 446 data_unlock: 447 mutex_unlock(&data->lock); 448 449 return ret; 450 } 451 452 static int fxas21002c_odr_get(struct fxas21002c_data *data, int *odr) 453 { 454 unsigned int odr_bits; 455 int ret; 456 457 mutex_lock(&data->lock); 458 ret = regmap_field_read(data->regmap_fields[F_DR], &odr_bits); 459 if (ret < 0) 460 goto data_unlock; 461 462 *odr = fxas21002c_odr_hz_from_value(data, odr_bits); 463 464 ret = IIO_VAL_INT; 465 466 data_unlock: 467 mutex_unlock(&data->lock); 468 469 return ret; 470 } 471 472 static int fxas21002c_odr_set(struct fxas21002c_data *data, int odr) 473 { 474 int odr_bits; 475 476 odr_bits = fxas21002c_odr_value_from_hz(data, odr); 477 if (odr_bits < 0) 478 return odr_bits; 479 480 return fxas21002c_write(data, F_DR, odr_bits); 481 } 482 483 static int fxas21002c_lpf_get(struct fxas21002c_data *data, int *val2) 484 { 485 unsigned int bw_bits; 486 int ret; 487 488 mutex_lock(&data->lock); 489 ret = regmap_field_read(data->regmap_fields[F_BW], &bw_bits); 490 if (ret < 0) 491 goto data_unlock; 492 493 *val2 = fxas21002c_lpf_bw_from_value(data, bw_bits) * 10000; 494 495 ret = IIO_VAL_INT_PLUS_MICRO; 496 497 data_unlock: 498 mutex_unlock(&data->lock); 499 500 return ret; 501 } 502 503 static int fxas21002c_lpf_set(struct fxas21002c_data *data, int bw) 504 { 505 int bw_bits; 506 int odr; 507 int ret; 508 509 bw_bits = fxas21002c_lpf_value_from_bw(data, bw); 510 if (bw_bits < 0) 511 return bw_bits; 512 513 /* 514 * From table 33 of the device spec, for ODR = 25Hz and 12.5 value 0.08 515 * is not allowed and for ODR = 12.5 value 0.16 is also not allowed 516 */ 517 ret = fxas21002c_odr_get(data, &odr); 518 if (ret < 0) 519 return -EINVAL; 520 521 if ((odr == 25 && bw_bits > 0x01) || (odr == 12 && bw_bits > 0)) 522 return -EINVAL; 523 524 return fxas21002c_write(data, F_BW, bw_bits); 525 } 526 527 static int fxas21002c_hpf_get(struct fxas21002c_data *data, int *val2) 528 { 529 unsigned int sel_bits; 530 int ret; 531 532 mutex_lock(&data->lock); 533 ret = regmap_field_read(data->regmap_fields[F_SEL], &sel_bits); 534 if (ret < 0) 535 goto data_unlock; 536 537 *val2 = fxas21002c_hpf_sel_from_value(data, sel_bits); 538 539 ret = IIO_VAL_INT_PLUS_MICRO; 540 541 data_unlock: 542 mutex_unlock(&data->lock); 543 544 return ret; 545 } 546 547 static int fxas21002c_hpf_set(struct fxas21002c_data *data, int sel) 548 { 549 int sel_bits; 550 551 sel_bits = fxas21002c_hpf_value_from_sel(data, sel); 552 if (sel_bits < 0) 553 return sel_bits; 554 555 return fxas21002c_write(data, F_SEL, sel_bits); 556 } 557 558 static int fxas21002c_scale_get(struct fxas21002c_data *data, int *val) 559 { 560 int fs_bits; 561 int scale; 562 int ret; 563 564 mutex_lock(&data->lock); 565 ret = regmap_field_read(data->regmap_fields[F_FS], &fs_bits); 566 if (ret < 0) 567 goto data_unlock; 568 569 scale = fxas21002c_range_fs_from_value(data, fs_bits); 570 if (scale < 0) { 571 ret = scale; 572 goto data_unlock; 573 } 574 575 *val = scale; 576 577 data_unlock: 578 mutex_unlock(&data->lock); 579 580 return ret; 581 } 582 583 static int fxas21002c_scale_set(struct fxas21002c_data *data, int range) 584 { 585 int fs_bits; 586 587 fs_bits = fxas21002c_range_value_from_fs(data, range); 588 if (fs_bits < 0) 589 return fs_bits; 590 591 return fxas21002c_write(data, F_FS, fs_bits); 592 } 593 594 static int fxas21002c_read_raw(struct iio_dev *indio_dev, 595 struct iio_chan_spec const *chan, int *val, 596 int *val2, long mask) 597 { 598 struct fxas21002c_data *data = iio_priv(indio_dev); 599 int ret; 600 601 switch (mask) { 602 case IIO_CHAN_INFO_RAW: 603 switch (chan->type) { 604 case IIO_TEMP: 605 return fxas21002c_temp_get(data, val); 606 case IIO_ANGL_VEL: 607 return fxas21002c_axis_get(data, chan->scan_index, val); 608 default: 609 return -EINVAL; 610 } 611 case IIO_CHAN_INFO_SCALE: 612 switch (chan->type) { 613 case IIO_ANGL_VEL: 614 *val2 = FXAS21002C_SCALE_FRACTIONAL; 615 ret = fxas21002c_scale_get(data, val); 616 if (ret < 0) 617 return ret; 618 619 return IIO_VAL_FRACTIONAL; 620 default: 621 return -EINVAL; 622 } 623 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 624 *val = 0; 625 return fxas21002c_lpf_get(data, val2); 626 case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY: 627 *val = 0; 628 return fxas21002c_hpf_get(data, val2); 629 case IIO_CHAN_INFO_SAMP_FREQ: 630 *val2 = 0; 631 return fxas21002c_odr_get(data, val); 632 default: 633 return -EINVAL; 634 } 635 } 636 637 static int fxas21002c_write_raw(struct iio_dev *indio_dev, 638 struct iio_chan_spec const *chan, int val, 639 int val2, long mask) 640 { 641 struct fxas21002c_data *data = iio_priv(indio_dev); 642 int range; 643 644 switch (mask) { 645 case IIO_CHAN_INFO_SAMP_FREQ: 646 if (val2) 647 return -EINVAL; 648 649 return fxas21002c_odr_set(data, val); 650 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 651 if (val) 652 return -EINVAL; 653 654 val2 = val2 / 10000; 655 return fxas21002c_lpf_set(data, val2); 656 case IIO_CHAN_INFO_SCALE: 657 switch (chan->type) { 658 case IIO_ANGL_VEL: 659 range = (((val * 1000 + val2 / 1000) * 660 FXAS21002C_SCALE_FRACTIONAL) / 1000); 661 return fxas21002c_scale_set(data, range); 662 default: 663 return -EINVAL; 664 } 665 case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY: 666 return fxas21002c_hpf_set(data, val2); 667 default: 668 return -EINVAL; 669 } 670 } 671 672 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("12.5 25 50 100 200 400 800"); 673 674 static IIO_CONST_ATTR(in_anglvel_filter_low_pass_3db_frequency_available, 675 "0.32 0.16 0.08"); 676 677 static IIO_CONST_ATTR(in_anglvel_filter_high_pass_3db_frequency_available, 678 "0.018750 0.009625 0.004875 0.002475"); 679 680 static IIO_CONST_ATTR(in_anglvel_scale_available, 681 "125.0 62.5 31.25 15.625 7.8125"); 682 683 static struct attribute *fxas21002c_attributes[] = { 684 &iio_const_attr_sampling_frequency_available.dev_attr.attr, 685 &iio_const_attr_in_anglvel_filter_low_pass_3db_frequency_available.dev_attr.attr, 686 &iio_const_attr_in_anglvel_filter_high_pass_3db_frequency_available.dev_attr.attr, 687 &iio_const_attr_in_anglvel_scale_available.dev_attr.attr, 688 NULL, 689 }; 690 691 static const struct attribute_group fxas21002c_attrs_group = { 692 .attrs = fxas21002c_attributes, 693 }; 694 695 #define FXAS21002C_CHANNEL(_axis) { \ 696 .type = IIO_ANGL_VEL, \ 697 .modified = 1, \ 698 .channel2 = IIO_MOD_##_axis, \ 699 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 700 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ 701 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) | \ 702 BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY) | \ 703 BIT(IIO_CHAN_INFO_SAMP_FREQ), \ 704 .scan_index = CHANNEL_SCAN_INDEX_##_axis, \ 705 .scan_type = { \ 706 .sign = 's', \ 707 .realbits = 16, \ 708 .storagebits = 16, \ 709 .endianness = IIO_BE, \ 710 }, \ 711 } 712 713 static const struct iio_chan_spec fxas21002c_channels[] = { 714 { 715 .type = IIO_TEMP, 716 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), 717 .scan_index = -1, 718 }, 719 FXAS21002C_CHANNEL(X), 720 FXAS21002C_CHANNEL(Y), 721 FXAS21002C_CHANNEL(Z), 722 }; 723 724 static const struct iio_info fxas21002c_info = { 725 .attrs = &fxas21002c_attrs_group, 726 .read_raw = &fxas21002c_read_raw, 727 .write_raw = &fxas21002c_write_raw, 728 }; 729 730 static irqreturn_t fxas21002c_trigger_handler(int irq, void *p) 731 { 732 struct iio_poll_func *pf = p; 733 struct iio_dev *indio_dev = pf->indio_dev; 734 struct fxas21002c_data *data = iio_priv(indio_dev); 735 int ret; 736 737 mutex_lock(&data->lock); 738 ret = regmap_bulk_read(data->regmap, FXAS21002C_REG_OUT_X_MSB, 739 data->buffer, CHANNEL_SCAN_MAX * sizeof(s16)); 740 if (ret < 0) 741 goto out_unlock; 742 743 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer, 744 data->timestamp); 745 746 out_unlock: 747 mutex_unlock(&data->lock); 748 749 iio_trigger_notify_done(indio_dev->trig); 750 751 return IRQ_HANDLED; 752 } 753 754 static int fxas21002c_chip_init(struct fxas21002c_data *data) 755 { 756 struct device *dev = regmap_get_device(data->regmap); 757 unsigned int chip_id; 758 int ret; 759 760 ret = regmap_field_read(data->regmap_fields[F_WHO_AM_I], &chip_id); 761 if (ret < 0) 762 return ret; 763 764 if (chip_id != FXAS21002C_CHIP_ID_1 && 765 chip_id != FXAS21002C_CHIP_ID_2) { 766 dev_err(dev, "chip id 0x%02x is not supported\n", chip_id); 767 return -EINVAL; 768 } 769 770 data->chip_id = chip_id; 771 772 ret = fxas21002c_mode_set(data, FXAS21002C_MODE_STANDBY); 773 if (ret < 0) 774 return ret; 775 776 /* Set ODR to 200HZ as default */ 777 ret = fxas21002c_odr_set(data, 200); 778 if (ret < 0) 779 dev_err(dev, "failed to set ODR: %d\n", ret); 780 781 return ret; 782 } 783 784 static int fxas21002c_data_rdy_trigger_set_state(struct iio_trigger *trig, 785 bool state) 786 { 787 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); 788 struct fxas21002c_data *data = iio_priv(indio_dev); 789 790 return regmap_field_write(data->regmap_fields[F_INT_EN_DRDY], state); 791 } 792 793 static const struct iio_trigger_ops fxas21002c_trigger_ops = { 794 .set_trigger_state = &fxas21002c_data_rdy_trigger_set_state, 795 }; 796 797 static irqreturn_t fxas21002c_data_rdy_handler(int irq, void *private) 798 { 799 struct iio_dev *indio_dev = private; 800 struct fxas21002c_data *data = iio_priv(indio_dev); 801 802 data->timestamp = iio_get_time_ns(indio_dev); 803 804 return IRQ_WAKE_THREAD; 805 } 806 807 static irqreturn_t fxas21002c_data_rdy_thread(int irq, void *private) 808 { 809 struct iio_dev *indio_dev = private; 810 struct fxas21002c_data *data = iio_priv(indio_dev); 811 unsigned int data_ready; 812 int ret; 813 814 ret = regmap_field_read(data->regmap_fields[F_SRC_DRDY], &data_ready); 815 if (ret < 0) 816 return IRQ_NONE; 817 818 if (!data_ready) 819 return IRQ_NONE; 820 821 iio_trigger_poll_chained(data->dready_trig); 822 823 return IRQ_HANDLED; 824 } 825 826 static int fxas21002c_trigger_probe(struct fxas21002c_data *data) 827 { 828 struct device *dev = regmap_get_device(data->regmap); 829 struct iio_dev *indio_dev = dev_get_drvdata(dev); 830 struct device_node *np = indio_dev->dev.of_node; 831 unsigned long irq_trig; 832 bool irq_open_drain; 833 int irq1; 834 int ret; 835 836 if (!data->irq) 837 return 0; 838 839 irq1 = of_irq_get_byname(np, "INT1"); 840 841 if (irq1 == data->irq) { 842 dev_info(dev, "using interrupt line INT1\n"); 843 ret = regmap_field_write(data->regmap_fields[F_INT_CFG_DRDY], 844 1); 845 if (ret < 0) 846 return ret; 847 } 848 849 dev_info(dev, "using interrupt line INT2\n"); 850 851 irq_open_drain = of_property_read_bool(np, "drive-open-drain"); 852 853 data->dready_trig = devm_iio_trigger_alloc(dev, "%s-dev%d", 854 indio_dev->name, 855 indio_dev->id); 856 if (!data->dready_trig) 857 return -ENOMEM; 858 859 irq_trig = irqd_get_trigger_type(irq_get_irq_data(data->irq)); 860 861 if (irq_trig == IRQF_TRIGGER_RISING) { 862 ret = regmap_field_write(data->regmap_fields[F_IPOL], 1); 863 if (ret < 0) 864 return ret; 865 } 866 867 if (irq_open_drain) 868 irq_trig |= IRQF_SHARED; 869 870 ret = devm_request_threaded_irq(dev, data->irq, 871 fxas21002c_data_rdy_handler, 872 fxas21002c_data_rdy_thread, 873 irq_trig, "fxas21002c_data_ready", 874 indio_dev); 875 if (ret < 0) 876 return ret; 877 878 data->dready_trig->ops = &fxas21002c_trigger_ops; 879 iio_trigger_set_drvdata(data->dready_trig, indio_dev); 880 881 return devm_iio_trigger_register(dev, data->dready_trig); 882 } 883 884 static int fxas21002c_power_enable(struct fxas21002c_data *data) 885 { 886 int ret; 887 888 ret = regulator_enable(data->vdd); 889 if (ret < 0) 890 return ret; 891 892 ret = regulator_enable(data->vddio); 893 if (ret < 0) { 894 regulator_disable(data->vdd); 895 return ret; 896 } 897 898 return 0; 899 } 900 901 static void fxas21002c_power_disable(struct fxas21002c_data *data) 902 { 903 regulator_disable(data->vdd); 904 regulator_disable(data->vddio); 905 } 906 907 static void fxas21002c_power_disable_action(void *_data) 908 { 909 struct fxas21002c_data *data = _data; 910 911 fxas21002c_power_disable(data); 912 } 913 914 static int fxas21002c_regulators_get(struct fxas21002c_data *data) 915 { 916 struct device *dev = regmap_get_device(data->regmap); 917 918 data->vdd = devm_regulator_get(dev->parent, "vdd"); 919 if (IS_ERR(data->vdd)) 920 return PTR_ERR(data->vdd); 921 922 data->vddio = devm_regulator_get(dev->parent, "vddio"); 923 924 return PTR_ERR_OR_ZERO(data->vddio); 925 } 926 927 int fxas21002c_core_probe(struct device *dev, struct regmap *regmap, int irq, 928 const char *name) 929 { 930 struct fxas21002c_data *data; 931 struct iio_dev *indio_dev; 932 struct regmap_field *f; 933 int i; 934 int ret; 935 936 indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); 937 if (!indio_dev) 938 return -ENOMEM; 939 940 data = iio_priv(indio_dev); 941 dev_set_drvdata(dev, indio_dev); 942 data->irq = irq; 943 data->regmap = regmap; 944 945 for (i = 0; i < F_MAX_FIELDS; i++) { 946 f = devm_regmap_field_alloc(dev, data->regmap, 947 fxas21002c_reg_fields[i]); 948 if (IS_ERR(f)) 949 return PTR_ERR(f); 950 951 data->regmap_fields[i] = f; 952 } 953 954 mutex_init(&data->lock); 955 956 ret = fxas21002c_regulators_get(data); 957 if (ret < 0) 958 return ret; 959 960 ret = fxas21002c_power_enable(data); 961 if (ret < 0) 962 return ret; 963 964 ret = devm_add_action_or_reset(dev, fxas21002c_power_disable_action, 965 data); 966 if (ret < 0) 967 return ret; 968 969 ret = fxas21002c_chip_init(data); 970 if (ret < 0) 971 return ret; 972 973 indio_dev->channels = fxas21002c_channels; 974 indio_dev->num_channels = ARRAY_SIZE(fxas21002c_channels); 975 indio_dev->name = name; 976 indio_dev->modes = INDIO_DIRECT_MODE; 977 indio_dev->info = &fxas21002c_info; 978 979 ret = fxas21002c_trigger_probe(data); 980 if (ret < 0) 981 return ret; 982 983 ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL, 984 fxas21002c_trigger_handler, NULL); 985 if (ret < 0) 986 return ret; 987 988 ret = pm_runtime_set_active(dev); 989 if (ret) 990 return ret; 991 992 pm_runtime_enable(dev); 993 pm_runtime_set_autosuspend_delay(dev, 2000); 994 pm_runtime_use_autosuspend(dev); 995 996 ret = iio_device_register(indio_dev); 997 if (ret < 0) 998 goto pm_disable; 999 1000 return 0; 1001 1002 pm_disable: 1003 pm_runtime_disable(dev); 1004 pm_runtime_set_suspended(dev); 1005 pm_runtime_put_noidle(dev); 1006 1007 return ret; 1008 } 1009 EXPORT_SYMBOL_GPL(fxas21002c_core_probe); 1010 1011 void fxas21002c_core_remove(struct device *dev) 1012 { 1013 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1014 1015 iio_device_unregister(indio_dev); 1016 1017 pm_runtime_disable(dev); 1018 pm_runtime_set_suspended(dev); 1019 pm_runtime_put_noidle(dev); 1020 } 1021 EXPORT_SYMBOL_GPL(fxas21002c_core_remove); 1022 1023 static int __maybe_unused fxas21002c_suspend(struct device *dev) 1024 { 1025 struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev)); 1026 1027 fxas21002c_mode_set(data, FXAS21002C_MODE_STANDBY); 1028 fxas21002c_power_disable(data); 1029 1030 return 0; 1031 } 1032 1033 static int __maybe_unused fxas21002c_resume(struct device *dev) 1034 { 1035 struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev)); 1036 int ret; 1037 1038 ret = fxas21002c_power_enable(data); 1039 if (ret < 0) 1040 return ret; 1041 1042 return fxas21002c_mode_set(data, data->prev_mode); 1043 } 1044 1045 static int __maybe_unused fxas21002c_runtime_suspend(struct device *dev) 1046 { 1047 struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev)); 1048 1049 return fxas21002c_mode_set(data, FXAS21002C_MODE_READY); 1050 } 1051 1052 static int __maybe_unused fxas21002c_runtime_resume(struct device *dev) 1053 { 1054 struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev)); 1055 1056 return fxas21002c_mode_set(data, FXAS21002C_MODE_ACTIVE); 1057 } 1058 1059 const struct dev_pm_ops fxas21002c_pm_ops = { 1060 SET_SYSTEM_SLEEP_PM_OPS(fxas21002c_suspend, fxas21002c_resume) 1061 SET_RUNTIME_PM_OPS(fxas21002c_runtime_suspend, 1062 fxas21002c_runtime_resume, NULL) 1063 }; 1064 EXPORT_SYMBOL_GPL(fxas21002c_pm_ops); 1065 1066 MODULE_AUTHOR("Rui Miguel Silva <rui.silva@linaro.org>"); 1067 MODULE_LICENSE("GPL v2"); 1068 MODULE_DESCRIPTION("FXAS21002C Gyro driver"); 1069