xref: /openbmc/linux/drivers/iio/dac/ltc2688.c (revision 874c8ca1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * LTC2688 16 channel, 16 bit Voltage Output SoftSpan DAC driver
4  *
5  * Copyright 2022 Analog Devices Inc.
6  */
7 #include <linux/bitfield.h>
8 #include <linux/bits.h>
9 #include <linux/clk.h>
10 #include <linux/device.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/iio/iio.h>
13 #include <linux/limits.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mod_devicetable.h>
17 #include <linux/mutex.h>
18 #include <linux/of.h>
19 #include <linux/property.h>
20 #include <linux/regmap.h>
21 #include <linux/regulator/consumer.h>
22 #include <linux/spi/spi.h>
23 
24 #define LTC2688_DAC_CHANNELS			16
25 
26 #define LTC2688_CMD_CH_CODE(x)			(0x00 + (x))
27 #define LTC2688_CMD_CH_SETTING(x)		(0x10 + (x))
28 #define LTC2688_CMD_CH_OFFSET(x)		(0X20 + (x))
29 #define LTC2688_CMD_CH_GAIN(x)			(0x30 + (x))
30 #define LTC2688_CMD_CH_CODE_UPDATE(x)		(0x40 + (x))
31 
32 #define LTC2688_CMD_CONFIG			0x70
33 #define LTC2688_CMD_POWERDOWN			0x71
34 #define LTC2688_CMD_A_B_SELECT			0x72
35 #define LTC2688_CMD_SW_TOGGLE			0x73
36 #define LTC2688_CMD_TOGGLE_DITHER_EN		0x74
37 #define LTC2688_CMD_THERMAL_STAT		0x77
38 #define LTC2688_CMD_UPDATE_ALL			0x7C
39 #define LTC2688_CMD_NOOP			0xFF
40 
41 #define LTC2688_READ_OPERATION			0x80
42 
43 /* Channel Settings */
44 #define LTC2688_CH_SPAN_MSK			GENMASK(2, 0)
45 #define LTC2688_CH_OVERRANGE_MSK		BIT(3)
46 #define LTC2688_CH_TD_SEL_MSK			GENMASK(5, 4)
47 #define LTC2688_CH_TGP_MAX			3
48 #define LTC2688_CH_DIT_PER_MSK			GENMASK(8, 6)
49 #define LTC2688_CH_DIT_PH_MSK			GENMASK(10, 9)
50 #define LTC2688_CH_MODE_MSK			BIT(11)
51 
52 #define LTC2688_DITHER_RAW_MASK			GENMASK(15, 2)
53 #define LTC2688_CH_CALIBBIAS_MASK		GENMASK(15, 2)
54 #define LTC2688_DITHER_RAW_MAX_VAL		(BIT(14) - 1)
55 #define LTC2688_CH_CALIBBIAS_MAX_VAL		(BIT(14) - 1)
56 
57 /* Configuration register */
58 #define LTC2688_CONFIG_RST			BIT(15)
59 #define LTC2688_CONFIG_EXT_REF			BIT(1)
60 
61 #define LTC2688_DITHER_FREQ_AVAIL_N		5
62 
63 enum {
64 	LTC2688_SPAN_RANGE_0V_5V,
65 	LTC2688_SPAN_RANGE_0V_10V,
66 	LTC2688_SPAN_RANGE_M5V_5V,
67 	LTC2688_SPAN_RANGE_M10V_10V,
68 	LTC2688_SPAN_RANGE_M15V_15V,
69 	LTC2688_SPAN_RANGE_MAX
70 };
71 
72 enum {
73 	LTC2688_MODE_DEFAULT,
74 	LTC2688_MODE_DITHER_TOGGLE,
75 };
76 
77 struct ltc2688_chan {
78 	long dither_frequency[LTC2688_DITHER_FREQ_AVAIL_N];
79 	bool overrange;
80 	bool toggle_chan;
81 	u8 mode;
82 };
83 
84 struct ltc2688_state {
85 	struct spi_device *spi;
86 	struct regmap *regmap;
87 	struct regulator_bulk_data regulators[2];
88 	struct ltc2688_chan channels[LTC2688_DAC_CHANNELS];
89 	struct iio_chan_spec *iio_chan;
90 	/* lock to protect against multiple access to the device and shared data */
91 	struct mutex lock;
92 	int vref;
93 	/*
94 	 * DMA (thus cache coherency maintenance) requires the
95 	 * transfer buffers to live in their own cache lines.
96 	 */
97 	u8 tx_data[6] ____cacheline_aligned;
98 	u8 rx_data[3];
99 };
100 
101 static int ltc2688_spi_read(void *context, const void *reg, size_t reg_size,
102 			    void *val, size_t val_size)
103 {
104 	struct ltc2688_state *st = context;
105 	struct spi_transfer xfers[] = {
106 		{
107 			.tx_buf = st->tx_data,
108 			.bits_per_word = 8,
109 			.len = reg_size + val_size,
110 			.cs_change = 1,
111 		}, {
112 			.tx_buf = st->tx_data + 3,
113 			.rx_buf = st->rx_data,
114 			.bits_per_word = 8,
115 			.len = reg_size + val_size,
116 		},
117 	};
118 	int ret;
119 
120 	memcpy(st->tx_data, reg, reg_size);
121 
122 	ret = spi_sync_transfer(st->spi, xfers, ARRAY_SIZE(xfers));
123 	if (ret)
124 		return ret;
125 
126 	memcpy(val, &st->rx_data[1], val_size);
127 
128 	return 0;
129 }
130 
131 static int ltc2688_spi_write(void *context, const void *data, size_t count)
132 {
133 	struct ltc2688_state *st = context;
134 
135 	return spi_write(st->spi, data, count);
136 }
137 
138 static int ltc2688_span_get(const struct ltc2688_state *st, int c)
139 {
140 	int ret, reg, span;
141 
142 	ret = regmap_read(st->regmap, LTC2688_CMD_CH_SETTING(c), &reg);
143 	if (ret)
144 		return ret;
145 
146 	span = FIELD_GET(LTC2688_CH_SPAN_MSK, reg);
147 	/* sanity check to make sure we don't get any weird value from the HW */
148 	if (span >= LTC2688_SPAN_RANGE_MAX)
149 		return -EIO;
150 
151 	return span;
152 }
153 
154 static const int ltc2688_span_helper[LTC2688_SPAN_RANGE_MAX][2] = {
155 	{0, 5000}, {0, 10000}, {-5000, 5000}, {-10000, 10000}, {-15000, 15000},
156 };
157 
158 static int ltc2688_scale_get(const struct ltc2688_state *st, int c, int *val)
159 {
160 	const struct ltc2688_chan *chan = &st->channels[c];
161 	int span, fs;
162 
163 	span = ltc2688_span_get(st, c);
164 	if (span < 0)
165 		return span;
166 
167 	fs = ltc2688_span_helper[span][1] - ltc2688_span_helper[span][0];
168 	if (chan->overrange)
169 		fs = mult_frac(fs, 105, 100);
170 
171 	*val = DIV_ROUND_CLOSEST(fs * st->vref, 4096);
172 
173 	return 0;
174 }
175 
176 static int ltc2688_offset_get(const struct ltc2688_state *st, int c, int *val)
177 {
178 	int span;
179 
180 	span = ltc2688_span_get(st, c);
181 	if (span < 0)
182 		return span;
183 
184 	if (ltc2688_span_helper[span][0] < 0)
185 		*val = -32768;
186 	else
187 		*val = 0;
188 
189 	return 0;
190 }
191 
192 enum {
193 	LTC2688_INPUT_A,
194 	LTC2688_INPUT_B,
195 	LTC2688_INPUT_B_AVAIL,
196 	LTC2688_DITHER_OFF,
197 	LTC2688_DITHER_FREQ_AVAIL,
198 };
199 
200 static int ltc2688_dac_code_write(struct ltc2688_state *st, u32 chan, u32 input,
201 				  u16 code)
202 {
203 	struct ltc2688_chan *c = &st->channels[chan];
204 	int ret, reg;
205 
206 	/* 2 LSBs set to 0 if writing dither amplitude */
207 	if (!c->toggle_chan && input == LTC2688_INPUT_B) {
208 		if (code > LTC2688_DITHER_RAW_MAX_VAL)
209 			return -EINVAL;
210 
211 		code = FIELD_PREP(LTC2688_DITHER_RAW_MASK, code);
212 	}
213 
214 	mutex_lock(&st->lock);
215 	/* select the correct input register to read from */
216 	ret = regmap_update_bits(st->regmap, LTC2688_CMD_A_B_SELECT, BIT(chan),
217 				 input << chan);
218 	if (ret)
219 		goto out_unlock;
220 
221 	/*
222 	 * If in dither/toggle mode the dac should be updated by an
223 	 * external signal (or sw toggle) and not here.
224 	 */
225 	if (c->mode == LTC2688_MODE_DEFAULT)
226 		reg = LTC2688_CMD_CH_CODE_UPDATE(chan);
227 	else
228 		reg = LTC2688_CMD_CH_CODE(chan);
229 
230 	ret = regmap_write(st->regmap, reg, code);
231 out_unlock:
232 	mutex_unlock(&st->lock);
233 	return ret;
234 }
235 
236 static int ltc2688_dac_code_read(struct ltc2688_state *st, u32 chan, u32 input,
237 				 u32 *code)
238 {
239 	struct ltc2688_chan *c = &st->channels[chan];
240 	int ret;
241 
242 	mutex_lock(&st->lock);
243 	ret = regmap_update_bits(st->regmap, LTC2688_CMD_A_B_SELECT, BIT(chan),
244 				 input << chan);
245 	if (ret)
246 		goto out_unlock;
247 
248 	ret = regmap_read(st->regmap, LTC2688_CMD_CH_CODE(chan), code);
249 out_unlock:
250 	mutex_unlock(&st->lock);
251 
252 	if (!c->toggle_chan && input == LTC2688_INPUT_B)
253 		*code = FIELD_GET(LTC2688_DITHER_RAW_MASK, *code);
254 
255 	return ret;
256 }
257 
258 static const int ltc2688_raw_range[] = {0, 1, U16_MAX};
259 
260 static int ltc2688_read_avail(struct iio_dev *indio_dev,
261 			      struct iio_chan_spec const *chan,
262 			      const int **vals, int *type, int *length,
263 			      long info)
264 {
265 	switch (info) {
266 	case IIO_CHAN_INFO_RAW:
267 		*vals = ltc2688_raw_range;
268 		*type = IIO_VAL_INT;
269 		return IIO_AVAIL_RANGE;
270 	default:
271 		return -EINVAL;
272 	}
273 }
274 
275 static int ltc2688_read_raw(struct iio_dev *indio_dev,
276 			    struct iio_chan_spec const *chan, int *val,
277 			    int *val2, long info)
278 {
279 	struct ltc2688_state *st = iio_priv(indio_dev);
280 	int ret;
281 
282 	switch (info) {
283 	case IIO_CHAN_INFO_RAW:
284 		ret = ltc2688_dac_code_read(st, chan->channel, LTC2688_INPUT_A,
285 					    val);
286 		if (ret)
287 			return ret;
288 
289 		return IIO_VAL_INT;
290 	case IIO_CHAN_INFO_OFFSET:
291 		ret = ltc2688_offset_get(st, chan->channel, val);
292 		if (ret)
293 			return ret;
294 
295 		return IIO_VAL_INT;
296 	case IIO_CHAN_INFO_SCALE:
297 		ret = ltc2688_scale_get(st, chan->channel, val);
298 		if (ret)
299 			return ret;
300 
301 		*val2 = 16;
302 		return IIO_VAL_FRACTIONAL_LOG2;
303 	case IIO_CHAN_INFO_CALIBBIAS:
304 		ret = regmap_read(st->regmap,
305 				  LTC2688_CMD_CH_OFFSET(chan->channel), val);
306 		if (ret)
307 			return ret;
308 
309 		*val = FIELD_GET(LTC2688_CH_CALIBBIAS_MASK, *val);
310 		return IIO_VAL_INT;
311 	case IIO_CHAN_INFO_CALIBSCALE:
312 		ret = regmap_read(st->regmap,
313 				  LTC2688_CMD_CH_GAIN(chan->channel), val);
314 		if (ret)
315 			return ret;
316 
317 		return IIO_VAL_INT;
318 	default:
319 		return -EINVAL;
320 	}
321 }
322 
323 static int ltc2688_write_raw(struct iio_dev *indio_dev,
324 			     struct iio_chan_spec const *chan, int val,
325 			     int val2, long info)
326 {
327 	struct ltc2688_state *st = iio_priv(indio_dev);
328 
329 	switch (info) {
330 	case IIO_CHAN_INFO_RAW:
331 		if (val > U16_MAX || val < 0)
332 			return -EINVAL;
333 
334 		return ltc2688_dac_code_write(st, chan->channel,
335 					      LTC2688_INPUT_A, val);
336 	case IIO_CHAN_INFO_CALIBBIAS:
337 		if (val > LTC2688_CH_CALIBBIAS_MAX_VAL)
338 			return -EINVAL;
339 
340 		return regmap_write(st->regmap,
341 				    LTC2688_CMD_CH_OFFSET(chan->channel),
342 				    FIELD_PREP(LTC2688_CH_CALIBBIAS_MASK, val));
343 	case IIO_CHAN_INFO_CALIBSCALE:
344 		return regmap_write(st->regmap,
345 				    LTC2688_CMD_CH_GAIN(chan->channel), val);
346 	default:
347 		return -EINVAL;
348 	}
349 }
350 
351 static ssize_t ltc2688_dither_toggle_set(struct iio_dev *indio_dev,
352 					 uintptr_t private,
353 					 const struct iio_chan_spec *chan,
354 					 const char *buf, size_t len)
355 {
356 	struct ltc2688_state *st = iio_priv(indio_dev);
357 	struct ltc2688_chan *c = &st->channels[chan->channel];
358 	int ret;
359 	bool en;
360 
361 	ret = kstrtobool(buf, &en);
362 	if (ret)
363 		return ret;
364 
365 	mutex_lock(&st->lock);
366 	ret = regmap_update_bits(st->regmap, LTC2688_CMD_TOGGLE_DITHER_EN,
367 				 BIT(chan->channel), en << chan->channel);
368 	if (ret)
369 		goto out_unlock;
370 
371 	c->mode = en ? LTC2688_MODE_DITHER_TOGGLE : LTC2688_MODE_DEFAULT;
372 out_unlock:
373 	mutex_unlock(&st->lock);
374 
375 	return ret ?: len;
376 }
377 
378 static ssize_t ltc2688_reg_bool_get(struct iio_dev *indio_dev,
379 				    uintptr_t private,
380 				    const struct iio_chan_spec *chan,
381 				    char *buf)
382 {
383 	const struct ltc2688_state *st = iio_priv(indio_dev);
384 	int ret;
385 	u32 val;
386 
387 	ret = regmap_read(st->regmap, private, &val);
388 	if (ret)
389 		return ret;
390 
391 	return sysfs_emit(buf, "%u\n", !!(val & BIT(chan->channel)));
392 }
393 
394 static ssize_t ltc2688_reg_bool_set(struct iio_dev *indio_dev,
395 				    uintptr_t private,
396 				    const struct iio_chan_spec *chan,
397 				    const char *buf, size_t len)
398 {
399 	const struct ltc2688_state *st = iio_priv(indio_dev);
400 	int ret;
401 	bool en;
402 
403 	ret = kstrtobool(buf, &en);
404 	if (ret)
405 		return ret;
406 
407 	ret = regmap_update_bits(st->regmap, private, BIT(chan->channel),
408 				 en << chan->channel);
409 	if (ret)
410 		return ret;
411 
412 	return len;
413 }
414 
415 static ssize_t ltc2688_dither_freq_avail(const struct ltc2688_state *st,
416 					 const struct ltc2688_chan *chan,
417 					 char *buf)
418 {
419 	int sz = 0;
420 	u32 f;
421 
422 	for (f = 0; f < ARRAY_SIZE(chan->dither_frequency); f++)
423 		sz += sysfs_emit_at(buf, sz, "%ld ", chan->dither_frequency[f]);
424 
425 	buf[sz - 1] = '\n';
426 
427 	return sz;
428 }
429 
430 static ssize_t ltc2688_dither_freq_get(struct iio_dev *indio_dev,
431 				       uintptr_t private,
432 				       const struct iio_chan_spec *chan,
433 				       char *buf)
434 {
435 	const struct ltc2688_state *st = iio_priv(indio_dev);
436 	const struct ltc2688_chan *c = &st->channels[chan->channel];
437 	u32 reg, freq;
438 	int ret;
439 
440 	if (private == LTC2688_DITHER_FREQ_AVAIL)
441 		return ltc2688_dither_freq_avail(st, c, buf);
442 
443 	ret = regmap_read(st->regmap, LTC2688_CMD_CH_SETTING(chan->channel),
444 			  &reg);
445 	if (ret)
446 		return ret;
447 
448 	freq = FIELD_GET(LTC2688_CH_DIT_PER_MSK, reg);
449 	if (freq >= ARRAY_SIZE(c->dither_frequency))
450 		return -EIO;
451 
452 	return sysfs_emit(buf, "%ld\n", c->dither_frequency[freq]);
453 }
454 
455 static ssize_t ltc2688_dither_freq_set(struct iio_dev *indio_dev,
456 				       uintptr_t private,
457 				       const struct iio_chan_spec *chan,
458 				       const char *buf, size_t len)
459 {
460 	const struct ltc2688_state *st = iio_priv(indio_dev);
461 	const struct ltc2688_chan *c = &st->channels[chan->channel];
462 	long val;
463 	u32 freq;
464 	int ret;
465 
466 	if (private == LTC2688_DITHER_FREQ_AVAIL)
467 		return -EINVAL;
468 
469 	ret = kstrtol(buf, 10, &val);
470 	if (ret)
471 		return ret;
472 
473 	for (freq = 0; freq < ARRAY_SIZE(c->dither_frequency); freq++) {
474 		if (val == c->dither_frequency[freq])
475 			break;
476 	}
477 
478 	if (freq == ARRAY_SIZE(c->dither_frequency))
479 		return -EINVAL;
480 
481 	ret = regmap_update_bits(st->regmap,
482 				 LTC2688_CMD_CH_SETTING(chan->channel),
483 				 LTC2688_CH_DIT_PER_MSK,
484 				 FIELD_PREP(LTC2688_CH_DIT_PER_MSK, freq));
485 	if (ret)
486 		return ret;
487 
488 	return len;
489 }
490 
491 static ssize_t ltc2688_dac_input_read(struct iio_dev *indio_dev,
492 				      uintptr_t private,
493 				      const struct iio_chan_spec *chan,
494 				      char *buf)
495 {
496 	struct ltc2688_state *st = iio_priv(indio_dev);
497 	int ret;
498 	u32 val;
499 
500 	if (private == LTC2688_INPUT_B_AVAIL)
501 		return sysfs_emit(buf, "[%u %u %u]\n", ltc2688_raw_range[0],
502 				  ltc2688_raw_range[1],
503 				  ltc2688_raw_range[2] / 4);
504 
505 	if (private == LTC2688_DITHER_OFF)
506 		return sysfs_emit(buf, "0\n");
507 
508 	ret = ltc2688_dac_code_read(st, chan->channel, private, &val);
509 	if (ret)
510 		return ret;
511 
512 	return sysfs_emit(buf, "%u\n", val);
513 }
514 
515 static ssize_t ltc2688_dac_input_write(struct iio_dev *indio_dev,
516 				       uintptr_t private,
517 				       const struct iio_chan_spec *chan,
518 				       const char *buf, size_t len)
519 {
520 	struct ltc2688_state *st = iio_priv(indio_dev);
521 	int ret;
522 	u16 val;
523 
524 	if (private == LTC2688_INPUT_B_AVAIL || private == LTC2688_DITHER_OFF)
525 		return -EINVAL;
526 
527 	ret = kstrtou16(buf, 10, &val);
528 	if (ret)
529 		return ret;
530 
531 	ret = ltc2688_dac_code_write(st, chan->channel, private, val);
532 	if (ret)
533 		return ret;
534 
535 	return len;
536 }
537 
538 static int ltc2688_get_dither_phase(struct iio_dev *dev,
539 				    const struct iio_chan_spec *chan)
540 {
541 	struct ltc2688_state *st = iio_priv(dev);
542 	int ret, regval;
543 
544 	ret = regmap_read(st->regmap, LTC2688_CMD_CH_SETTING(chan->channel),
545 			  &regval);
546 	if (ret)
547 		return ret;
548 
549 	return FIELD_GET(LTC2688_CH_DIT_PH_MSK, regval);
550 }
551 
552 static int ltc2688_set_dither_phase(struct iio_dev *dev,
553 				    const struct iio_chan_spec *chan,
554 				    unsigned int phase)
555 {
556 	struct ltc2688_state *st = iio_priv(dev);
557 
558 	return regmap_update_bits(st->regmap,
559 				  LTC2688_CMD_CH_SETTING(chan->channel),
560 				  LTC2688_CH_DIT_PH_MSK,
561 				  FIELD_PREP(LTC2688_CH_DIT_PH_MSK, phase));
562 }
563 
564 static int ltc2688_reg_access(struct iio_dev *indio_dev,
565 			      unsigned int reg,
566 			      unsigned int writeval,
567 			      unsigned int *readval)
568 {
569 	struct ltc2688_state *st = iio_priv(indio_dev);
570 
571 	if (readval)
572 		return regmap_read(st->regmap, reg, readval);
573 
574 	return regmap_write(st->regmap, reg, writeval);
575 }
576 
577 static const char * const ltc2688_dither_phase[] = {
578 	"0", "1.5708", "3.14159", "4.71239",
579 };
580 
581 static const struct iio_enum ltc2688_dither_phase_enum = {
582 	.items = ltc2688_dither_phase,
583 	.num_items = ARRAY_SIZE(ltc2688_dither_phase),
584 	.set = ltc2688_set_dither_phase,
585 	.get = ltc2688_get_dither_phase,
586 };
587 
588 #define LTC2688_CHAN_EXT_INFO(_name, _what, _shared, _read, _write) {	\
589 	.name = _name,							\
590 	.read = (_read),						\
591 	.write = (_write),						\
592 	.private = (_what),						\
593 	.shared = (_shared),						\
594 }
595 
596 /*
597  * For toggle mode we only expose the symbol attr (sw_toggle) in case a TGPx is
598  * not provided in dts.
599  */
600 static const struct iio_chan_spec_ext_info ltc2688_toggle_sym_ext_info[] = {
601 	LTC2688_CHAN_EXT_INFO("raw0", LTC2688_INPUT_A, IIO_SEPARATE,
602 			      ltc2688_dac_input_read, ltc2688_dac_input_write),
603 	LTC2688_CHAN_EXT_INFO("raw1", LTC2688_INPUT_B, IIO_SEPARATE,
604 			      ltc2688_dac_input_read, ltc2688_dac_input_write),
605 	LTC2688_CHAN_EXT_INFO("toggle_en", LTC2688_CMD_TOGGLE_DITHER_EN,
606 			      IIO_SEPARATE, ltc2688_reg_bool_get,
607 			      ltc2688_dither_toggle_set),
608 	LTC2688_CHAN_EXT_INFO("powerdown", LTC2688_CMD_POWERDOWN, IIO_SEPARATE,
609 			      ltc2688_reg_bool_get, ltc2688_reg_bool_set),
610 	LTC2688_CHAN_EXT_INFO("symbol", LTC2688_CMD_SW_TOGGLE, IIO_SEPARATE,
611 			      ltc2688_reg_bool_get, ltc2688_reg_bool_set),
612 	{}
613 };
614 
615 static const struct iio_chan_spec_ext_info ltc2688_toggle_ext_info[] = {
616 	LTC2688_CHAN_EXT_INFO("raw0", LTC2688_INPUT_A, IIO_SEPARATE,
617 			      ltc2688_dac_input_read, ltc2688_dac_input_write),
618 	LTC2688_CHAN_EXT_INFO("raw1", LTC2688_INPUT_B, IIO_SEPARATE,
619 			      ltc2688_dac_input_read, ltc2688_dac_input_write),
620 	LTC2688_CHAN_EXT_INFO("toggle_en", LTC2688_CMD_TOGGLE_DITHER_EN,
621 			      IIO_SEPARATE, ltc2688_reg_bool_get,
622 			      ltc2688_dither_toggle_set),
623 	LTC2688_CHAN_EXT_INFO("powerdown", LTC2688_CMD_POWERDOWN, IIO_SEPARATE,
624 			      ltc2688_reg_bool_get, ltc2688_reg_bool_set),
625 	{}
626 };
627 
628 static struct iio_chan_spec_ext_info ltc2688_dither_ext_info[] = {
629 	LTC2688_CHAN_EXT_INFO("dither_raw", LTC2688_INPUT_B, IIO_SEPARATE,
630 			      ltc2688_dac_input_read, ltc2688_dac_input_write),
631 	LTC2688_CHAN_EXT_INFO("dither_raw_available", LTC2688_INPUT_B_AVAIL,
632 			      IIO_SEPARATE, ltc2688_dac_input_read,
633 			      ltc2688_dac_input_write),
634 	LTC2688_CHAN_EXT_INFO("dither_offset", LTC2688_DITHER_OFF, IIO_SEPARATE,
635 			      ltc2688_dac_input_read, ltc2688_dac_input_write),
636 	/*
637 	 * Not IIO_ENUM because the available freq needs to be computed at
638 	 * probe. We could still use it, but it didn't felt much right.
639 	 */
640 	LTC2688_CHAN_EXT_INFO("dither_frequency", 0, IIO_SEPARATE,
641 			      ltc2688_dither_freq_get, ltc2688_dither_freq_set),
642 	LTC2688_CHAN_EXT_INFO("dither_frequency_available",
643 			      LTC2688_DITHER_FREQ_AVAIL, IIO_SEPARATE,
644 			      ltc2688_dither_freq_get, ltc2688_dither_freq_set),
645 	IIO_ENUM("dither_phase", IIO_SEPARATE, &ltc2688_dither_phase_enum),
646 	IIO_ENUM_AVAILABLE("dither_phase", IIO_SEPARATE,
647 			   &ltc2688_dither_phase_enum),
648 	LTC2688_CHAN_EXT_INFO("dither_en", LTC2688_CMD_TOGGLE_DITHER_EN,
649 			      IIO_SEPARATE, ltc2688_reg_bool_get,
650 			      ltc2688_dither_toggle_set),
651 	LTC2688_CHAN_EXT_INFO("powerdown", LTC2688_CMD_POWERDOWN, IIO_SEPARATE,
652 			      ltc2688_reg_bool_get, ltc2688_reg_bool_set),
653 	{}
654 };
655 
656 static const struct iio_chan_spec_ext_info ltc2688_ext_info[] = {
657 	LTC2688_CHAN_EXT_INFO("powerdown", LTC2688_CMD_POWERDOWN, IIO_SEPARATE,
658 			      ltc2688_reg_bool_get, ltc2688_reg_bool_set),
659 	{}
660 };
661 
662 #define LTC2688_CHANNEL(_chan) {					\
663 	.type = IIO_VOLTAGE,						\
664 	.indexed = 1,							\
665 	.output = 1,							\
666 	.channel = (_chan),						\
667 	.info_mask_separate = BIT(IIO_CHAN_INFO_CALIBSCALE) |		\
668 		BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OFFSET) |	\
669 		BIT(IIO_CHAN_INFO_CALIBBIAS) | BIT(IIO_CHAN_INFO_RAW),	\
670 	.info_mask_separate_available = BIT(IIO_CHAN_INFO_RAW),		\
671 	.ext_info = ltc2688_ext_info,					\
672 }
673 
674 static const struct iio_chan_spec ltc2688_channels[] = {
675 	LTC2688_CHANNEL(0),
676 	LTC2688_CHANNEL(1),
677 	LTC2688_CHANNEL(2),
678 	LTC2688_CHANNEL(3),
679 	LTC2688_CHANNEL(4),
680 	LTC2688_CHANNEL(5),
681 	LTC2688_CHANNEL(6),
682 	LTC2688_CHANNEL(7),
683 	LTC2688_CHANNEL(8),
684 	LTC2688_CHANNEL(9),
685 	LTC2688_CHANNEL(10),
686 	LTC2688_CHANNEL(11),
687 	LTC2688_CHANNEL(12),
688 	LTC2688_CHANNEL(13),
689 	LTC2688_CHANNEL(14),
690 	LTC2688_CHANNEL(15),
691 };
692 
693 static void ltc2688_clk_disable(void *clk)
694 {
695 	clk_disable_unprepare(clk);
696 }
697 
698 static const int ltc2688_period[LTC2688_DITHER_FREQ_AVAIL_N] = {
699 	4, 8, 16, 32, 64,
700 };
701 
702 static int ltc2688_tgp_clk_setup(struct ltc2688_state *st,
703 				 struct ltc2688_chan *chan,
704 				 struct fwnode_handle *node, int tgp)
705 {
706 	struct device *dev = &st->spi->dev;
707 	unsigned long rate;
708 	struct clk *clk;
709 	int ret, f;
710 
711 	clk = devm_get_clk_from_child(dev, to_of_node(node), NULL);
712 	if (IS_ERR(clk))
713 		return dev_err_probe(dev, PTR_ERR(clk), "failed to get tgp clk.\n");
714 
715 	ret = clk_prepare_enable(clk);
716 	if (ret)
717 		return dev_err_probe(dev, ret, "failed to enable tgp clk.\n");
718 
719 	ret = devm_add_action_or_reset(dev, ltc2688_clk_disable, clk);
720 	if (ret)
721 		return ret;
722 
723 	if (chan->toggle_chan)
724 		return 0;
725 
726 	/* calculate available dither frequencies */
727 	rate = clk_get_rate(clk);
728 	for (f = 0; f < ARRAY_SIZE(chan->dither_frequency); f++)
729 		chan->dither_frequency[f] = DIV_ROUND_CLOSEST(rate, ltc2688_period[f]);
730 
731 	return 0;
732 }
733 
734 static int ltc2688_span_lookup(const struct ltc2688_state *st, int min, int max)
735 {
736 	u32 span;
737 
738 	for (span = 0; span < ARRAY_SIZE(ltc2688_span_helper); span++) {
739 		if (min == ltc2688_span_helper[span][0] &&
740 		    max == ltc2688_span_helper[span][1])
741 			return span;
742 	}
743 
744 	return -EINVAL;
745 }
746 
747 static int ltc2688_channel_config(struct ltc2688_state *st)
748 {
749 	struct device *dev = &st->spi->dev;
750 	struct fwnode_handle *child;
751 	u32 reg, clk_input, val, tmp[2];
752 	int ret, span;
753 
754 	device_for_each_child_node(dev, child) {
755 		struct ltc2688_chan *chan;
756 
757 		ret = fwnode_property_read_u32(child, "reg", &reg);
758 		if (ret) {
759 			fwnode_handle_put(child);
760 			return dev_err_probe(dev, ret,
761 					     "Failed to get reg property\n");
762 		}
763 
764 		if (reg >= LTC2688_DAC_CHANNELS) {
765 			fwnode_handle_put(child);
766 			return dev_err_probe(dev, -EINVAL,
767 					     "reg bigger than: %d\n",
768 					     LTC2688_DAC_CHANNELS);
769 		}
770 
771 		val = 0;
772 		chan = &st->channels[reg];
773 		if (fwnode_property_read_bool(child, "adi,toggle-mode")) {
774 			chan->toggle_chan = true;
775 			/* assume sw toggle ABI */
776 			st->iio_chan[reg].ext_info = ltc2688_toggle_sym_ext_info;
777 			/*
778 			 * Clear IIO_CHAN_INFO_RAW bit as toggle channels expose
779 			 * out_voltage_raw{0|1} files.
780 			 */
781 			__clear_bit(IIO_CHAN_INFO_RAW,
782 				    &st->iio_chan[reg].info_mask_separate);
783 		}
784 
785 		ret = fwnode_property_read_u32_array(child, "adi,output-range-microvolt",
786 						     tmp, ARRAY_SIZE(tmp));
787 		if (!ret) {
788 			span = ltc2688_span_lookup(st, (int)tmp[0] / 1000,
789 						   tmp[1] / 1000);
790 			if (span < 0) {
791 				fwnode_handle_put(child);
792 				return dev_err_probe(dev, -EINVAL,
793 						     "output range not valid:[%d %d]\n",
794 						     tmp[0], tmp[1]);
795 			}
796 
797 			val |= FIELD_PREP(LTC2688_CH_SPAN_MSK, span);
798 		}
799 
800 		ret = fwnode_property_read_u32(child, "adi,toggle-dither-input",
801 					       &clk_input);
802 		if (!ret) {
803 			if (clk_input >= LTC2688_CH_TGP_MAX) {
804 				fwnode_handle_put(child);
805 				return dev_err_probe(dev, -EINVAL,
806 						     "toggle-dither-input inv value(%d)\n",
807 						     clk_input);
808 			}
809 
810 			ret = ltc2688_tgp_clk_setup(st, chan, child, clk_input);
811 			if (ret) {
812 				fwnode_handle_put(child);
813 				return ret;
814 			}
815 
816 			/*
817 			 * 0 means software toggle which is the default mode.
818 			 * Hence the +1.
819 			 */
820 			val |= FIELD_PREP(LTC2688_CH_TD_SEL_MSK, clk_input + 1);
821 
822 			/*
823 			 * If a TGPx is given, we automatically assume a dither
824 			 * capable channel (unless toggle is already enabled).
825 			 * On top of this we just set here the dither bit in the
826 			 * channel settings. It won't have any effect until the
827 			 * global toggle/dither bit is enabled.
828 			 */
829 			if (!chan->toggle_chan) {
830 				val |= FIELD_PREP(LTC2688_CH_MODE_MSK, 1);
831 				st->iio_chan[reg].ext_info = ltc2688_dither_ext_info;
832 			} else {
833 				/* wait, no sw toggle after all */
834 				st->iio_chan[reg].ext_info = ltc2688_toggle_ext_info;
835 			}
836 		}
837 
838 		if (fwnode_property_read_bool(child, "adi,overrange")) {
839 			chan->overrange = true;
840 			val |= LTC2688_CH_OVERRANGE_MSK;
841 		}
842 
843 		if (!val)
844 			continue;
845 
846 		ret = regmap_write(st->regmap, LTC2688_CMD_CH_SETTING(reg),
847 				   val);
848 		if (ret) {
849 			fwnode_handle_put(child);
850 			return dev_err_probe(dev, -EINVAL,
851 					     "failed to set chan settings\n");
852 		}
853 	}
854 
855 	return 0;
856 }
857 
858 static int ltc2688_setup(struct ltc2688_state *st, struct regulator *vref)
859 {
860 	struct device *dev = &st->spi->dev;
861 	struct gpio_desc *gpio;
862 	int ret;
863 
864 	/*
865 	 * If we have a reset pin, use that to reset the board, If not, use
866 	 * the reset bit.
867 	 */
868 	gpio = devm_gpiod_get_optional(dev, "clr", GPIOD_OUT_HIGH);
869 	if (IS_ERR(gpio))
870 		return dev_err_probe(dev, PTR_ERR(gpio), "Failed to get reset gpio");
871 	if (gpio) {
872 		usleep_range(1000, 1200);
873 		/* bring device out of reset */
874 		gpiod_set_value_cansleep(gpio, 0);
875 	} else {
876 		ret = regmap_update_bits(st->regmap, LTC2688_CMD_CONFIG,
877 					 LTC2688_CONFIG_RST,
878 					 LTC2688_CONFIG_RST);
879 		if (ret)
880 			return ret;
881 	}
882 
883 	usleep_range(10000, 12000);
884 
885 	/*
886 	 * Duplicate the default channel configuration as it can change during
887 	 * @ltc2688_channel_config()
888 	 */
889 	st->iio_chan = devm_kmemdup(dev, ltc2688_channels,
890 				    sizeof(ltc2688_channels), GFP_KERNEL);
891 	if (!st->iio_chan)
892 		return -ENOMEM;
893 
894 	ret = ltc2688_channel_config(st);
895 	if (ret)
896 		return ret;
897 
898 	if (!vref)
899 		return 0;
900 
901 	return regmap_set_bits(st->regmap, LTC2688_CMD_CONFIG,
902 			       LTC2688_CONFIG_EXT_REF);
903 }
904 
905 static void ltc2688_disable_regulators(void *data)
906 {
907 	struct ltc2688_state *st = data;
908 
909 	regulator_bulk_disable(ARRAY_SIZE(st->regulators), st->regulators);
910 }
911 
912 static void ltc2688_disable_regulator(void *regulator)
913 {
914 	regulator_disable(regulator);
915 }
916 
917 static bool ltc2688_reg_readable(struct device *dev, unsigned int reg)
918 {
919 	switch (reg) {
920 	case LTC2688_CMD_CH_CODE(0) ... LTC2688_CMD_CH_GAIN(15):
921 		return true;
922 	case LTC2688_CMD_CONFIG ... LTC2688_CMD_THERMAL_STAT:
923 		return true;
924 	default:
925 		return false;
926 	}
927 }
928 
929 static bool ltc2688_reg_writable(struct device *dev, unsigned int reg)
930 {
931 	/*
932 	 * There's a jump from 0x76 to 0x78 in the write codes and the thermal
933 	 * status code is 0x77 (which is read only) so that we need to check
934 	 * that special condition.
935 	 */
936 	if (reg <= LTC2688_CMD_UPDATE_ALL && reg != LTC2688_CMD_THERMAL_STAT)
937 		return true;
938 
939 	return false;
940 }
941 
942 static struct regmap_bus ltc2688_regmap_bus = {
943 	.read = ltc2688_spi_read,
944 	.write = ltc2688_spi_write,
945 	.read_flag_mask = LTC2688_READ_OPERATION,
946 	.reg_format_endian_default = REGMAP_ENDIAN_BIG,
947 	.val_format_endian_default = REGMAP_ENDIAN_BIG,
948 };
949 
950 static const struct regmap_config ltc2688_regmap_config = {
951 	.reg_bits = 8,
952 	.val_bits = 16,
953 	.readable_reg = ltc2688_reg_readable,
954 	.writeable_reg = ltc2688_reg_writable,
955 	/* ignoring the no op command */
956 	.max_register = LTC2688_CMD_UPDATE_ALL,
957 };
958 
959 static const struct iio_info ltc2688_info = {
960 	.write_raw = ltc2688_write_raw,
961 	.read_raw = ltc2688_read_raw,
962 	.read_avail = ltc2688_read_avail,
963 	.debugfs_reg_access = ltc2688_reg_access,
964 };
965 
966 static int ltc2688_probe(struct spi_device *spi)
967 {
968 	struct ltc2688_state *st;
969 	struct iio_dev *indio_dev;
970 	struct regulator *vref_reg;
971 	struct device *dev = &spi->dev;
972 	int ret;
973 
974 	indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
975 	if (!indio_dev)
976 		return -ENOMEM;
977 
978 	st = iio_priv(indio_dev);
979 	st->spi = spi;
980 
981 	/* Just write this once. No need to do it in every regmap read. */
982 	st->tx_data[3] = LTC2688_CMD_NOOP;
983 	mutex_init(&st->lock);
984 
985 	st->regmap = devm_regmap_init(dev, &ltc2688_regmap_bus, st,
986 				      &ltc2688_regmap_config);
987 	if (IS_ERR(st->regmap))
988 		return dev_err_probe(dev, PTR_ERR(st->regmap),
989 				     "Failed to init regmap");
990 
991 	st->regulators[0].supply = "vcc";
992 	st->regulators[1].supply = "iovcc";
993 	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(st->regulators),
994 				      st->regulators);
995 	if (ret)
996 		return dev_err_probe(dev, ret, "Failed to get regulators\n");
997 
998 	ret = regulator_bulk_enable(ARRAY_SIZE(st->regulators), st->regulators);
999 	if (ret)
1000 		return dev_err_probe(dev, ret, "Failed to enable regulators\n");
1001 
1002 	ret = devm_add_action_or_reset(dev, ltc2688_disable_regulators, st);
1003 	if (ret)
1004 		return ret;
1005 
1006 	vref_reg = devm_regulator_get_optional(dev, "vref");
1007 	if (IS_ERR(vref_reg)) {
1008 		if (PTR_ERR(vref_reg) != -ENODEV)
1009 			return dev_err_probe(dev, PTR_ERR(vref_reg),
1010 					     "Failed to get vref regulator");
1011 
1012 		vref_reg = NULL;
1013 		/* internal reference */
1014 		st->vref = 4096;
1015 	} else {
1016 		ret = regulator_enable(vref_reg);
1017 		if (ret)
1018 			return dev_err_probe(dev, ret,
1019 					     "Failed to enable vref regulators\n");
1020 
1021 		ret = devm_add_action_or_reset(dev, ltc2688_disable_regulator,
1022 					       vref_reg);
1023 		if (ret)
1024 			return ret;
1025 
1026 		ret = regulator_get_voltage(vref_reg);
1027 		if (ret < 0)
1028 			return dev_err_probe(dev, ret, "Failed to get vref\n");
1029 
1030 		st->vref = ret / 1000;
1031 	}
1032 
1033 	ret = ltc2688_setup(st, vref_reg);
1034 	if (ret)
1035 		return ret;
1036 
1037 	indio_dev->name = "ltc2688";
1038 	indio_dev->info = &ltc2688_info;
1039 	indio_dev->modes = INDIO_DIRECT_MODE;
1040 	indio_dev->channels = st->iio_chan;
1041 	indio_dev->num_channels = ARRAY_SIZE(ltc2688_channels);
1042 
1043 	return devm_iio_device_register(dev, indio_dev);
1044 }
1045 
1046 static const struct of_device_id ltc2688_of_id[] = {
1047 	{ .compatible = "adi,ltc2688" },
1048 	{}
1049 };
1050 MODULE_DEVICE_TABLE(of, ltc2688_of_id);
1051 
1052 static const struct spi_device_id ltc2688_id[] = {
1053 	{ "ltc2688" },
1054 	{}
1055 };
1056 MODULE_DEVICE_TABLE(spi, ltc2688_id);
1057 
1058 static struct spi_driver ltc2688_driver = {
1059 	.driver = {
1060 		.name = "ltc2688",
1061 		.of_match_table = ltc2688_of_id,
1062 	},
1063 	.probe = ltc2688_probe,
1064 	.id_table = ltc2688_id,
1065 };
1066 module_spi_driver(ltc2688_driver);
1067 
1068 MODULE_AUTHOR("Nuno Sá <nuno.sa@analog.com>");
1069 MODULE_DESCRIPTION("Analog Devices LTC2688 DAC");
1070 MODULE_LICENSE("GPL");
1071