xref: /openbmc/linux/drivers/iio/dac/ad5764.c (revision b737eecd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Analog devices AD5764, AD5764R, AD5744, AD5744R quad-channel
4  * Digital to Analog Converters driver
5  *
6  * Copyright 2011 Analog Devices Inc.
7  */
8 
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/spi/spi.h>
14 #include <linux/slab.h>
15 #include <linux/sysfs.h>
16 #include <linux/regulator/consumer.h>
17 
18 #include <linux/iio/iio.h>
19 #include <linux/iio/sysfs.h>
20 
21 #define AD5764_REG_SF_NOP			0x0
22 #define AD5764_REG_SF_CONFIG			0x1
23 #define AD5764_REG_SF_CLEAR			0x4
24 #define AD5764_REG_SF_LOAD			0x5
25 #define AD5764_REG_DATA(x)			((2 << 3) | (x))
26 #define AD5764_REG_COARSE_GAIN(x)		((3 << 3) | (x))
27 #define AD5764_REG_FINE_GAIN(x)			((4 << 3) | (x))
28 #define AD5764_REG_OFFSET(x)			((5 << 3) | (x))
29 
30 #define AD5764_NUM_CHANNELS 4
31 
32 /**
33  * struct ad5764_chip_info - chip specific information
34  * @int_vref:	Value of the internal reference voltage in uV - 0 if external
35  *		reference voltage is used
36  * @channels:	channel specification
37 */
38 struct ad5764_chip_info {
39 	unsigned long int_vref;
40 	const struct iio_chan_spec *channels;
41 };
42 
43 /**
44  * struct ad5764_state - driver instance specific data
45  * @spi:		spi_device
46  * @chip_info:		chip info
47  * @vref_reg:		vref supply regulators
48  * @lock:		lock to protect the data buffer during SPI ops
49  * @data:		spi transfer buffers
50  */
51 
52 struct ad5764_state {
53 	struct spi_device		*spi;
54 	const struct ad5764_chip_info	*chip_info;
55 	struct regulator_bulk_data	vref_reg[2];
56 	struct mutex			lock;
57 
58 	/*
59 	 * DMA (thus cache coherency maintenance) requires the
60 	 * transfer buffers to live in their own cache lines.
61 	 */
62 	union {
63 		__be32 d32;
64 		u8 d8[4];
65 	} data[2] ____cacheline_aligned;
66 };
67 
68 enum ad5764_type {
69 	ID_AD5744,
70 	ID_AD5744R,
71 	ID_AD5764,
72 	ID_AD5764R,
73 };
74 
75 #define AD5764_CHANNEL(_chan, _bits) {				\
76 	.type = IIO_VOLTAGE,					\
77 	.indexed = 1,						\
78 	.output = 1,						\
79 	.channel = (_chan),					\
80 	.address = (_chan),					\
81 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
82 		BIT(IIO_CHAN_INFO_SCALE) |			\
83 		BIT(IIO_CHAN_INFO_CALIBSCALE) |			\
84 		BIT(IIO_CHAN_INFO_CALIBBIAS),			\
85 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET),	\
86 	.scan_type = {						\
87 		.sign = 'u',					\
88 		.realbits = (_bits),				\
89 		.storagebits = 16,				\
90 		.shift = 16 - (_bits),				\
91 	},							\
92 }
93 
94 #define DECLARE_AD5764_CHANNELS(_name, _bits) \
95 const struct iio_chan_spec _name##_channels[] = { \
96 	AD5764_CHANNEL(0, (_bits)), \
97 	AD5764_CHANNEL(1, (_bits)), \
98 	AD5764_CHANNEL(2, (_bits)), \
99 	AD5764_CHANNEL(3, (_bits)), \
100 };
101 
102 static DECLARE_AD5764_CHANNELS(ad5764, 16);
103 static DECLARE_AD5764_CHANNELS(ad5744, 14);
104 
105 static const struct ad5764_chip_info ad5764_chip_infos[] = {
106 	[ID_AD5744] = {
107 		.int_vref = 0,
108 		.channels = ad5744_channels,
109 	},
110 	[ID_AD5744R] = {
111 		.int_vref = 5000000,
112 		.channels = ad5744_channels,
113 	},
114 	[ID_AD5764] = {
115 		.int_vref = 0,
116 		.channels = ad5764_channels,
117 	},
118 	[ID_AD5764R] = {
119 		.int_vref = 5000000,
120 		.channels = ad5764_channels,
121 	},
122 };
123 
124 static int ad5764_write(struct iio_dev *indio_dev, unsigned int reg,
125 	unsigned int val)
126 {
127 	struct ad5764_state *st = iio_priv(indio_dev);
128 	int ret;
129 
130 	mutex_lock(&st->lock);
131 	st->data[0].d32 = cpu_to_be32((reg << 16) | val);
132 
133 	ret = spi_write(st->spi, &st->data[0].d8[1], 3);
134 	mutex_unlock(&st->lock);
135 
136 	return ret;
137 }
138 
139 static int ad5764_read(struct iio_dev *indio_dev, unsigned int reg,
140 	unsigned int *val)
141 {
142 	struct ad5764_state *st = iio_priv(indio_dev);
143 	int ret;
144 	struct spi_transfer t[] = {
145 		{
146 			.tx_buf = &st->data[0].d8[1],
147 			.len = 3,
148 			.cs_change = 1,
149 		}, {
150 			.rx_buf = &st->data[1].d8[1],
151 			.len = 3,
152 		},
153 	};
154 
155 	mutex_lock(&st->lock);
156 
157 	st->data[0].d32 = cpu_to_be32((1 << 23) | (reg << 16));
158 
159 	ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
160 	if (ret >= 0)
161 		*val = be32_to_cpu(st->data[1].d32) & 0xffff;
162 
163 	mutex_unlock(&st->lock);
164 
165 	return ret;
166 }
167 
168 static int ad5764_chan_info_to_reg(struct iio_chan_spec const *chan, long info)
169 {
170 	switch (info) {
171 	case IIO_CHAN_INFO_RAW:
172 		return AD5764_REG_DATA(chan->address);
173 	case IIO_CHAN_INFO_CALIBBIAS:
174 		return AD5764_REG_OFFSET(chan->address);
175 	case IIO_CHAN_INFO_CALIBSCALE:
176 		return AD5764_REG_FINE_GAIN(chan->address);
177 	default:
178 		break;
179 	}
180 
181 	return 0;
182 }
183 
184 static int ad5764_write_raw(struct iio_dev *indio_dev,
185 	struct iio_chan_spec const *chan, int val, int val2, long info)
186 {
187 	const int max_val = (1 << chan->scan_type.realbits);
188 	unsigned int reg;
189 
190 	switch (info) {
191 	case IIO_CHAN_INFO_RAW:
192 		if (val >= max_val || val < 0)
193 			return -EINVAL;
194 		val <<= chan->scan_type.shift;
195 		break;
196 	case IIO_CHAN_INFO_CALIBBIAS:
197 		if (val >= 128 || val < -128)
198 			return -EINVAL;
199 		break;
200 	case IIO_CHAN_INFO_CALIBSCALE:
201 		if (val >= 32 || val < -32)
202 			return -EINVAL;
203 		break;
204 	default:
205 		return -EINVAL;
206 	}
207 
208 	reg = ad5764_chan_info_to_reg(chan, info);
209 	return ad5764_write(indio_dev, reg, (u16)val);
210 }
211 
212 static int ad5764_get_channel_vref(struct ad5764_state *st,
213 	unsigned int channel)
214 {
215 	if (st->chip_info->int_vref)
216 		return st->chip_info->int_vref;
217 	else
218 		return regulator_get_voltage(st->vref_reg[channel / 2].consumer);
219 }
220 
221 static int ad5764_read_raw(struct iio_dev *indio_dev,
222 	struct iio_chan_spec const *chan, int *val, int *val2, long info)
223 {
224 	struct ad5764_state *st = iio_priv(indio_dev);
225 	unsigned int reg;
226 	int vref;
227 	int ret;
228 
229 	switch (info) {
230 	case IIO_CHAN_INFO_RAW:
231 		reg = AD5764_REG_DATA(chan->address);
232 		ret = ad5764_read(indio_dev, reg, val);
233 		if (ret < 0)
234 			return ret;
235 		*val >>= chan->scan_type.shift;
236 		return IIO_VAL_INT;
237 	case IIO_CHAN_INFO_CALIBBIAS:
238 		reg = AD5764_REG_OFFSET(chan->address);
239 		ret = ad5764_read(indio_dev, reg, val);
240 		if (ret < 0)
241 			return ret;
242 		*val = sign_extend32(*val, 7);
243 		return IIO_VAL_INT;
244 	case IIO_CHAN_INFO_CALIBSCALE:
245 		reg = AD5764_REG_FINE_GAIN(chan->address);
246 		ret = ad5764_read(indio_dev, reg, val);
247 		if (ret < 0)
248 			return ret;
249 		*val = sign_extend32(*val, 5);
250 		return IIO_VAL_INT;
251 	case IIO_CHAN_INFO_SCALE:
252 		/* vout = 4 * vref + ((dac_code / 65536) - 0.5) */
253 		vref = ad5764_get_channel_vref(st, chan->channel);
254 		if (vref < 0)
255 			return vref;
256 
257 		*val = vref * 4 / 1000;
258 		*val2 = chan->scan_type.realbits;
259 		return IIO_VAL_FRACTIONAL_LOG2;
260 	case IIO_CHAN_INFO_OFFSET:
261 		*val = -(1 << chan->scan_type.realbits) / 2;
262 		return IIO_VAL_INT;
263 	}
264 
265 	return -EINVAL;
266 }
267 
268 static const struct iio_info ad5764_info = {
269 	.read_raw = ad5764_read_raw,
270 	.write_raw = ad5764_write_raw,
271 };
272 
273 static int ad5764_probe(struct spi_device *spi)
274 {
275 	enum ad5764_type type = spi_get_device_id(spi)->driver_data;
276 	struct iio_dev *indio_dev;
277 	struct ad5764_state *st;
278 	int ret;
279 
280 	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
281 	if (indio_dev == NULL) {
282 		dev_err(&spi->dev, "Failed to allocate iio device\n");
283 		return -ENOMEM;
284 	}
285 
286 	st = iio_priv(indio_dev);
287 	spi_set_drvdata(spi, indio_dev);
288 
289 	st->spi = spi;
290 	st->chip_info = &ad5764_chip_infos[type];
291 
292 	indio_dev->name = spi_get_device_id(spi)->name;
293 	indio_dev->info = &ad5764_info;
294 	indio_dev->modes = INDIO_DIRECT_MODE;
295 	indio_dev->num_channels = AD5764_NUM_CHANNELS;
296 	indio_dev->channels = st->chip_info->channels;
297 
298 	mutex_init(&st->lock);
299 
300 	if (st->chip_info->int_vref == 0) {
301 		st->vref_reg[0].supply = "vrefAB";
302 		st->vref_reg[1].supply = "vrefCD";
303 
304 		ret = devm_regulator_bulk_get(&st->spi->dev,
305 			ARRAY_SIZE(st->vref_reg), st->vref_reg);
306 		if (ret) {
307 			dev_err(&spi->dev, "Failed to request vref regulators: %d\n",
308 				ret);
309 			return ret;
310 		}
311 
312 		ret = regulator_bulk_enable(ARRAY_SIZE(st->vref_reg),
313 			st->vref_reg);
314 		if (ret) {
315 			dev_err(&spi->dev, "Failed to enable vref regulators: %d\n",
316 				ret);
317 			return ret;
318 		}
319 	}
320 
321 	ret = iio_device_register(indio_dev);
322 	if (ret) {
323 		dev_err(&spi->dev, "Failed to register iio device: %d\n", ret);
324 		goto error_disable_reg;
325 	}
326 
327 	return 0;
328 
329 error_disable_reg:
330 	if (st->chip_info->int_vref == 0)
331 		regulator_bulk_disable(ARRAY_SIZE(st->vref_reg), st->vref_reg);
332 	return ret;
333 }
334 
335 static int ad5764_remove(struct spi_device *spi)
336 {
337 	struct iio_dev *indio_dev = spi_get_drvdata(spi);
338 	struct ad5764_state *st = iio_priv(indio_dev);
339 
340 	iio_device_unregister(indio_dev);
341 
342 	if (st->chip_info->int_vref == 0)
343 		regulator_bulk_disable(ARRAY_SIZE(st->vref_reg), st->vref_reg);
344 
345 	return 0;
346 }
347 
348 static const struct spi_device_id ad5764_ids[] = {
349 	{ "ad5744", ID_AD5744 },
350 	{ "ad5744r", ID_AD5744R },
351 	{ "ad5764", ID_AD5764 },
352 	{ "ad5764r", ID_AD5764R },
353 	{ }
354 };
355 MODULE_DEVICE_TABLE(spi, ad5764_ids);
356 
357 static struct spi_driver ad5764_driver = {
358 	.driver = {
359 		.name = "ad5764",
360 	},
361 	.probe = ad5764_probe,
362 	.remove = ad5764_remove,
363 	.id_table = ad5764_ids,
364 };
365 module_spi_driver(ad5764_driver);
366 
367 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
368 MODULE_DESCRIPTION("Analog Devices AD5744/AD5744R/AD5764/AD5764R DAC");
369 MODULE_LICENSE("GPL v2");
370