xref: /openbmc/linux/drivers/iio/dac/ad5764.c (revision b593bce5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Analog devices AD5764, AD5764R, AD5744, AD5744R quad-channel
4  * Digital to Analog Converters driver
5  *
6  * Copyright 2011 Analog Devices Inc.
7  */
8 
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/spi/spi.h>
14 #include <linux/slab.h>
15 #include <linux/sysfs.h>
16 #include <linux/regulator/consumer.h>
17 
18 #include <linux/iio/iio.h>
19 #include <linux/iio/sysfs.h>
20 
21 #define AD5764_REG_SF_NOP			0x0
22 #define AD5764_REG_SF_CONFIG			0x1
23 #define AD5764_REG_SF_CLEAR			0x4
24 #define AD5764_REG_SF_LOAD			0x5
25 #define AD5764_REG_DATA(x)			((2 << 3) | (x))
26 #define AD5764_REG_COARSE_GAIN(x)		((3 << 3) | (x))
27 #define AD5764_REG_FINE_GAIN(x)			((4 << 3) | (x))
28 #define AD5764_REG_OFFSET(x)			((5 << 3) | (x))
29 
30 #define AD5764_NUM_CHANNELS 4
31 
32 /**
33  * struct ad5764_chip_info - chip specific information
34  * @int_vref:	Value of the internal reference voltage in uV - 0 if external
35  *		reference voltage is used
36  * @channel	channel specification
37 */
38 
39 struct ad5764_chip_info {
40 	unsigned long int_vref;
41 	const struct iio_chan_spec *channels;
42 };
43 
44 /**
45  * struct ad5764_state - driver instance specific data
46  * @spi:		spi_device
47  * @chip_info:		chip info
48  * @vref_reg:		vref supply regulators
49  * @data:		spi transfer buffers
50  */
51 
52 struct ad5764_state {
53 	struct spi_device		*spi;
54 	const struct ad5764_chip_info	*chip_info;
55 	struct regulator_bulk_data	vref_reg[2];
56 
57 	/*
58 	 * DMA (thus cache coherency maintenance) requires the
59 	 * transfer buffers to live in their own cache lines.
60 	 */
61 	union {
62 		__be32 d32;
63 		u8 d8[4];
64 	} data[2] ____cacheline_aligned;
65 };
66 
67 enum ad5764_type {
68 	ID_AD5744,
69 	ID_AD5744R,
70 	ID_AD5764,
71 	ID_AD5764R,
72 };
73 
74 #define AD5764_CHANNEL(_chan, _bits) {				\
75 	.type = IIO_VOLTAGE,					\
76 	.indexed = 1,						\
77 	.output = 1,						\
78 	.channel = (_chan),					\
79 	.address = (_chan),					\
80 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
81 		BIT(IIO_CHAN_INFO_SCALE) |			\
82 		BIT(IIO_CHAN_INFO_CALIBSCALE) |			\
83 		BIT(IIO_CHAN_INFO_CALIBBIAS),			\
84 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET),	\
85 	.scan_type = {						\
86 		.sign = 'u',					\
87 		.realbits = (_bits),				\
88 		.storagebits = 16,				\
89 		.shift = 16 - (_bits),				\
90 	},							\
91 }
92 
93 #define DECLARE_AD5764_CHANNELS(_name, _bits) \
94 const struct iio_chan_spec _name##_channels[] = { \
95 	AD5764_CHANNEL(0, (_bits)), \
96 	AD5764_CHANNEL(1, (_bits)), \
97 	AD5764_CHANNEL(2, (_bits)), \
98 	AD5764_CHANNEL(3, (_bits)), \
99 };
100 
101 static DECLARE_AD5764_CHANNELS(ad5764, 16);
102 static DECLARE_AD5764_CHANNELS(ad5744, 14);
103 
104 static const struct ad5764_chip_info ad5764_chip_infos[] = {
105 	[ID_AD5744] = {
106 		.int_vref = 0,
107 		.channels = ad5744_channels,
108 	},
109 	[ID_AD5744R] = {
110 		.int_vref = 5000000,
111 		.channels = ad5744_channels,
112 	},
113 	[ID_AD5764] = {
114 		.int_vref = 0,
115 		.channels = ad5764_channels,
116 	},
117 	[ID_AD5764R] = {
118 		.int_vref = 5000000,
119 		.channels = ad5764_channels,
120 	},
121 };
122 
123 static int ad5764_write(struct iio_dev *indio_dev, unsigned int reg,
124 	unsigned int val)
125 {
126 	struct ad5764_state *st = iio_priv(indio_dev);
127 	int ret;
128 
129 	mutex_lock(&indio_dev->mlock);
130 	st->data[0].d32 = cpu_to_be32((reg << 16) | val);
131 
132 	ret = spi_write(st->spi, &st->data[0].d8[1], 3);
133 	mutex_unlock(&indio_dev->mlock);
134 
135 	return ret;
136 }
137 
138 static int ad5764_read(struct iio_dev *indio_dev, unsigned int reg,
139 	unsigned int *val)
140 {
141 	struct ad5764_state *st = iio_priv(indio_dev);
142 	int ret;
143 	struct spi_transfer t[] = {
144 		{
145 			.tx_buf = &st->data[0].d8[1],
146 			.len = 3,
147 			.cs_change = 1,
148 		}, {
149 			.rx_buf = &st->data[1].d8[1],
150 			.len = 3,
151 		},
152 	};
153 
154 	mutex_lock(&indio_dev->mlock);
155 
156 	st->data[0].d32 = cpu_to_be32((1 << 23) | (reg << 16));
157 
158 	ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
159 	if (ret >= 0)
160 		*val = be32_to_cpu(st->data[1].d32) & 0xffff;
161 
162 	mutex_unlock(&indio_dev->mlock);
163 
164 	return ret;
165 }
166 
167 static int ad5764_chan_info_to_reg(struct iio_chan_spec const *chan, long info)
168 {
169 	switch (info) {
170 	case IIO_CHAN_INFO_RAW:
171 		return AD5764_REG_DATA(chan->address);
172 	case IIO_CHAN_INFO_CALIBBIAS:
173 		return AD5764_REG_OFFSET(chan->address);
174 	case IIO_CHAN_INFO_CALIBSCALE:
175 		return AD5764_REG_FINE_GAIN(chan->address);
176 	default:
177 		break;
178 	}
179 
180 	return 0;
181 }
182 
183 static int ad5764_write_raw(struct iio_dev *indio_dev,
184 	struct iio_chan_spec const *chan, int val, int val2, long info)
185 {
186 	const int max_val = (1 << chan->scan_type.realbits);
187 	unsigned int reg;
188 
189 	switch (info) {
190 	case IIO_CHAN_INFO_RAW:
191 		if (val >= max_val || val < 0)
192 			return -EINVAL;
193 		val <<= chan->scan_type.shift;
194 		break;
195 	case IIO_CHAN_INFO_CALIBBIAS:
196 		if (val >= 128 || val < -128)
197 			return -EINVAL;
198 		break;
199 	case IIO_CHAN_INFO_CALIBSCALE:
200 		if (val >= 32 || val < -32)
201 			return -EINVAL;
202 		break;
203 	default:
204 		return -EINVAL;
205 	}
206 
207 	reg = ad5764_chan_info_to_reg(chan, info);
208 	return ad5764_write(indio_dev, reg, (u16)val);
209 }
210 
211 static int ad5764_get_channel_vref(struct ad5764_state *st,
212 	unsigned int channel)
213 {
214 	if (st->chip_info->int_vref)
215 		return st->chip_info->int_vref;
216 	else
217 		return regulator_get_voltage(st->vref_reg[channel / 2].consumer);
218 }
219 
220 static int ad5764_read_raw(struct iio_dev *indio_dev,
221 	struct iio_chan_spec const *chan, int *val, int *val2, long info)
222 {
223 	struct ad5764_state *st = iio_priv(indio_dev);
224 	unsigned int reg;
225 	int vref;
226 	int ret;
227 
228 	switch (info) {
229 	case IIO_CHAN_INFO_RAW:
230 		reg = AD5764_REG_DATA(chan->address);
231 		ret = ad5764_read(indio_dev, reg, val);
232 		if (ret < 0)
233 			return ret;
234 		*val >>= chan->scan_type.shift;
235 		return IIO_VAL_INT;
236 	case IIO_CHAN_INFO_CALIBBIAS:
237 		reg = AD5764_REG_OFFSET(chan->address);
238 		ret = ad5764_read(indio_dev, reg, val);
239 		if (ret < 0)
240 			return ret;
241 		*val = sign_extend32(*val, 7);
242 		return IIO_VAL_INT;
243 	case IIO_CHAN_INFO_CALIBSCALE:
244 		reg = AD5764_REG_FINE_GAIN(chan->address);
245 		ret = ad5764_read(indio_dev, reg, val);
246 		if (ret < 0)
247 			return ret;
248 		*val = sign_extend32(*val, 5);
249 		return IIO_VAL_INT;
250 	case IIO_CHAN_INFO_SCALE:
251 		/* vout = 4 * vref + ((dac_code / 65536) - 0.5) */
252 		vref = ad5764_get_channel_vref(st, chan->channel);
253 		if (vref < 0)
254 			return vref;
255 
256 		*val = vref * 4 / 1000;
257 		*val2 = chan->scan_type.realbits;
258 		return IIO_VAL_FRACTIONAL_LOG2;
259 	case IIO_CHAN_INFO_OFFSET:
260 		*val = -(1 << chan->scan_type.realbits) / 2;
261 		return IIO_VAL_INT;
262 	}
263 
264 	return -EINVAL;
265 }
266 
267 static const struct iio_info ad5764_info = {
268 	.read_raw = ad5764_read_raw,
269 	.write_raw = ad5764_write_raw,
270 };
271 
272 static int ad5764_probe(struct spi_device *spi)
273 {
274 	enum ad5764_type type = spi_get_device_id(spi)->driver_data;
275 	struct iio_dev *indio_dev;
276 	struct ad5764_state *st;
277 	int ret;
278 
279 	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
280 	if (indio_dev == NULL) {
281 		dev_err(&spi->dev, "Failed to allocate iio device\n");
282 		return -ENOMEM;
283 	}
284 
285 	st = iio_priv(indio_dev);
286 	spi_set_drvdata(spi, indio_dev);
287 
288 	st->spi = spi;
289 	st->chip_info = &ad5764_chip_infos[type];
290 
291 	indio_dev->dev.parent = &spi->dev;
292 	indio_dev->name = spi_get_device_id(spi)->name;
293 	indio_dev->info = &ad5764_info;
294 	indio_dev->modes = INDIO_DIRECT_MODE;
295 	indio_dev->num_channels = AD5764_NUM_CHANNELS;
296 	indio_dev->channels = st->chip_info->channels;
297 
298 	if (st->chip_info->int_vref == 0) {
299 		st->vref_reg[0].supply = "vrefAB";
300 		st->vref_reg[1].supply = "vrefCD";
301 
302 		ret = devm_regulator_bulk_get(&st->spi->dev,
303 			ARRAY_SIZE(st->vref_reg), st->vref_reg);
304 		if (ret) {
305 			dev_err(&spi->dev, "Failed to request vref regulators: %d\n",
306 				ret);
307 			return ret;
308 		}
309 
310 		ret = regulator_bulk_enable(ARRAY_SIZE(st->vref_reg),
311 			st->vref_reg);
312 		if (ret) {
313 			dev_err(&spi->dev, "Failed to enable vref regulators: %d\n",
314 				ret);
315 			return ret;
316 		}
317 	}
318 
319 	ret = iio_device_register(indio_dev);
320 	if (ret) {
321 		dev_err(&spi->dev, "Failed to register iio device: %d\n", ret);
322 		goto error_disable_reg;
323 	}
324 
325 	return 0;
326 
327 error_disable_reg:
328 	if (st->chip_info->int_vref == 0)
329 		regulator_bulk_disable(ARRAY_SIZE(st->vref_reg), st->vref_reg);
330 	return ret;
331 }
332 
333 static int ad5764_remove(struct spi_device *spi)
334 {
335 	struct iio_dev *indio_dev = spi_get_drvdata(spi);
336 	struct ad5764_state *st = iio_priv(indio_dev);
337 
338 	iio_device_unregister(indio_dev);
339 
340 	if (st->chip_info->int_vref == 0)
341 		regulator_bulk_disable(ARRAY_SIZE(st->vref_reg), st->vref_reg);
342 
343 	return 0;
344 }
345 
346 static const struct spi_device_id ad5764_ids[] = {
347 	{ "ad5744", ID_AD5744 },
348 	{ "ad5744r", ID_AD5744R },
349 	{ "ad5764", ID_AD5764 },
350 	{ "ad5764r", ID_AD5764R },
351 	{ }
352 };
353 MODULE_DEVICE_TABLE(spi, ad5764_ids);
354 
355 static struct spi_driver ad5764_driver = {
356 	.driver = {
357 		.name = "ad5764",
358 	},
359 	.probe = ad5764_probe,
360 	.remove = ad5764_remove,
361 	.id_table = ad5764_ids,
362 };
363 module_spi_driver(ad5764_driver);
364 
365 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
366 MODULE_DESCRIPTION("Analog Devices AD5744/AD5744R/AD5764/AD5764R DAC");
367 MODULE_LICENSE("GPL v2");
368