1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright (C) 2014, Samsung Electronics Co. Ltd. All Rights Reserved.
4  */
5 
6 #include "ssp.h"
7 
8 #define SSP_DEV (&data->spi->dev)
9 #define SSP_GET_MESSAGE_TYPE(data) (data & (3 << SSP_RW))
10 
11 /*
12  * SSP -> AP Instruction
13  * They tell what packet type can be expected. In the future there will
14  * be less of them. BYPASS means common sensor packets with accel, gyro,
15  * hrm etc. data. LIBRARY and META are mock-up's for now.
16  */
17 #define SSP_MSG2AP_INST_BYPASS_DATA		0x37
18 #define SSP_MSG2AP_INST_LIBRARY_DATA		0x01
19 #define SSP_MSG2AP_INST_DEBUG_DATA		0x03
20 #define SSP_MSG2AP_INST_BIG_DATA		0x04
21 #define SSP_MSG2AP_INST_META_DATA		0x05
22 #define SSP_MSG2AP_INST_TIME_SYNC		0x06
23 #define SSP_MSG2AP_INST_RESET			0x07
24 
25 #define SSP_UNIMPLEMENTED -1
26 
27 struct ssp_msg_header {
28 	u8 cmd;
29 	__le16 length;
30 	__le16 options;
31 	__le32 data;
32 } __attribute__((__packed__));
33 
34 struct ssp_msg {
35 	u16 length;
36 	u16 options;
37 	struct list_head list;
38 	struct completion *done;
39 	struct ssp_msg_header *h;
40 	char *buffer;
41 };
42 
43 static const int ssp_offset_map[SSP_SENSOR_MAX] = {
44 	[SSP_ACCELEROMETER_SENSOR] =		SSP_ACCELEROMETER_SIZE +
45 						SSP_TIME_SIZE,
46 	[SSP_GYROSCOPE_SENSOR] =		SSP_GYROSCOPE_SIZE +
47 						SSP_TIME_SIZE,
48 	[SSP_GEOMAGNETIC_UNCALIB_SENSOR] =	SSP_UNIMPLEMENTED,
49 	[SSP_GEOMAGNETIC_RAW] =			SSP_UNIMPLEMENTED,
50 	[SSP_GEOMAGNETIC_SENSOR] =		SSP_UNIMPLEMENTED,
51 	[SSP_PRESSURE_SENSOR] =			SSP_UNIMPLEMENTED,
52 	[SSP_GESTURE_SENSOR] =			SSP_UNIMPLEMENTED,
53 	[SSP_PROXIMITY_SENSOR] =		SSP_UNIMPLEMENTED,
54 	[SSP_TEMPERATURE_HUMIDITY_SENSOR] =	SSP_UNIMPLEMENTED,
55 	[SSP_LIGHT_SENSOR] =			SSP_UNIMPLEMENTED,
56 	[SSP_PROXIMITY_RAW] =			SSP_UNIMPLEMENTED,
57 	[SSP_ORIENTATION_SENSOR] =		SSP_UNIMPLEMENTED,
58 	[SSP_STEP_DETECTOR] =			SSP_UNIMPLEMENTED,
59 	[SSP_SIG_MOTION_SENSOR] =		SSP_UNIMPLEMENTED,
60 	[SSP_GYRO_UNCALIB_SENSOR] =		SSP_UNIMPLEMENTED,
61 	[SSP_GAME_ROTATION_VECTOR] =		SSP_UNIMPLEMENTED,
62 	[SSP_ROTATION_VECTOR] =			SSP_UNIMPLEMENTED,
63 	[SSP_STEP_COUNTER] =			SSP_UNIMPLEMENTED,
64 	[SSP_BIO_HRM_RAW] =			SSP_BIO_HRM_RAW_SIZE +
65 						SSP_TIME_SIZE,
66 	[SSP_BIO_HRM_RAW_FAC] =			SSP_BIO_HRM_RAW_FAC_SIZE +
67 						SSP_TIME_SIZE,
68 	[SSP_BIO_HRM_LIB] =			SSP_BIO_HRM_LIB_SIZE +
69 						SSP_TIME_SIZE,
70 };
71 
72 #define SSP_HEADER_SIZE		(sizeof(struct ssp_msg_header))
73 #define SSP_HEADER_SIZE_ALIGNED	(ALIGN(SSP_HEADER_SIZE, 4))
74 
75 static struct ssp_msg *ssp_create_msg(u8 cmd, u16 len, u16 opt, u32 data)
76 {
77 	struct ssp_msg_header h;
78 	struct ssp_msg *msg;
79 
80 	msg = kzalloc(sizeof(*msg), GFP_KERNEL);
81 	if (!msg)
82 		return NULL;
83 
84 	h.cmd = cmd;
85 	h.length = cpu_to_le16(len);
86 	h.options = cpu_to_le16(opt);
87 	h.data = cpu_to_le32(data);
88 
89 	msg->buffer = kzalloc(SSP_HEADER_SIZE_ALIGNED + len,
90 			      GFP_KERNEL | GFP_DMA);
91 	if (!msg->buffer) {
92 		kfree(msg);
93 		return NULL;
94 	}
95 
96 	msg->length = len;
97 	msg->options = opt;
98 
99 	memcpy(msg->buffer, &h, SSP_HEADER_SIZE);
100 
101 	return msg;
102 }
103 
104 /*
105  * It is a bit heavy to do it this way but often the function is used to compose
106  * the message from smaller chunks which are placed on the stack.  Often the
107  * chunks are small so memcpy should be optimalized.
108  */
109 static inline void ssp_fill_buffer(struct ssp_msg *m, unsigned int offset,
110 				   const void *src, unsigned int len)
111 {
112 	memcpy(&m->buffer[SSP_HEADER_SIZE_ALIGNED + offset], src, len);
113 }
114 
115 static inline void ssp_get_buffer(struct ssp_msg *m, unsigned int offset,
116 				  void *dest, unsigned int len)
117 {
118 	memcpy(dest, &m->buffer[SSP_HEADER_SIZE_ALIGNED + offset],  len);
119 }
120 
121 #define SSP_GET_BUFFER_AT_INDEX(m, index) \
122 	(m->buffer[SSP_HEADER_SIZE_ALIGNED + index])
123 #define SSP_SET_BUFFER_AT_INDEX(m, index, val) \
124 	(m->buffer[SSP_HEADER_SIZE_ALIGNED + index] = val)
125 
126 static void ssp_clean_msg(struct ssp_msg *m)
127 {
128 	kfree(m->buffer);
129 	kfree(m);
130 }
131 
132 static int ssp_print_mcu_debug(char *data_frame, int *data_index,
133 			       int received_len)
134 {
135 	int length = data_frame[(*data_index)++];
136 
137 	if (length > received_len - *data_index || length <= 0) {
138 		ssp_dbg("[SSP]: MSG From MCU-invalid debug length(%d/%d)\n",
139 			length, received_len);
140 		return length ? length : -EPROTO;
141 	}
142 
143 	ssp_dbg("[SSP]: MSG From MCU - %s\n", &data_frame[*data_index]);
144 
145 	*data_index += length;
146 
147 	return 0;
148 }
149 
150 /*
151  * It was designed that way - additional lines to some kind of handshake,
152  * please do not ask why - only the firmware guy can know it.
153  */
154 static int ssp_check_lines(struct ssp_data *data, bool state)
155 {
156 	int delay_cnt = 0;
157 
158 	gpiod_set_value_cansleep(data->ap_mcu_gpiod, state);
159 
160 	while (gpiod_get_value_cansleep(data->mcu_ap_gpiod) != state) {
161 		usleep_range(3000, 3500);
162 
163 		if (data->shut_down || delay_cnt++ > 500) {
164 			dev_err(SSP_DEV, "%s:timeout, hw ack wait fail %d\n",
165 				__func__, state);
166 
167 			if (!state)
168 				gpiod_set_value_cansleep(data->ap_mcu_gpiod, 1);
169 
170 			return -ETIMEDOUT;
171 		}
172 	}
173 
174 	return 0;
175 }
176 
177 static int ssp_do_transfer(struct ssp_data *data, struct ssp_msg *msg,
178 			   struct completion *done, int timeout)
179 {
180 	int status;
181 	/*
182 	 * check if this is a short one way message or the whole transfer has
183 	 * second part after an interrupt
184 	 */
185 	const bool use_no_irq = msg->length == 0;
186 
187 	if (data->shut_down)
188 		return -EPERM;
189 
190 	msg->done = done;
191 
192 	mutex_lock(&data->comm_lock);
193 
194 	status = ssp_check_lines(data, false);
195 	if (status < 0)
196 		goto _error_locked;
197 
198 	status = spi_write(data->spi, msg->buffer, SSP_HEADER_SIZE);
199 	if (status < 0) {
200 		gpiod_set_value_cansleep(data->ap_mcu_gpiod, 1);
201 		dev_err(SSP_DEV, "%s spi_write fail\n", __func__);
202 		goto _error_locked;
203 	}
204 
205 	if (!use_no_irq) {
206 		mutex_lock(&data->pending_lock);
207 		list_add_tail(&msg->list, &data->pending_list);
208 		mutex_unlock(&data->pending_lock);
209 	}
210 
211 	status = ssp_check_lines(data, true);
212 	if (status < 0) {
213 		if (!use_no_irq) {
214 			mutex_lock(&data->pending_lock);
215 			list_del(&msg->list);
216 			mutex_unlock(&data->pending_lock);
217 		}
218 		goto _error_locked;
219 	}
220 
221 	mutex_unlock(&data->comm_lock);
222 
223 	if (!use_no_irq && done)
224 		if (wait_for_completion_timeout(done,
225 						msecs_to_jiffies(timeout)) ==
226 		    0) {
227 			mutex_lock(&data->pending_lock);
228 			list_del(&msg->list);
229 			mutex_unlock(&data->pending_lock);
230 
231 			data->timeout_cnt++;
232 			return -ETIMEDOUT;
233 		}
234 
235 	return 0;
236 
237 _error_locked:
238 	mutex_unlock(&data->comm_lock);
239 	data->timeout_cnt++;
240 	return status;
241 }
242 
243 static inline int ssp_spi_sync_command(struct ssp_data *data,
244 				       struct ssp_msg *msg)
245 {
246 	return ssp_do_transfer(data, msg, NULL, 0);
247 }
248 
249 static int ssp_spi_sync(struct ssp_data *data, struct ssp_msg *msg,
250 			int timeout)
251 {
252 	DECLARE_COMPLETION_ONSTACK(done);
253 
254 	if (WARN_ON(!msg->length))
255 		return -EPERM;
256 
257 	return ssp_do_transfer(data, msg, &done, timeout);
258 }
259 
260 static int ssp_handle_big_data(struct ssp_data *data, char *dataframe, int *idx)
261 {
262 	/* mock-up, it will be changed with adding another sensor types */
263 	*idx += 8;
264 	return 0;
265 }
266 
267 static int ssp_parse_dataframe(struct ssp_data *data, char *dataframe, int len)
268 {
269 	int idx, sd;
270 	struct ssp_sensor_data *spd;
271 	struct iio_dev **indio_devs = data->sensor_devs;
272 
273 	for (idx = 0; idx < len;) {
274 		switch (dataframe[idx++]) {
275 		case SSP_MSG2AP_INST_BYPASS_DATA:
276 			sd = dataframe[idx++];
277 			if (sd < 0 || sd >= SSP_SENSOR_MAX) {
278 				dev_err(SSP_DEV,
279 					"Mcu data frame1 error %d\n", sd);
280 				return -EPROTO;
281 			}
282 
283 			if (indio_devs[sd]) {
284 				spd = iio_priv(indio_devs[sd]);
285 				if (spd->process_data)
286 					spd->process_data(indio_devs[sd],
287 							  &dataframe[idx],
288 							  data->timestamp);
289 			} else {
290 				dev_err(SSP_DEV, "no client for frame\n");
291 			}
292 
293 			idx += ssp_offset_map[sd];
294 			break;
295 		case SSP_MSG2AP_INST_DEBUG_DATA:
296 			sd = ssp_print_mcu_debug(dataframe, &idx, len);
297 			if (sd) {
298 				dev_err(SSP_DEV,
299 					"Mcu data frame3 error %d\n", sd);
300 				return sd;
301 			}
302 			break;
303 		case SSP_MSG2AP_INST_LIBRARY_DATA:
304 			idx += len;
305 			break;
306 		case SSP_MSG2AP_INST_BIG_DATA:
307 			ssp_handle_big_data(data, dataframe, &idx);
308 			break;
309 		case SSP_MSG2AP_INST_TIME_SYNC:
310 			data->time_syncing = true;
311 			break;
312 		case SSP_MSG2AP_INST_RESET:
313 			ssp_queue_ssp_refresh_task(data, 0);
314 			break;
315 		}
316 	}
317 
318 	if (data->time_syncing)
319 		data->timestamp = ktime_get_real_ns();
320 
321 	return 0;
322 }
323 
324 /* threaded irq */
325 int ssp_irq_msg(struct ssp_data *data)
326 {
327 	bool found = false;
328 	char *buffer;
329 	u8 msg_type;
330 	int ret;
331 	u16 length, msg_options;
332 	struct ssp_msg *msg, *n;
333 
334 	ret = spi_read(data->spi, data->header_buffer, SSP_HEADER_BUFFER_SIZE);
335 	if (ret < 0) {
336 		dev_err(SSP_DEV, "header read fail\n");
337 		return ret;
338 	}
339 
340 	length = le16_to_cpu(data->header_buffer[1]);
341 	msg_options = le16_to_cpu(data->header_buffer[0]);
342 
343 	if (length == 0) {
344 		dev_err(SSP_DEV, "length received from mcu is 0\n");
345 		return -EINVAL;
346 	}
347 
348 	msg_type = SSP_GET_MESSAGE_TYPE(msg_options);
349 
350 	switch (msg_type) {
351 	case SSP_AP2HUB_READ:
352 	case SSP_AP2HUB_WRITE:
353 		/*
354 		 * this is a small list, a few elements - the packets can be
355 		 * received with no order
356 		 */
357 		mutex_lock(&data->pending_lock);
358 		list_for_each_entry_safe(msg, n, &data->pending_list, list) {
359 			if (msg->options == msg_options) {
360 				list_del(&msg->list);
361 				found = true;
362 				break;
363 			}
364 		}
365 
366 		if (!found) {
367 			/*
368 			 * here can be implemented dead messages handling
369 			 * but the slave should not send such ones - it is to
370 			 * check but let's handle this
371 			 */
372 			buffer = kmalloc(length, GFP_KERNEL | GFP_DMA);
373 			if (!buffer) {
374 				ret = -ENOMEM;
375 				goto _unlock;
376 			}
377 
378 			/* got dead packet so it is always an error */
379 			ret = spi_read(data->spi, buffer, length);
380 			if (ret >= 0)
381 				ret = -EPROTO;
382 
383 			kfree(buffer);
384 
385 			dev_err(SSP_DEV, "No match error %x\n",
386 				msg_options);
387 
388 			goto _unlock;
389 		}
390 
391 		if (msg_type == SSP_AP2HUB_READ)
392 			ret = spi_read(data->spi,
393 				       &msg->buffer[SSP_HEADER_SIZE_ALIGNED],
394 				       msg->length);
395 
396 		if (msg_type == SSP_AP2HUB_WRITE) {
397 			ret = spi_write(data->spi,
398 					&msg->buffer[SSP_HEADER_SIZE_ALIGNED],
399 					msg->length);
400 			if (msg_options & SSP_AP2HUB_RETURN) {
401 				msg->options =
402 					SSP_AP2HUB_READ | SSP_AP2HUB_RETURN;
403 				msg->length = 1;
404 
405 				list_add_tail(&msg->list, &data->pending_list);
406 				goto _unlock;
407 			}
408 		}
409 
410 		if (msg->done)
411 			if (!completion_done(msg->done))
412 				complete(msg->done);
413 _unlock:
414 		mutex_unlock(&data->pending_lock);
415 		break;
416 	case SSP_HUB2AP_WRITE:
417 		buffer = kzalloc(length, GFP_KERNEL | GFP_DMA);
418 		if (!buffer)
419 			return -ENOMEM;
420 
421 		ret = spi_read(data->spi, buffer, length);
422 		if (ret < 0) {
423 			dev_err(SSP_DEV, "spi read fail\n");
424 			kfree(buffer);
425 			break;
426 		}
427 
428 		ret = ssp_parse_dataframe(data, buffer, length);
429 
430 		kfree(buffer);
431 		break;
432 
433 	default:
434 		dev_err(SSP_DEV, "unknown msg type\n");
435 		return -EPROTO;
436 	}
437 
438 	return ret;
439 }
440 
441 void ssp_clean_pending_list(struct ssp_data *data)
442 {
443 	struct ssp_msg *msg, *n;
444 
445 	mutex_lock(&data->pending_lock);
446 	list_for_each_entry_safe(msg, n, &data->pending_list, list) {
447 		list_del(&msg->list);
448 
449 		if (msg->done)
450 			if (!completion_done(msg->done))
451 				complete(msg->done);
452 	}
453 	mutex_unlock(&data->pending_lock);
454 }
455 
456 int ssp_command(struct ssp_data *data, char command, int arg)
457 {
458 	int ret;
459 	struct ssp_msg *msg;
460 
461 	msg = ssp_create_msg(command, 0, SSP_AP2HUB_WRITE, arg);
462 	if (!msg)
463 		return -ENOMEM;
464 
465 	ssp_dbg("%s - command 0x%x %d\n", __func__, command, arg);
466 
467 	ret = ssp_spi_sync_command(data, msg);
468 	ssp_clean_msg(msg);
469 
470 	return ret;
471 }
472 
473 int ssp_send_instruction(struct ssp_data *data, u8 inst, u8 sensor_type,
474 			 u8 *send_buf, u8 length)
475 {
476 	int ret;
477 	struct ssp_msg *msg;
478 
479 	if (data->fw_dl_state == SSP_FW_DL_STATE_DOWNLOADING) {
480 		dev_err(SSP_DEV, "%s - Skip Inst! DL state = %d\n",
481 			__func__, data->fw_dl_state);
482 		return -EBUSY;
483 	} else if (!(data->available_sensors & BIT(sensor_type)) &&
484 		   (inst <= SSP_MSG2SSP_INST_CHANGE_DELAY)) {
485 		dev_err(SSP_DEV, "%s - Bypass Inst Skip! - %u\n",
486 			__func__, sensor_type);
487 		return -EIO; /* just fail */
488 	}
489 
490 	msg = ssp_create_msg(inst, length + 2, SSP_AP2HUB_WRITE, 0);
491 	if (!msg)
492 		return -ENOMEM;
493 
494 	ssp_fill_buffer(msg, 0, &sensor_type, 1);
495 	ssp_fill_buffer(msg, 1, send_buf, length);
496 
497 	ssp_dbg("%s - Inst = 0x%x, Sensor Type = 0x%x, data = %u\n",
498 		__func__, inst, sensor_type, send_buf[1]);
499 
500 	ret = ssp_spi_sync(data, msg, 1000);
501 	ssp_clean_msg(msg);
502 
503 	return ret;
504 }
505 
506 int ssp_get_chipid(struct ssp_data *data)
507 {
508 	int ret;
509 	char buffer;
510 	struct ssp_msg *msg;
511 
512 	msg = ssp_create_msg(SSP_MSG2SSP_AP_WHOAMI, 1, SSP_AP2HUB_READ, 0);
513 	if (!msg)
514 		return -ENOMEM;
515 
516 	ret = ssp_spi_sync(data, msg, 1000);
517 
518 	buffer = SSP_GET_BUFFER_AT_INDEX(msg, 0);
519 
520 	ssp_clean_msg(msg);
521 
522 	return ret < 0 ? ret : buffer;
523 }
524 
525 int ssp_set_magnetic_matrix(struct ssp_data *data)
526 {
527 	int ret;
528 	struct ssp_msg *msg;
529 
530 	msg = ssp_create_msg(SSP_MSG2SSP_AP_SET_MAGNETIC_STATIC_MATRIX,
531 			     data->sensorhub_info->mag_length, SSP_AP2HUB_WRITE,
532 			     0);
533 	if (!msg)
534 		return -ENOMEM;
535 
536 	ssp_fill_buffer(msg, 0, data->sensorhub_info->mag_table,
537 			data->sensorhub_info->mag_length);
538 
539 	ret = ssp_spi_sync(data, msg, 1000);
540 	ssp_clean_msg(msg);
541 
542 	return ret;
543 }
544 
545 unsigned int ssp_get_sensor_scanning_info(struct ssp_data *data)
546 {
547 	int ret;
548 	__le32 result;
549 	u32 cpu_result = 0;
550 
551 	struct ssp_msg *msg = ssp_create_msg(SSP_MSG2SSP_AP_SENSOR_SCANNING, 4,
552 					     SSP_AP2HUB_READ, 0);
553 	if (!msg)
554 		return 0;
555 
556 	ret = ssp_spi_sync(data, msg, 1000);
557 	if (ret < 0) {
558 		dev_err(SSP_DEV, "%s - spi read fail %d\n", __func__, ret);
559 		goto _exit;
560 	}
561 
562 	ssp_get_buffer(msg, 0, &result, 4);
563 	cpu_result = le32_to_cpu(result);
564 
565 	dev_info(SSP_DEV, "%s state: 0x%08x\n", __func__, cpu_result);
566 
567 _exit:
568 	ssp_clean_msg(msg);
569 	return cpu_result;
570 }
571 
572 unsigned int ssp_get_firmware_rev(struct ssp_data *data)
573 {
574 	int ret;
575 	__le32 result;
576 
577 	struct ssp_msg *msg = ssp_create_msg(SSP_MSG2SSP_AP_FIRMWARE_REV, 4,
578 					     SSP_AP2HUB_READ, 0);
579 	if (!msg)
580 		return SSP_INVALID_REVISION;
581 
582 	ret = ssp_spi_sync(data, msg, 1000);
583 	if (ret < 0) {
584 		dev_err(SSP_DEV, "%s - transfer fail %d\n", __func__, ret);
585 		ret = SSP_INVALID_REVISION;
586 		goto _exit;
587 	}
588 
589 	ssp_get_buffer(msg, 0, &result, 4);
590 	ret = le32_to_cpu(result);
591 
592 _exit:
593 	ssp_clean_msg(msg);
594 	return ret;
595 }
596