1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2014, Samsung Electronics Co. Ltd. All Rights Reserved. 4 */ 5 6 #include "ssp.h" 7 8 #define SSP_DEV (&data->spi->dev) 9 #define SSP_GET_MESSAGE_TYPE(data) (data & (3 << SSP_RW)) 10 11 /* 12 * SSP -> AP Instruction 13 * They tell what packet type can be expected. In the future there will 14 * be less of them. BYPASS means common sensor packets with accel, gyro, 15 * hrm etc. data. LIBRARY and META are mock-up's for now. 16 */ 17 #define SSP_MSG2AP_INST_BYPASS_DATA 0x37 18 #define SSP_MSG2AP_INST_LIBRARY_DATA 0x01 19 #define SSP_MSG2AP_INST_DEBUG_DATA 0x03 20 #define SSP_MSG2AP_INST_BIG_DATA 0x04 21 #define SSP_MSG2AP_INST_META_DATA 0x05 22 #define SSP_MSG2AP_INST_TIME_SYNC 0x06 23 #define SSP_MSG2AP_INST_RESET 0x07 24 25 #define SSP_UNIMPLEMENTED -1 26 27 struct ssp_msg_header { 28 u8 cmd; 29 __le16 length; 30 __le16 options; 31 __le32 data; 32 } __attribute__((__packed__)); 33 34 struct ssp_msg { 35 u16 length; 36 u16 options; 37 struct list_head list; 38 struct completion *done; 39 struct ssp_msg_header *h; 40 char *buffer; 41 }; 42 43 static const int ssp_offset_map[SSP_SENSOR_MAX] = { 44 [SSP_ACCELEROMETER_SENSOR] = SSP_ACCELEROMETER_SIZE + 45 SSP_TIME_SIZE, 46 [SSP_GYROSCOPE_SENSOR] = SSP_GYROSCOPE_SIZE + 47 SSP_TIME_SIZE, 48 [SSP_GEOMAGNETIC_UNCALIB_SENSOR] = SSP_UNIMPLEMENTED, 49 [SSP_GEOMAGNETIC_RAW] = SSP_UNIMPLEMENTED, 50 [SSP_GEOMAGNETIC_SENSOR] = SSP_UNIMPLEMENTED, 51 [SSP_PRESSURE_SENSOR] = SSP_UNIMPLEMENTED, 52 [SSP_GESTURE_SENSOR] = SSP_UNIMPLEMENTED, 53 [SSP_PROXIMITY_SENSOR] = SSP_UNIMPLEMENTED, 54 [SSP_TEMPERATURE_HUMIDITY_SENSOR] = SSP_UNIMPLEMENTED, 55 [SSP_LIGHT_SENSOR] = SSP_UNIMPLEMENTED, 56 [SSP_PROXIMITY_RAW] = SSP_UNIMPLEMENTED, 57 [SSP_ORIENTATION_SENSOR] = SSP_UNIMPLEMENTED, 58 [SSP_STEP_DETECTOR] = SSP_UNIMPLEMENTED, 59 [SSP_SIG_MOTION_SENSOR] = SSP_UNIMPLEMENTED, 60 [SSP_GYRO_UNCALIB_SENSOR] = SSP_UNIMPLEMENTED, 61 [SSP_GAME_ROTATION_VECTOR] = SSP_UNIMPLEMENTED, 62 [SSP_ROTATION_VECTOR] = SSP_UNIMPLEMENTED, 63 [SSP_STEP_COUNTER] = SSP_UNIMPLEMENTED, 64 [SSP_BIO_HRM_RAW] = SSP_BIO_HRM_RAW_SIZE + 65 SSP_TIME_SIZE, 66 [SSP_BIO_HRM_RAW_FAC] = SSP_BIO_HRM_RAW_FAC_SIZE + 67 SSP_TIME_SIZE, 68 [SSP_BIO_HRM_LIB] = SSP_BIO_HRM_LIB_SIZE + 69 SSP_TIME_SIZE, 70 }; 71 72 #define SSP_HEADER_SIZE (sizeof(struct ssp_msg_header)) 73 #define SSP_HEADER_SIZE_ALIGNED (ALIGN(SSP_HEADER_SIZE, 4)) 74 75 static struct ssp_msg *ssp_create_msg(u8 cmd, u16 len, u16 opt, u32 data) 76 { 77 struct ssp_msg_header h; 78 struct ssp_msg *msg; 79 80 msg = kzalloc(sizeof(*msg), GFP_KERNEL); 81 if (!msg) 82 return NULL; 83 84 h.cmd = cmd; 85 h.length = cpu_to_le16(len); 86 h.options = cpu_to_le16(opt); 87 h.data = cpu_to_le32(data); 88 89 msg->buffer = kzalloc(SSP_HEADER_SIZE_ALIGNED + len, 90 GFP_KERNEL | GFP_DMA); 91 if (!msg->buffer) { 92 kfree(msg); 93 return NULL; 94 } 95 96 msg->length = len; 97 msg->options = opt; 98 99 memcpy(msg->buffer, &h, SSP_HEADER_SIZE); 100 101 return msg; 102 } 103 104 /* 105 * It is a bit heavy to do it this way but often the function is used to compose 106 * the message from smaller chunks which are placed on the stack. Often the 107 * chunks are small so memcpy should be optimalized. 108 */ 109 static inline void ssp_fill_buffer(struct ssp_msg *m, unsigned int offset, 110 const void *src, unsigned int len) 111 { 112 memcpy(&m->buffer[SSP_HEADER_SIZE_ALIGNED + offset], src, len); 113 } 114 115 static inline void ssp_get_buffer(struct ssp_msg *m, unsigned int offset, 116 void *dest, unsigned int len) 117 { 118 memcpy(dest, &m->buffer[SSP_HEADER_SIZE_ALIGNED + offset], len); 119 } 120 121 #define SSP_GET_BUFFER_AT_INDEX(m, index) \ 122 (m->buffer[SSP_HEADER_SIZE_ALIGNED + index]) 123 #define SSP_SET_BUFFER_AT_INDEX(m, index, val) \ 124 (m->buffer[SSP_HEADER_SIZE_ALIGNED + index] = val) 125 126 static void ssp_clean_msg(struct ssp_msg *m) 127 { 128 kfree(m->buffer); 129 kfree(m); 130 } 131 132 static int ssp_print_mcu_debug(char *data_frame, int *data_index, 133 int received_len) 134 { 135 int length = data_frame[(*data_index)++]; 136 137 if (length > received_len - *data_index || length <= 0) { 138 ssp_dbg("[SSP]: MSG From MCU-invalid debug length(%d/%d)\n", 139 length, received_len); 140 return length ? length : -EPROTO; 141 } 142 143 ssp_dbg("[SSP]: MSG From MCU - %s\n", &data_frame[*data_index]); 144 145 *data_index += length; 146 147 return 0; 148 } 149 150 /* 151 * It was designed that way - additional lines to some kind of handshake, 152 * please do not ask why - only the firmware guy can know it. 153 */ 154 static int ssp_check_lines(struct ssp_data *data, bool state) 155 { 156 int delay_cnt = 0; 157 158 gpio_set_value_cansleep(data->ap_mcu_gpio, state); 159 160 while (gpio_get_value_cansleep(data->mcu_ap_gpio) != state) { 161 usleep_range(3000, 3500); 162 163 if (data->shut_down || delay_cnt++ > 500) { 164 dev_err(SSP_DEV, "%s:timeout, hw ack wait fail %d\n", 165 __func__, state); 166 167 if (!state) 168 gpio_set_value_cansleep(data->ap_mcu_gpio, 1); 169 170 return -ETIMEDOUT; 171 } 172 } 173 174 return 0; 175 } 176 177 static int ssp_do_transfer(struct ssp_data *data, struct ssp_msg *msg, 178 struct completion *done, int timeout) 179 { 180 int status; 181 /* 182 * check if this is a short one way message or the whole transfer has 183 * second part after an interrupt 184 */ 185 const bool use_no_irq = msg->length == 0; 186 187 if (data->shut_down) 188 return -EPERM; 189 190 msg->done = done; 191 192 mutex_lock(&data->comm_lock); 193 194 status = ssp_check_lines(data, false); 195 if (status < 0) 196 goto _error_locked; 197 198 status = spi_write(data->spi, msg->buffer, SSP_HEADER_SIZE); 199 if (status < 0) { 200 gpio_set_value_cansleep(data->ap_mcu_gpio, 1); 201 dev_err(SSP_DEV, "%s spi_write fail\n", __func__); 202 goto _error_locked; 203 } 204 205 if (!use_no_irq) { 206 mutex_lock(&data->pending_lock); 207 list_add_tail(&msg->list, &data->pending_list); 208 mutex_unlock(&data->pending_lock); 209 } 210 211 status = ssp_check_lines(data, true); 212 if (status < 0) { 213 if (!use_no_irq) { 214 mutex_lock(&data->pending_lock); 215 list_del(&msg->list); 216 mutex_unlock(&data->pending_lock); 217 } 218 goto _error_locked; 219 } 220 221 mutex_unlock(&data->comm_lock); 222 223 if (!use_no_irq && done) 224 if (wait_for_completion_timeout(done, 225 msecs_to_jiffies(timeout)) == 226 0) { 227 mutex_lock(&data->pending_lock); 228 list_del(&msg->list); 229 mutex_unlock(&data->pending_lock); 230 231 data->timeout_cnt++; 232 return -ETIMEDOUT; 233 } 234 235 return 0; 236 237 _error_locked: 238 mutex_unlock(&data->comm_lock); 239 data->timeout_cnt++; 240 return status; 241 } 242 243 static inline int ssp_spi_sync_command(struct ssp_data *data, 244 struct ssp_msg *msg) 245 { 246 return ssp_do_transfer(data, msg, NULL, 0); 247 } 248 249 static int ssp_spi_sync(struct ssp_data *data, struct ssp_msg *msg, 250 int timeout) 251 { 252 DECLARE_COMPLETION_ONSTACK(done); 253 254 if (WARN_ON(!msg->length)) 255 return -EPERM; 256 257 return ssp_do_transfer(data, msg, &done, timeout); 258 } 259 260 static int ssp_handle_big_data(struct ssp_data *data, char *dataframe, int *idx) 261 { 262 /* mock-up, it will be changed with adding another sensor types */ 263 *idx += 8; 264 return 0; 265 } 266 267 static int ssp_parse_dataframe(struct ssp_data *data, char *dataframe, int len) 268 { 269 int idx, sd; 270 struct ssp_sensor_data *spd; 271 struct iio_dev **indio_devs = data->sensor_devs; 272 273 for (idx = 0; idx < len;) { 274 switch (dataframe[idx++]) { 275 case SSP_MSG2AP_INST_BYPASS_DATA: 276 sd = dataframe[idx++]; 277 if (sd < 0 || sd >= SSP_SENSOR_MAX) { 278 dev_err(SSP_DEV, 279 "Mcu data frame1 error %d\n", sd); 280 return -EPROTO; 281 } 282 283 if (indio_devs[sd]) { 284 spd = iio_priv(indio_devs[sd]); 285 if (spd->process_data) 286 spd->process_data(indio_devs[sd], 287 &dataframe[idx], 288 data->timestamp); 289 } else { 290 dev_err(SSP_DEV, "no client for frame\n"); 291 } 292 293 idx += ssp_offset_map[sd]; 294 break; 295 case SSP_MSG2AP_INST_DEBUG_DATA: 296 sd = ssp_print_mcu_debug(dataframe, &idx, len); 297 if (sd) { 298 dev_err(SSP_DEV, 299 "Mcu data frame3 error %d\n", sd); 300 return sd; 301 } 302 break; 303 case SSP_MSG2AP_INST_LIBRARY_DATA: 304 idx += len; 305 break; 306 case SSP_MSG2AP_INST_BIG_DATA: 307 ssp_handle_big_data(data, dataframe, &idx); 308 break; 309 case SSP_MSG2AP_INST_TIME_SYNC: 310 data->time_syncing = true; 311 break; 312 case SSP_MSG2AP_INST_RESET: 313 ssp_queue_ssp_refresh_task(data, 0); 314 break; 315 } 316 } 317 318 if (data->time_syncing) 319 data->timestamp = ktime_get_real_ns(); 320 321 return 0; 322 } 323 324 /* threaded irq */ 325 int ssp_irq_msg(struct ssp_data *data) 326 { 327 bool found = false; 328 char *buffer; 329 u8 msg_type; 330 int ret; 331 u16 length, msg_options; 332 struct ssp_msg *msg, *n; 333 334 ret = spi_read(data->spi, data->header_buffer, SSP_HEADER_BUFFER_SIZE); 335 if (ret < 0) { 336 dev_err(SSP_DEV, "header read fail\n"); 337 return ret; 338 } 339 340 length = le16_to_cpu(data->header_buffer[1]); 341 msg_options = le16_to_cpu(data->header_buffer[0]); 342 343 if (length == 0) { 344 dev_err(SSP_DEV, "length received from mcu is 0\n"); 345 return -EINVAL; 346 } 347 348 msg_type = SSP_GET_MESSAGE_TYPE(msg_options); 349 350 switch (msg_type) { 351 case SSP_AP2HUB_READ: 352 case SSP_AP2HUB_WRITE: 353 /* 354 * this is a small list, a few elements - the packets can be 355 * received with no order 356 */ 357 mutex_lock(&data->pending_lock); 358 list_for_each_entry_safe(msg, n, &data->pending_list, list) { 359 if (msg->options == msg_options) { 360 list_del(&msg->list); 361 found = true; 362 break; 363 } 364 } 365 366 if (!found) { 367 /* 368 * here can be implemented dead messages handling 369 * but the slave should not send such ones - it is to 370 * check but let's handle this 371 */ 372 buffer = kmalloc(length, GFP_KERNEL | GFP_DMA); 373 if (!buffer) { 374 ret = -ENOMEM; 375 goto _unlock; 376 } 377 378 /* got dead packet so it is always an error */ 379 ret = spi_read(data->spi, buffer, length); 380 if (ret >= 0) 381 ret = -EPROTO; 382 383 kfree(buffer); 384 385 dev_err(SSP_DEV, "No match error %x\n", 386 msg_options); 387 388 goto _unlock; 389 } 390 391 if (msg_type == SSP_AP2HUB_READ) 392 ret = spi_read(data->spi, 393 &msg->buffer[SSP_HEADER_SIZE_ALIGNED], 394 msg->length); 395 396 if (msg_type == SSP_AP2HUB_WRITE) { 397 ret = spi_write(data->spi, 398 &msg->buffer[SSP_HEADER_SIZE_ALIGNED], 399 msg->length); 400 if (msg_options & SSP_AP2HUB_RETURN) { 401 msg->options = 402 SSP_AP2HUB_READ | SSP_AP2HUB_RETURN; 403 msg->length = 1; 404 405 list_add_tail(&msg->list, &data->pending_list); 406 goto _unlock; 407 } 408 } 409 410 if (msg->done) 411 if (!completion_done(msg->done)) 412 complete(msg->done); 413 _unlock: 414 mutex_unlock(&data->pending_lock); 415 break; 416 case SSP_HUB2AP_WRITE: 417 buffer = kzalloc(length, GFP_KERNEL | GFP_DMA); 418 if (!buffer) 419 return -ENOMEM; 420 421 ret = spi_read(data->spi, buffer, length); 422 if (ret < 0) { 423 dev_err(SSP_DEV, "spi read fail\n"); 424 kfree(buffer); 425 break; 426 } 427 428 ret = ssp_parse_dataframe(data, buffer, length); 429 430 kfree(buffer); 431 break; 432 433 default: 434 dev_err(SSP_DEV, "unknown msg type\n"); 435 return -EPROTO; 436 } 437 438 return ret; 439 } 440 441 void ssp_clean_pending_list(struct ssp_data *data) 442 { 443 struct ssp_msg *msg, *n; 444 445 mutex_lock(&data->pending_lock); 446 list_for_each_entry_safe(msg, n, &data->pending_list, list) { 447 list_del(&msg->list); 448 449 if (msg->done) 450 if (!completion_done(msg->done)) 451 complete(msg->done); 452 } 453 mutex_unlock(&data->pending_lock); 454 } 455 456 int ssp_command(struct ssp_data *data, char command, int arg) 457 { 458 int ret; 459 struct ssp_msg *msg; 460 461 msg = ssp_create_msg(command, 0, SSP_AP2HUB_WRITE, arg); 462 if (!msg) 463 return -ENOMEM; 464 465 ssp_dbg("%s - command 0x%x %d\n", __func__, command, arg); 466 467 ret = ssp_spi_sync_command(data, msg); 468 ssp_clean_msg(msg); 469 470 return ret; 471 } 472 473 int ssp_send_instruction(struct ssp_data *data, u8 inst, u8 sensor_type, 474 u8 *send_buf, u8 length) 475 { 476 int ret; 477 struct ssp_msg *msg; 478 479 if (data->fw_dl_state == SSP_FW_DL_STATE_DOWNLOADING) { 480 dev_err(SSP_DEV, "%s - Skip Inst! DL state = %d\n", 481 __func__, data->fw_dl_state); 482 return -EBUSY; 483 } else if (!(data->available_sensors & BIT(sensor_type)) && 484 (inst <= SSP_MSG2SSP_INST_CHANGE_DELAY)) { 485 dev_err(SSP_DEV, "%s - Bypass Inst Skip! - %u\n", 486 __func__, sensor_type); 487 return -EIO; /* just fail */ 488 } 489 490 msg = ssp_create_msg(inst, length + 2, SSP_AP2HUB_WRITE, 0); 491 if (!msg) 492 return -ENOMEM; 493 494 ssp_fill_buffer(msg, 0, &sensor_type, 1); 495 ssp_fill_buffer(msg, 1, send_buf, length); 496 497 ssp_dbg("%s - Inst = 0x%x, Sensor Type = 0x%x, data = %u\n", 498 __func__, inst, sensor_type, send_buf[1]); 499 500 ret = ssp_spi_sync(data, msg, 1000); 501 ssp_clean_msg(msg); 502 503 return ret; 504 } 505 506 int ssp_get_chipid(struct ssp_data *data) 507 { 508 int ret; 509 char buffer; 510 struct ssp_msg *msg; 511 512 msg = ssp_create_msg(SSP_MSG2SSP_AP_WHOAMI, 1, SSP_AP2HUB_READ, 0); 513 if (!msg) 514 return -ENOMEM; 515 516 ret = ssp_spi_sync(data, msg, 1000); 517 518 buffer = SSP_GET_BUFFER_AT_INDEX(msg, 0); 519 520 ssp_clean_msg(msg); 521 522 return ret < 0 ? ret : buffer; 523 } 524 525 int ssp_set_magnetic_matrix(struct ssp_data *data) 526 { 527 int ret; 528 struct ssp_msg *msg; 529 530 msg = ssp_create_msg(SSP_MSG2SSP_AP_SET_MAGNETIC_STATIC_MATRIX, 531 data->sensorhub_info->mag_length, SSP_AP2HUB_WRITE, 532 0); 533 if (!msg) 534 return -ENOMEM; 535 536 ssp_fill_buffer(msg, 0, data->sensorhub_info->mag_table, 537 data->sensorhub_info->mag_length); 538 539 ret = ssp_spi_sync(data, msg, 1000); 540 ssp_clean_msg(msg); 541 542 return ret; 543 } 544 545 unsigned int ssp_get_sensor_scanning_info(struct ssp_data *data) 546 { 547 int ret; 548 __le32 result; 549 u32 cpu_result = 0; 550 551 struct ssp_msg *msg = ssp_create_msg(SSP_MSG2SSP_AP_SENSOR_SCANNING, 4, 552 SSP_AP2HUB_READ, 0); 553 if (!msg) 554 return 0; 555 556 ret = ssp_spi_sync(data, msg, 1000); 557 if (ret < 0) { 558 dev_err(SSP_DEV, "%s - spi read fail %d\n", __func__, ret); 559 goto _exit; 560 } 561 562 ssp_get_buffer(msg, 0, &result, 4); 563 cpu_result = le32_to_cpu(result); 564 565 dev_info(SSP_DEV, "%s state: 0x%08x\n", __func__, cpu_result); 566 567 _exit: 568 ssp_clean_msg(msg); 569 return cpu_result; 570 } 571 572 unsigned int ssp_get_firmware_rev(struct ssp_data *data) 573 { 574 int ret; 575 __le32 result; 576 577 struct ssp_msg *msg = ssp_create_msg(SSP_MSG2SSP_AP_FIRMWARE_REV, 4, 578 SSP_AP2HUB_READ, 0); 579 if (!msg) 580 return SSP_INVALID_REVISION; 581 582 ret = ssp_spi_sync(data, msg, 1000); 583 if (ret < 0) { 584 dev_err(SSP_DEV, "%s - transfer fail %d\n", __func__, ret); 585 ret = SSP_INVALID_REVISION; 586 goto _exit; 587 } 588 589 ssp_get_buffer(msg, 0, &result, 4); 590 ret = le32_to_cpu(result); 591 592 _exit: 593 ssp_clean_msg(msg); 594 return ret; 595 } 596