xref: /openbmc/linux/drivers/iio/common/hid-sensors/hid-sensor-attributes.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * HID Sensors Driver
4  * Copyright (c) 2012, Intel Corporation.
5  */
6 #include <linux/device.h>
7 #include <linux/platform_device.h>
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/irq.h>
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/time.h>
14 
15 #include <linux/hid-sensor-hub.h>
16 #include <linux/iio/iio.h>
17 #include <linux/iio/sysfs.h>
18 
19 #define HZ_PER_MHZ	1000000L
20 
21 static struct {
22 	u32 usage_id;
23 	int unit; /* 0 for default others from HID sensor spec */
24 	int scale_val0; /* scale, whole number */
25 	int scale_val1; /* scale, fraction in nanos */
26 } unit_conversion[] = {
27 	{HID_USAGE_SENSOR_ACCEL_3D, 0, 9, 806650000},
28 	{HID_USAGE_SENSOR_ACCEL_3D,
29 		HID_USAGE_SENSOR_UNITS_METERS_PER_SEC_SQRD, 1, 0},
30 	{HID_USAGE_SENSOR_ACCEL_3D,
31 		HID_USAGE_SENSOR_UNITS_G, 9, 806650000},
32 
33 	{HID_USAGE_SENSOR_GRAVITY_VECTOR, 0, 9, 806650000},
34 	{HID_USAGE_SENSOR_GRAVITY_VECTOR,
35 		HID_USAGE_SENSOR_UNITS_METERS_PER_SEC_SQRD, 1, 0},
36 	{HID_USAGE_SENSOR_GRAVITY_VECTOR,
37 		HID_USAGE_SENSOR_UNITS_G, 9, 806650000},
38 
39 	{HID_USAGE_SENSOR_GYRO_3D, 0, 0, 17453293},
40 	{HID_USAGE_SENSOR_GYRO_3D,
41 		HID_USAGE_SENSOR_UNITS_RADIANS_PER_SECOND, 1, 0},
42 	{HID_USAGE_SENSOR_GYRO_3D,
43 		HID_USAGE_SENSOR_UNITS_DEGREES_PER_SECOND, 0, 17453293},
44 
45 	{HID_USAGE_SENSOR_COMPASS_3D, 0, 0, 1000000},
46 	{HID_USAGE_SENSOR_COMPASS_3D, HID_USAGE_SENSOR_UNITS_GAUSS, 1, 0},
47 
48 	{HID_USAGE_SENSOR_INCLINOMETER_3D, 0, 0, 17453293},
49 	{HID_USAGE_SENSOR_INCLINOMETER_3D,
50 		HID_USAGE_SENSOR_UNITS_DEGREES, 0, 17453293},
51 	{HID_USAGE_SENSOR_INCLINOMETER_3D,
52 		HID_USAGE_SENSOR_UNITS_RADIANS, 1, 0},
53 
54 	{HID_USAGE_SENSOR_ALS, 0, 1, 0},
55 	{HID_USAGE_SENSOR_ALS, HID_USAGE_SENSOR_UNITS_LUX, 1, 0},
56 
57 	{HID_USAGE_SENSOR_PRESSURE, 0, 100, 0},
58 	{HID_USAGE_SENSOR_PRESSURE, HID_USAGE_SENSOR_UNITS_PASCAL, 0, 1000000},
59 
60 	{HID_USAGE_SENSOR_TIME_TIMESTAMP, 0, 1000000000, 0},
61 	{HID_USAGE_SENSOR_TIME_TIMESTAMP, HID_USAGE_SENSOR_UNITS_MILLISECOND,
62 		1000000, 0},
63 
64 	{HID_USAGE_SENSOR_DEVICE_ORIENTATION, 0, 1, 0},
65 
66 	{HID_USAGE_SENSOR_RELATIVE_ORIENTATION, 0, 1, 0},
67 
68 	{HID_USAGE_SENSOR_GEOMAGNETIC_ORIENTATION, 0, 1, 0},
69 
70 	{HID_USAGE_SENSOR_TEMPERATURE, 0, 1000, 0},
71 	{HID_USAGE_SENSOR_TEMPERATURE, HID_USAGE_SENSOR_UNITS_DEGREES, 1000, 0},
72 
73 	{HID_USAGE_SENSOR_HUMIDITY, 0, 1000, 0},
74 };
75 
76 static void simple_div(int dividend, int divisor, int *whole,
77 				int *micro_frac)
78 {
79 	int rem;
80 	int exp = 0;
81 
82 	*micro_frac = 0;
83 	if (divisor == 0) {
84 		*whole = 0;
85 		return;
86 	}
87 	*whole = dividend/divisor;
88 	rem = dividend % divisor;
89 	if (rem) {
90 		while (rem <= divisor) {
91 			rem *= 10;
92 			exp++;
93 		}
94 		*micro_frac = (rem / divisor) * int_pow(10, 6 - exp);
95 	}
96 }
97 
98 static void split_micro_fraction(unsigned int no, int exp, int *val1, int *val2)
99 {
100 	int divisor = int_pow(10, exp);
101 
102 	*val1 = no / divisor;
103 	*val2 = no % divisor * int_pow(10, 6 - exp);
104 }
105 
106 /*
107 VTF format uses exponent and variable size format.
108 For example if the size is 2 bytes
109 0x0067 with VTF16E14 format -> +1.03
110 To convert just change to 0x67 to decimal and use two decimal as E14 stands
111 for 10^-2.
112 Negative numbers are 2's complement
113 */
114 static void convert_from_vtf_format(u32 value, int size, int exp,
115 					int *val1, int *val2)
116 {
117 	int sign = 1;
118 
119 	if (value & BIT(size*8 - 1)) {
120 		value =  ((1LL << (size * 8)) - value);
121 		sign = -1;
122 	}
123 	exp = hid_sensor_convert_exponent(exp);
124 	if (exp >= 0) {
125 		*val1 = sign * value * int_pow(10, exp);
126 		*val2 = 0;
127 	} else {
128 		split_micro_fraction(value, -exp, val1, val2);
129 		if (*val1)
130 			*val1 = sign * (*val1);
131 		else
132 			*val2 = sign * (*val2);
133 	}
134 }
135 
136 static u32 convert_to_vtf_format(int size, int exp, int val1, int val2)
137 {
138 	int divisor;
139 	u32 value;
140 	int sign = 1;
141 
142 	if (val1 < 0 || val2 < 0)
143 		sign = -1;
144 	exp = hid_sensor_convert_exponent(exp);
145 	if (exp < 0) {
146 		divisor = int_pow(10, 6 + exp);
147 		value = abs(val1) * int_pow(10, -exp);
148 		value += abs(val2) / divisor;
149 	} else {
150 		divisor = int_pow(10, exp);
151 		value = abs(val1) / divisor;
152 	}
153 	if (sign < 0)
154 		value =  ((1LL << (size * 8)) - value);
155 
156 	return value;
157 }
158 
159 s32 hid_sensor_read_poll_value(struct hid_sensor_common *st)
160 {
161 	s32 value = 0;
162 	int ret;
163 
164 	ret = sensor_hub_get_feature(st->hsdev,
165 				     st->poll.report_id,
166 				     st->poll.index, sizeof(value), &value);
167 
168 	if (ret < 0 || value < 0) {
169 		return -EINVAL;
170 	} else {
171 		if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND)
172 			value = value * 1000;
173 	}
174 
175 	return value;
176 }
177 EXPORT_SYMBOL(hid_sensor_read_poll_value);
178 
179 int hid_sensor_read_samp_freq_value(struct hid_sensor_common *st,
180 				int *val1, int *val2)
181 {
182 	s32 value;
183 	int ret;
184 
185 	ret = sensor_hub_get_feature(st->hsdev,
186 				     st->poll.report_id,
187 				     st->poll.index, sizeof(value), &value);
188 	if (ret < 0 || value < 0) {
189 		*val1 = *val2 = 0;
190 		return -EINVAL;
191 	} else {
192 		if (st->poll.units == HID_USAGE_SENSOR_UNITS_MILLISECOND)
193 			simple_div(1000, value, val1, val2);
194 		else if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND)
195 			simple_div(1, value, val1, val2);
196 		else {
197 			*val1 = *val2 = 0;
198 			return -EINVAL;
199 		}
200 	}
201 
202 	return IIO_VAL_INT_PLUS_MICRO;
203 }
204 EXPORT_SYMBOL(hid_sensor_read_samp_freq_value);
205 
206 int hid_sensor_write_samp_freq_value(struct hid_sensor_common *st,
207 				int val1, int val2)
208 {
209 	s32 value;
210 	int ret;
211 
212 	if (val1 < 0 || val2 < 0)
213 		return -EINVAL;
214 
215 	value = val1 * HZ_PER_MHZ + val2;
216 	if (value) {
217 		if (st->poll.units == HID_USAGE_SENSOR_UNITS_MILLISECOND)
218 			value = NSEC_PER_SEC / value;
219 		else if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND)
220 			value = USEC_PER_SEC / value;
221 		else
222 			value = 0;
223 	}
224 	ret = sensor_hub_set_feature(st->hsdev, st->poll.report_id,
225 				     st->poll.index, sizeof(value), &value);
226 	if (ret < 0 || value < 0)
227 		return -EINVAL;
228 
229 	ret = sensor_hub_get_feature(st->hsdev,
230 				     st->poll.report_id,
231 				     st->poll.index, sizeof(value), &value);
232 	if (ret < 0 || value < 0)
233 		return -EINVAL;
234 
235 	st->poll_interval = value;
236 
237 	return 0;
238 }
239 EXPORT_SYMBOL(hid_sensor_write_samp_freq_value);
240 
241 int hid_sensor_read_raw_hyst_value(struct hid_sensor_common *st,
242 				int *val1, int *val2)
243 {
244 	s32 value;
245 	int ret;
246 
247 	ret = sensor_hub_get_feature(st->hsdev,
248 				     st->sensitivity.report_id,
249 				     st->sensitivity.index, sizeof(value),
250 				     &value);
251 	if (ret < 0 || value < 0) {
252 		*val1 = *val2 = 0;
253 		return -EINVAL;
254 	} else {
255 		convert_from_vtf_format(value, st->sensitivity.size,
256 					st->sensitivity.unit_expo,
257 					val1, val2);
258 	}
259 
260 	return IIO_VAL_INT_PLUS_MICRO;
261 }
262 EXPORT_SYMBOL(hid_sensor_read_raw_hyst_value);
263 
264 int hid_sensor_write_raw_hyst_value(struct hid_sensor_common *st,
265 					int val1, int val2)
266 {
267 	s32 value;
268 	int ret;
269 
270 	if (val1 < 0 || val2 < 0)
271 		return -EINVAL;
272 
273 	value = convert_to_vtf_format(st->sensitivity.size,
274 				st->sensitivity.unit_expo,
275 				val1, val2);
276 	ret = sensor_hub_set_feature(st->hsdev, st->sensitivity.report_id,
277 				     st->sensitivity.index, sizeof(value),
278 				     &value);
279 	if (ret < 0 || value < 0)
280 		return -EINVAL;
281 
282 	ret = sensor_hub_get_feature(st->hsdev,
283 				     st->sensitivity.report_id,
284 				     st->sensitivity.index, sizeof(value),
285 				     &value);
286 	if (ret < 0 || value < 0)
287 		return -EINVAL;
288 
289 	st->raw_hystersis = value;
290 
291 	return 0;
292 }
293 EXPORT_SYMBOL(hid_sensor_write_raw_hyst_value);
294 
295 /*
296  * This fuction applies the unit exponent to the scale.
297  * For example:
298  * 9.806650000 ->exp:2-> val0[980]val1[665000000]
299  * 9.000806000 ->exp:2-> val0[900]val1[80600000]
300  * 0.174535293 ->exp:2-> val0[17]val1[453529300]
301  * 1.001745329 ->exp:0-> val0[1]val1[1745329]
302  * 1.001745329 ->exp:2-> val0[100]val1[174532900]
303  * 1.001745329 ->exp:4-> val0[10017]val1[453290000]
304  * 9.806650000 ->exp:-2-> val0[0]val1[98066500]
305  */
306 static void adjust_exponent_nano(int *val0, int *val1, int scale0,
307 				  int scale1, int exp)
308 {
309 	int divisor;
310 	int i;
311 	int x;
312 	int res;
313 	int rem;
314 
315 	if (exp > 0) {
316 		*val0 = scale0 * int_pow(10, exp);
317 		res = 0;
318 		if (exp > 9) {
319 			*val1 = 0;
320 			return;
321 		}
322 		for (i = 0; i < exp; ++i) {
323 			divisor = int_pow(10, 8 - i);
324 			x = scale1 / divisor;
325 			res += int_pow(10, exp - 1 - i) * x;
326 			scale1 = scale1 % divisor;
327 		}
328 		*val0 += res;
329 		*val1 = scale1 * int_pow(10, exp);
330 	} else if (exp < 0) {
331 		exp = abs(exp);
332 		if (exp > 9) {
333 			*val0 = *val1 = 0;
334 			return;
335 		}
336 		divisor = int_pow(10, exp);
337 		*val0 = scale0 / divisor;
338 		rem = scale0 % divisor;
339 		res = 0;
340 		for (i = 0; i < (9 - exp); ++i) {
341 			divisor = int_pow(10, 8 - i);
342 			x = scale1 / divisor;
343 			res += int_pow(10, 8 - exp - i) * x;
344 			scale1 = scale1 % divisor;
345 		}
346 		*val1 = rem * int_pow(10, 9 - exp) + res;
347 	} else {
348 		*val0 = scale0;
349 		*val1 = scale1;
350 	}
351 }
352 
353 int hid_sensor_format_scale(u32 usage_id,
354 			struct hid_sensor_hub_attribute_info *attr_info,
355 			int *val0, int *val1)
356 {
357 	int i;
358 	int exp;
359 
360 	*val0 = 1;
361 	*val1 = 0;
362 
363 	for (i = 0; i < ARRAY_SIZE(unit_conversion); ++i) {
364 		if (unit_conversion[i].usage_id == usage_id &&
365 			unit_conversion[i].unit == attr_info->units) {
366 			exp  = hid_sensor_convert_exponent(
367 						attr_info->unit_expo);
368 			adjust_exponent_nano(val0, val1,
369 					unit_conversion[i].scale_val0,
370 					unit_conversion[i].scale_val1, exp);
371 			break;
372 		}
373 	}
374 
375 	return IIO_VAL_INT_PLUS_NANO;
376 }
377 EXPORT_SYMBOL(hid_sensor_format_scale);
378 
379 int64_t hid_sensor_convert_timestamp(struct hid_sensor_common *st,
380 				     int64_t raw_value)
381 {
382 	return st->timestamp_ns_scale * raw_value;
383 }
384 EXPORT_SYMBOL(hid_sensor_convert_timestamp);
385 
386 static
387 int hid_sensor_get_reporting_interval(struct hid_sensor_hub_device *hsdev,
388 					u32 usage_id,
389 					struct hid_sensor_common *st)
390 {
391 	sensor_hub_input_get_attribute_info(hsdev,
392 					HID_FEATURE_REPORT, usage_id,
393 					HID_USAGE_SENSOR_PROP_REPORT_INTERVAL,
394 					&st->poll);
395 	/* Default unit of measure is milliseconds */
396 	if (st->poll.units == 0)
397 		st->poll.units = HID_USAGE_SENSOR_UNITS_MILLISECOND;
398 
399 	st->poll_interval = -1;
400 
401 	return 0;
402 
403 }
404 
405 static void hid_sensor_get_report_latency_info(struct hid_sensor_hub_device *hsdev,
406 					       u32 usage_id,
407 					       struct hid_sensor_common *st)
408 {
409 	sensor_hub_input_get_attribute_info(hsdev, HID_FEATURE_REPORT,
410 					    usage_id,
411 					    HID_USAGE_SENSOR_PROP_REPORT_LATENCY,
412 					    &st->report_latency);
413 
414 	hid_dbg(hsdev->hdev, "Report latency attributes: %x:%x\n",
415 		st->report_latency.index, st->report_latency.report_id);
416 }
417 
418 int hid_sensor_get_report_latency(struct hid_sensor_common *st)
419 {
420 	int ret;
421 	int value;
422 
423 	ret = sensor_hub_get_feature(st->hsdev, st->report_latency.report_id,
424 				     st->report_latency.index, sizeof(value),
425 				     &value);
426 	if (ret < 0)
427 		return ret;
428 
429 	return value;
430 }
431 EXPORT_SYMBOL(hid_sensor_get_report_latency);
432 
433 int hid_sensor_set_report_latency(struct hid_sensor_common *st, int latency_ms)
434 {
435 	return sensor_hub_set_feature(st->hsdev, st->report_latency.report_id,
436 				      st->report_latency.index,
437 				      sizeof(latency_ms), &latency_ms);
438 }
439 EXPORT_SYMBOL(hid_sensor_set_report_latency);
440 
441 bool hid_sensor_batch_mode_supported(struct hid_sensor_common *st)
442 {
443 	return st->report_latency.index > 0 && st->report_latency.report_id > 0;
444 }
445 EXPORT_SYMBOL(hid_sensor_batch_mode_supported);
446 
447 int hid_sensor_parse_common_attributes(struct hid_sensor_hub_device *hsdev,
448 					u32 usage_id,
449 					struct hid_sensor_common *st)
450 {
451 
452 	struct hid_sensor_hub_attribute_info timestamp;
453 	s32 value;
454 	int ret;
455 
456 	hid_sensor_get_reporting_interval(hsdev, usage_id, st);
457 
458 	sensor_hub_input_get_attribute_info(hsdev,
459 					HID_FEATURE_REPORT, usage_id,
460 					HID_USAGE_SENSOR_PROP_REPORT_STATE,
461 					&st->report_state);
462 
463 	sensor_hub_input_get_attribute_info(hsdev,
464 					HID_FEATURE_REPORT, usage_id,
465 					HID_USAGE_SENSOR_PROY_POWER_STATE,
466 					&st->power_state);
467 
468 	st->power_state.logical_minimum = 1;
469 	st->report_state.logical_minimum = 1;
470 
471 	sensor_hub_input_get_attribute_info(hsdev,
472 			HID_FEATURE_REPORT, usage_id,
473 			HID_USAGE_SENSOR_PROP_SENSITIVITY_ABS,
474 			 &st->sensitivity);
475 
476 	st->raw_hystersis = -1;
477 
478 	sensor_hub_input_get_attribute_info(hsdev,
479 					    HID_INPUT_REPORT, usage_id,
480 					    HID_USAGE_SENSOR_TIME_TIMESTAMP,
481 					    &timestamp);
482 	if (timestamp.index >= 0 && timestamp.report_id) {
483 		int val0, val1;
484 
485 		hid_sensor_format_scale(HID_USAGE_SENSOR_TIME_TIMESTAMP,
486 					&timestamp, &val0, &val1);
487 		st->timestamp_ns_scale = val0;
488 	} else
489 		st->timestamp_ns_scale = 1000000000;
490 
491 	hid_sensor_get_report_latency_info(hsdev, usage_id, st);
492 
493 	hid_dbg(hsdev->hdev, "common attributes: %x:%x, %x:%x, %x:%x %x:%x %x:%x\n",
494 		st->poll.index, st->poll.report_id,
495 		st->report_state.index, st->report_state.report_id,
496 		st->power_state.index, st->power_state.report_id,
497 		st->sensitivity.index, st->sensitivity.report_id,
498 		timestamp.index, timestamp.report_id);
499 
500 	ret = sensor_hub_get_feature(hsdev,
501 				st->power_state.report_id,
502 				st->power_state.index, sizeof(value), &value);
503 	if (ret < 0)
504 		return ret;
505 	if (value < 0)
506 		return -EINVAL;
507 
508 	return 0;
509 }
510 EXPORT_SYMBOL(hid_sensor_parse_common_attributes);
511 
512 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@intel.com>");
513 MODULE_DESCRIPTION("HID Sensor common attribute processing");
514 MODULE_LICENSE("GPL");
515