xref: /openbmc/linux/drivers/iio/common/hid-sensors/hid-sensor-attributes.c (revision f8a11425075ff11b4b5784f077cb84f3d2dfb3f0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * HID Sensors Driver
4  * Copyright (c) 2012, Intel Corporation.
5  */
6 #include <linux/device.h>
7 #include <linux/platform_device.h>
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/irq.h>
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/time.h>
14 
15 #include <linux/hid-sensor-hub.h>
16 #include <linux/iio/iio.h>
17 #include <linux/iio/sysfs.h>
18 
19 #define HZ_PER_MHZ	1000000L
20 
21 static struct {
22 	u32 usage_id;
23 	int unit; /* 0 for default others from HID sensor spec */
24 	int scale_val0; /* scale, whole number */
25 	int scale_val1; /* scale, fraction in nanos */
26 } unit_conversion[] = {
27 	{HID_USAGE_SENSOR_ACCEL_3D, 0, 9, 806650000},
28 	{HID_USAGE_SENSOR_ACCEL_3D,
29 		HID_USAGE_SENSOR_UNITS_METERS_PER_SEC_SQRD, 1, 0},
30 	{HID_USAGE_SENSOR_ACCEL_3D,
31 		HID_USAGE_SENSOR_UNITS_G, 9, 806650000},
32 
33 	{HID_USAGE_SENSOR_GRAVITY_VECTOR, 0, 9, 806650000},
34 	{HID_USAGE_SENSOR_GRAVITY_VECTOR,
35 		HID_USAGE_SENSOR_UNITS_METERS_PER_SEC_SQRD, 1, 0},
36 	{HID_USAGE_SENSOR_GRAVITY_VECTOR,
37 		HID_USAGE_SENSOR_UNITS_G, 9, 806650000},
38 
39 	{HID_USAGE_SENSOR_GYRO_3D, 0, 0, 17453293},
40 	{HID_USAGE_SENSOR_GYRO_3D,
41 		HID_USAGE_SENSOR_UNITS_RADIANS_PER_SECOND, 1, 0},
42 	{HID_USAGE_SENSOR_GYRO_3D,
43 		HID_USAGE_SENSOR_UNITS_DEGREES_PER_SECOND, 0, 17453293},
44 
45 	{HID_USAGE_SENSOR_COMPASS_3D, 0, 0, 1000000},
46 	{HID_USAGE_SENSOR_COMPASS_3D, HID_USAGE_SENSOR_UNITS_GAUSS, 1, 0},
47 
48 	{HID_USAGE_SENSOR_INCLINOMETER_3D, 0, 0, 17453293},
49 	{HID_USAGE_SENSOR_INCLINOMETER_3D,
50 		HID_USAGE_SENSOR_UNITS_DEGREES, 0, 17453293},
51 	{HID_USAGE_SENSOR_INCLINOMETER_3D,
52 		HID_USAGE_SENSOR_UNITS_RADIANS, 1, 0},
53 
54 	{HID_USAGE_SENSOR_ALS, 0, 1, 0},
55 	{HID_USAGE_SENSOR_ALS, HID_USAGE_SENSOR_UNITS_LUX, 1, 0},
56 
57 	{HID_USAGE_SENSOR_PRESSURE, 0, 100, 0},
58 	{HID_USAGE_SENSOR_PRESSURE, HID_USAGE_SENSOR_UNITS_PASCAL, 0, 1000000},
59 
60 	{HID_USAGE_SENSOR_TIME_TIMESTAMP, 0, 1000000000, 0},
61 	{HID_USAGE_SENSOR_TIME_TIMESTAMP, HID_USAGE_SENSOR_UNITS_MILLISECOND,
62 		1000000, 0},
63 
64 	{HID_USAGE_SENSOR_DEVICE_ORIENTATION, 0, 1, 0},
65 
66 	{HID_USAGE_SENSOR_RELATIVE_ORIENTATION, 0, 1, 0},
67 
68 	{HID_USAGE_SENSOR_GEOMAGNETIC_ORIENTATION, 0, 1, 0},
69 
70 	{HID_USAGE_SENSOR_TEMPERATURE, 0, 1000, 0},
71 	{HID_USAGE_SENSOR_TEMPERATURE, HID_USAGE_SENSOR_UNITS_DEGREES, 1000, 0},
72 
73 	{HID_USAGE_SENSOR_HUMIDITY, 0, 1000, 0},
74 	{HID_USAGE_SENSOR_HINGE, 0, 0, 17453293},
75 	{HID_USAGE_SENSOR_HINGE, HID_USAGE_SENSOR_UNITS_DEGREES, 0, 17453293},
76 };
77 
78 static void simple_div(int dividend, int divisor, int *whole,
79 				int *micro_frac)
80 {
81 	int rem;
82 	int exp = 0;
83 
84 	*micro_frac = 0;
85 	if (divisor == 0) {
86 		*whole = 0;
87 		return;
88 	}
89 	*whole = dividend/divisor;
90 	rem = dividend % divisor;
91 	if (rem) {
92 		while (rem <= divisor) {
93 			rem *= 10;
94 			exp++;
95 		}
96 		*micro_frac = (rem / divisor) * int_pow(10, 6 - exp);
97 	}
98 }
99 
100 static void split_micro_fraction(unsigned int no, int exp, int *val1, int *val2)
101 {
102 	int divisor = int_pow(10, exp);
103 
104 	*val1 = no / divisor;
105 	*val2 = no % divisor * int_pow(10, 6 - exp);
106 }
107 
108 /*
109 VTF format uses exponent and variable size format.
110 For example if the size is 2 bytes
111 0x0067 with VTF16E14 format -> +1.03
112 To convert just change to 0x67 to decimal and use two decimal as E14 stands
113 for 10^-2.
114 Negative numbers are 2's complement
115 */
116 static void convert_from_vtf_format(u32 value, int size, int exp,
117 					int *val1, int *val2)
118 {
119 	int sign = 1;
120 
121 	if (value & BIT(size*8 - 1)) {
122 		value =  ((1LL << (size * 8)) - value);
123 		sign = -1;
124 	}
125 	exp = hid_sensor_convert_exponent(exp);
126 	if (exp >= 0) {
127 		*val1 = sign * value * int_pow(10, exp);
128 		*val2 = 0;
129 	} else {
130 		split_micro_fraction(value, -exp, val1, val2);
131 		if (*val1)
132 			*val1 = sign * (*val1);
133 		else
134 			*val2 = sign * (*val2);
135 	}
136 }
137 
138 static u32 convert_to_vtf_format(int size, int exp, int val1, int val2)
139 {
140 	int divisor;
141 	u32 value;
142 	int sign = 1;
143 
144 	if (val1 < 0 || val2 < 0)
145 		sign = -1;
146 	exp = hid_sensor_convert_exponent(exp);
147 	if (exp < 0) {
148 		divisor = int_pow(10, 6 + exp);
149 		value = abs(val1) * int_pow(10, -exp);
150 		value += abs(val2) / divisor;
151 	} else {
152 		divisor = int_pow(10, exp);
153 		value = abs(val1) / divisor;
154 	}
155 	if (sign < 0)
156 		value =  ((1LL << (size * 8)) - value);
157 
158 	return value;
159 }
160 
161 s32 hid_sensor_read_poll_value(struct hid_sensor_common *st)
162 {
163 	s32 value = 0;
164 	int ret;
165 
166 	ret = sensor_hub_get_feature(st->hsdev,
167 				     st->poll.report_id,
168 				     st->poll.index, sizeof(value), &value);
169 
170 	if (ret < 0 || value < 0) {
171 		return -EINVAL;
172 	} else {
173 		if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND)
174 			value = value * 1000;
175 	}
176 
177 	return value;
178 }
179 EXPORT_SYMBOL(hid_sensor_read_poll_value);
180 
181 int hid_sensor_read_samp_freq_value(struct hid_sensor_common *st,
182 				int *val1, int *val2)
183 {
184 	s32 value;
185 	int ret;
186 
187 	ret = sensor_hub_get_feature(st->hsdev,
188 				     st->poll.report_id,
189 				     st->poll.index, sizeof(value), &value);
190 	if (ret < 0 || value < 0) {
191 		*val1 = *val2 = 0;
192 		return -EINVAL;
193 	} else {
194 		if (st->poll.units == HID_USAGE_SENSOR_UNITS_MILLISECOND)
195 			simple_div(1000, value, val1, val2);
196 		else if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND)
197 			simple_div(1, value, val1, val2);
198 		else {
199 			*val1 = *val2 = 0;
200 			return -EINVAL;
201 		}
202 	}
203 
204 	return IIO_VAL_INT_PLUS_MICRO;
205 }
206 EXPORT_SYMBOL(hid_sensor_read_samp_freq_value);
207 
208 int hid_sensor_write_samp_freq_value(struct hid_sensor_common *st,
209 				int val1, int val2)
210 {
211 	s32 value;
212 	int ret;
213 
214 	if (val1 < 0 || val2 < 0)
215 		return -EINVAL;
216 
217 	value = val1 * HZ_PER_MHZ + val2;
218 	if (value) {
219 		if (st->poll.units == HID_USAGE_SENSOR_UNITS_MILLISECOND)
220 			value = NSEC_PER_SEC / value;
221 		else if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND)
222 			value = USEC_PER_SEC / value;
223 		else
224 			value = 0;
225 	}
226 	ret = sensor_hub_set_feature(st->hsdev, st->poll.report_id,
227 				     st->poll.index, sizeof(value), &value);
228 	if (ret < 0 || value < 0)
229 		return -EINVAL;
230 
231 	ret = sensor_hub_get_feature(st->hsdev,
232 				     st->poll.report_id,
233 				     st->poll.index, sizeof(value), &value);
234 	if (ret < 0 || value < 0)
235 		return -EINVAL;
236 
237 	st->poll_interval = value;
238 
239 	return 0;
240 }
241 EXPORT_SYMBOL(hid_sensor_write_samp_freq_value);
242 
243 int hid_sensor_read_raw_hyst_value(struct hid_sensor_common *st,
244 				int *val1, int *val2)
245 {
246 	s32 value;
247 	int ret;
248 
249 	ret = sensor_hub_get_feature(st->hsdev,
250 				     st->sensitivity.report_id,
251 				     st->sensitivity.index, sizeof(value),
252 				     &value);
253 	if (ret < 0 || value < 0) {
254 		*val1 = *val2 = 0;
255 		return -EINVAL;
256 	} else {
257 		convert_from_vtf_format(value, st->sensitivity.size,
258 					st->sensitivity.unit_expo,
259 					val1, val2);
260 	}
261 
262 	return IIO_VAL_INT_PLUS_MICRO;
263 }
264 EXPORT_SYMBOL(hid_sensor_read_raw_hyst_value);
265 
266 int hid_sensor_read_raw_hyst_rel_value(struct hid_sensor_common *st, int *val1,
267 				       int *val2)
268 {
269 	s32 value;
270 	int ret;
271 
272 	ret = sensor_hub_get_feature(st->hsdev,
273 				     st->sensitivity_rel.report_id,
274 				     st->sensitivity_rel.index, sizeof(value),
275 				     &value);
276 	if (ret < 0 || value < 0) {
277 		*val1 = *val2 = 0;
278 		return -EINVAL;
279 	}
280 
281 	convert_from_vtf_format(value, st->sensitivity_rel.size,
282 				st->sensitivity_rel.unit_expo, val1, val2);
283 
284 	return IIO_VAL_INT_PLUS_MICRO;
285 }
286 EXPORT_SYMBOL(hid_sensor_read_raw_hyst_rel_value);
287 
288 
289 int hid_sensor_write_raw_hyst_value(struct hid_sensor_common *st,
290 					int val1, int val2)
291 {
292 	s32 value;
293 	int ret;
294 
295 	if (val1 < 0 || val2 < 0)
296 		return -EINVAL;
297 
298 	value = convert_to_vtf_format(st->sensitivity.size,
299 				st->sensitivity.unit_expo,
300 				val1, val2);
301 	ret = sensor_hub_set_feature(st->hsdev, st->sensitivity.report_id,
302 				     st->sensitivity.index, sizeof(value),
303 				     &value);
304 	if (ret < 0 || value < 0)
305 		return -EINVAL;
306 
307 	ret = sensor_hub_get_feature(st->hsdev,
308 				     st->sensitivity.report_id,
309 				     st->sensitivity.index, sizeof(value),
310 				     &value);
311 	if (ret < 0 || value < 0)
312 		return -EINVAL;
313 
314 	st->raw_hystersis = value;
315 
316 	return 0;
317 }
318 EXPORT_SYMBOL(hid_sensor_write_raw_hyst_value);
319 
320 int hid_sensor_write_raw_hyst_rel_value(struct hid_sensor_common *st,
321 					int val1, int val2)
322 {
323 	s32 value;
324 	int ret;
325 
326 	if (val1 < 0 || val2 < 0)
327 		return -EINVAL;
328 
329 	value = convert_to_vtf_format(st->sensitivity_rel.size,
330 				st->sensitivity_rel.unit_expo,
331 				val1, val2);
332 	ret = sensor_hub_set_feature(st->hsdev, st->sensitivity_rel.report_id,
333 				     st->sensitivity_rel.index, sizeof(value),
334 				     &value);
335 	if (ret < 0 || value < 0)
336 		return -EINVAL;
337 
338 	ret = sensor_hub_get_feature(st->hsdev,
339 				     st->sensitivity_rel.report_id,
340 				     st->sensitivity_rel.index, sizeof(value),
341 				     &value);
342 	if (ret < 0 || value < 0)
343 		return -EINVAL;
344 
345 	st->raw_hystersis = value;
346 
347 	return 0;
348 }
349 EXPORT_SYMBOL(hid_sensor_write_raw_hyst_rel_value);
350 
351 /*
352  * This fuction applies the unit exponent to the scale.
353  * For example:
354  * 9.806650000 ->exp:2-> val0[980]val1[665000000]
355  * 9.000806000 ->exp:2-> val0[900]val1[80600000]
356  * 0.174535293 ->exp:2-> val0[17]val1[453529300]
357  * 1.001745329 ->exp:0-> val0[1]val1[1745329]
358  * 1.001745329 ->exp:2-> val0[100]val1[174532900]
359  * 1.001745329 ->exp:4-> val0[10017]val1[453290000]
360  * 9.806650000 ->exp:-2-> val0[0]val1[98066500]
361  */
362 static void adjust_exponent_nano(int *val0, int *val1, int scale0,
363 				  int scale1, int exp)
364 {
365 	int divisor;
366 	int i;
367 	int x;
368 	int res;
369 	int rem;
370 
371 	if (exp > 0) {
372 		*val0 = scale0 * int_pow(10, exp);
373 		res = 0;
374 		if (exp > 9) {
375 			*val1 = 0;
376 			return;
377 		}
378 		for (i = 0; i < exp; ++i) {
379 			divisor = int_pow(10, 8 - i);
380 			x = scale1 / divisor;
381 			res += int_pow(10, exp - 1 - i) * x;
382 			scale1 = scale1 % divisor;
383 		}
384 		*val0 += res;
385 		*val1 = scale1 * int_pow(10, exp);
386 	} else if (exp < 0) {
387 		exp = abs(exp);
388 		if (exp > 9) {
389 			*val0 = *val1 = 0;
390 			return;
391 		}
392 		divisor = int_pow(10, exp);
393 		*val0 = scale0 / divisor;
394 		rem = scale0 % divisor;
395 		res = 0;
396 		for (i = 0; i < (9 - exp); ++i) {
397 			divisor = int_pow(10, 8 - i);
398 			x = scale1 / divisor;
399 			res += int_pow(10, 8 - exp - i) * x;
400 			scale1 = scale1 % divisor;
401 		}
402 		*val1 = rem * int_pow(10, 9 - exp) + res;
403 	} else {
404 		*val0 = scale0;
405 		*val1 = scale1;
406 	}
407 }
408 
409 int hid_sensor_format_scale(u32 usage_id,
410 			struct hid_sensor_hub_attribute_info *attr_info,
411 			int *val0, int *val1)
412 {
413 	int i;
414 	int exp;
415 
416 	*val0 = 1;
417 	*val1 = 0;
418 
419 	for (i = 0; i < ARRAY_SIZE(unit_conversion); ++i) {
420 		if (unit_conversion[i].usage_id == usage_id &&
421 			unit_conversion[i].unit == attr_info->units) {
422 			exp  = hid_sensor_convert_exponent(
423 						attr_info->unit_expo);
424 			adjust_exponent_nano(val0, val1,
425 					unit_conversion[i].scale_val0,
426 					unit_conversion[i].scale_val1, exp);
427 			break;
428 		}
429 	}
430 
431 	return IIO_VAL_INT_PLUS_NANO;
432 }
433 EXPORT_SYMBOL(hid_sensor_format_scale);
434 
435 int64_t hid_sensor_convert_timestamp(struct hid_sensor_common *st,
436 				     int64_t raw_value)
437 {
438 	return st->timestamp_ns_scale * raw_value;
439 }
440 EXPORT_SYMBOL(hid_sensor_convert_timestamp);
441 
442 static
443 int hid_sensor_get_reporting_interval(struct hid_sensor_hub_device *hsdev,
444 					u32 usage_id,
445 					struct hid_sensor_common *st)
446 {
447 	sensor_hub_input_get_attribute_info(hsdev,
448 					HID_FEATURE_REPORT, usage_id,
449 					HID_USAGE_SENSOR_PROP_REPORT_INTERVAL,
450 					&st->poll);
451 	/* Default unit of measure is milliseconds */
452 	if (st->poll.units == 0)
453 		st->poll.units = HID_USAGE_SENSOR_UNITS_MILLISECOND;
454 
455 	st->poll_interval = -1;
456 
457 	return 0;
458 
459 }
460 
461 static void hid_sensor_get_report_latency_info(struct hid_sensor_hub_device *hsdev,
462 					       u32 usage_id,
463 					       struct hid_sensor_common *st)
464 {
465 	sensor_hub_input_get_attribute_info(hsdev, HID_FEATURE_REPORT,
466 					    usage_id,
467 					    HID_USAGE_SENSOR_PROP_REPORT_LATENCY,
468 					    &st->report_latency);
469 
470 	hid_dbg(hsdev->hdev, "Report latency attributes: %x:%x\n",
471 		st->report_latency.index, st->report_latency.report_id);
472 }
473 
474 int hid_sensor_get_report_latency(struct hid_sensor_common *st)
475 {
476 	int ret;
477 	int value;
478 
479 	ret = sensor_hub_get_feature(st->hsdev, st->report_latency.report_id,
480 				     st->report_latency.index, sizeof(value),
481 				     &value);
482 	if (ret < 0)
483 		return ret;
484 
485 	return value;
486 }
487 EXPORT_SYMBOL(hid_sensor_get_report_latency);
488 
489 int hid_sensor_set_report_latency(struct hid_sensor_common *st, int latency_ms)
490 {
491 	return sensor_hub_set_feature(st->hsdev, st->report_latency.report_id,
492 				      st->report_latency.index,
493 				      sizeof(latency_ms), &latency_ms);
494 }
495 EXPORT_SYMBOL(hid_sensor_set_report_latency);
496 
497 bool hid_sensor_batch_mode_supported(struct hid_sensor_common *st)
498 {
499 	return st->report_latency.index > 0 && st->report_latency.report_id > 0;
500 }
501 EXPORT_SYMBOL(hid_sensor_batch_mode_supported);
502 
503 int hid_sensor_parse_common_attributes(struct hid_sensor_hub_device *hsdev,
504 					u32 usage_id,
505 					struct hid_sensor_common *st,
506 					const u32 *sensitivity_addresses,
507 					u32 sensitivity_addresses_len)
508 {
509 
510 	struct hid_sensor_hub_attribute_info timestamp;
511 	s32 value;
512 	int ret;
513 	int i;
514 
515 	hid_sensor_get_reporting_interval(hsdev, usage_id, st);
516 
517 	sensor_hub_input_get_attribute_info(hsdev,
518 					HID_FEATURE_REPORT, usage_id,
519 					HID_USAGE_SENSOR_PROP_REPORT_STATE,
520 					&st->report_state);
521 
522 	sensor_hub_input_get_attribute_info(hsdev,
523 					HID_FEATURE_REPORT, usage_id,
524 					HID_USAGE_SENSOR_PROY_POWER_STATE,
525 					&st->power_state);
526 
527 	st->power_state.logical_minimum = 1;
528 	st->report_state.logical_minimum = 1;
529 
530 	sensor_hub_input_get_attribute_info(hsdev,
531 			HID_FEATURE_REPORT, usage_id,
532 			HID_USAGE_SENSOR_PROP_SENSITIVITY_ABS,
533 			 &st->sensitivity);
534 
535 	sensor_hub_input_get_attribute_info(hsdev,
536 			HID_FEATURE_REPORT, usage_id,
537 			HID_USAGE_SENSOR_PROP_SENSITIVITY_REL_PCT,
538 			&st->sensitivity_rel);
539 	/*
540 	 * Set Sensitivity field ids, when there is no individual modifier, will
541 	 * check absolute sensitivity and relative sensitivity of data field
542 	 */
543 	for (i = 0; i < sensitivity_addresses_len; i++) {
544 		if (st->sensitivity.index < 0)
545 			sensor_hub_input_get_attribute_info(
546 				hsdev, HID_FEATURE_REPORT, usage_id,
547 				HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS |
548 					sensitivity_addresses[i],
549 				&st->sensitivity);
550 
551 		if (st->sensitivity_rel.index < 0)
552 			sensor_hub_input_get_attribute_info(
553 				hsdev, HID_FEATURE_REPORT, usage_id,
554 				HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_REL_PCT |
555 					sensitivity_addresses[i],
556 				&st->sensitivity_rel);
557 	}
558 
559 	st->raw_hystersis = -1;
560 
561 	sensor_hub_input_get_attribute_info(hsdev,
562 					    HID_INPUT_REPORT, usage_id,
563 					    HID_USAGE_SENSOR_TIME_TIMESTAMP,
564 					    &timestamp);
565 	if (timestamp.index >= 0 && timestamp.report_id) {
566 		int val0, val1;
567 
568 		hid_sensor_format_scale(HID_USAGE_SENSOR_TIME_TIMESTAMP,
569 					&timestamp, &val0, &val1);
570 		st->timestamp_ns_scale = val0;
571 	} else
572 		st->timestamp_ns_scale = 1000000000;
573 
574 	hid_sensor_get_report_latency_info(hsdev, usage_id, st);
575 
576 	hid_dbg(hsdev->hdev, "common attributes: %x:%x, %x:%x, %x:%x %x:%x %x:%x\n",
577 		st->poll.index, st->poll.report_id,
578 		st->report_state.index, st->report_state.report_id,
579 		st->power_state.index, st->power_state.report_id,
580 		st->sensitivity.index, st->sensitivity.report_id,
581 		timestamp.index, timestamp.report_id);
582 
583 	ret = sensor_hub_get_feature(hsdev,
584 				st->power_state.report_id,
585 				st->power_state.index, sizeof(value), &value);
586 	if (ret < 0)
587 		return ret;
588 	if (value < 0)
589 		return -EINVAL;
590 
591 	return 0;
592 }
593 EXPORT_SYMBOL(hid_sensor_parse_common_attributes);
594 
595 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@intel.com>");
596 MODULE_DESCRIPTION("HID Sensor common attribute processing");
597 MODULE_LICENSE("GPL");
598