1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * HID Sensors Driver
4  * Copyright (c) 2012, Intel Corporation.
5  */
6 #include <linux/device.h>
7 #include <linux/platform_device.h>
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/irq.h>
11 #include <linux/slab.h>
12 #include <linux/hid-sensor-hub.h>
13 #include <linux/iio/iio.h>
14 #include <linux/iio/sysfs.h>
15 
16 static struct {
17 	u32 usage_id;
18 	int unit; /* 0 for default others from HID sensor spec */
19 	int scale_val0; /* scale, whole number */
20 	int scale_val1; /* scale, fraction in nanos */
21 } unit_conversion[] = {
22 	{HID_USAGE_SENSOR_ACCEL_3D, 0, 9, 806650000},
23 	{HID_USAGE_SENSOR_ACCEL_3D,
24 		HID_USAGE_SENSOR_UNITS_METERS_PER_SEC_SQRD, 1, 0},
25 	{HID_USAGE_SENSOR_ACCEL_3D,
26 		HID_USAGE_SENSOR_UNITS_G, 9, 806650000},
27 
28 	{HID_USAGE_SENSOR_GRAVITY_VECTOR, 0, 9, 806650000},
29 	{HID_USAGE_SENSOR_GRAVITY_VECTOR,
30 		HID_USAGE_SENSOR_UNITS_METERS_PER_SEC_SQRD, 1, 0},
31 	{HID_USAGE_SENSOR_GRAVITY_VECTOR,
32 		HID_USAGE_SENSOR_UNITS_G, 9, 806650000},
33 
34 	{HID_USAGE_SENSOR_GYRO_3D, 0, 0, 17453293},
35 	{HID_USAGE_SENSOR_GYRO_3D,
36 		HID_USAGE_SENSOR_UNITS_RADIANS_PER_SECOND, 1, 0},
37 	{HID_USAGE_SENSOR_GYRO_3D,
38 		HID_USAGE_SENSOR_UNITS_DEGREES_PER_SECOND, 0, 17453293},
39 
40 	{HID_USAGE_SENSOR_COMPASS_3D, 0, 0, 1000000},
41 	{HID_USAGE_SENSOR_COMPASS_3D, HID_USAGE_SENSOR_UNITS_GAUSS, 1, 0},
42 
43 	{HID_USAGE_SENSOR_INCLINOMETER_3D, 0, 0, 17453293},
44 	{HID_USAGE_SENSOR_INCLINOMETER_3D,
45 		HID_USAGE_SENSOR_UNITS_DEGREES, 0, 17453293},
46 	{HID_USAGE_SENSOR_INCLINOMETER_3D,
47 		HID_USAGE_SENSOR_UNITS_RADIANS, 1, 0},
48 
49 	{HID_USAGE_SENSOR_ALS, 0, 1, 0},
50 	{HID_USAGE_SENSOR_ALS, HID_USAGE_SENSOR_UNITS_LUX, 1, 0},
51 
52 	{HID_USAGE_SENSOR_PRESSURE, 0, 100, 0},
53 	{HID_USAGE_SENSOR_PRESSURE, HID_USAGE_SENSOR_UNITS_PASCAL, 0, 1000000},
54 
55 	{HID_USAGE_SENSOR_TIME_TIMESTAMP, 0, 1000000000, 0},
56 	{HID_USAGE_SENSOR_TIME_TIMESTAMP, HID_USAGE_SENSOR_UNITS_MILLISECOND,
57 		1000000, 0},
58 
59 	{HID_USAGE_SENSOR_DEVICE_ORIENTATION, 0, 1, 0},
60 
61 	{HID_USAGE_SENSOR_RELATIVE_ORIENTATION, 0, 1, 0},
62 
63 	{HID_USAGE_SENSOR_GEOMAGNETIC_ORIENTATION, 0, 1, 0},
64 
65 	{HID_USAGE_SENSOR_TEMPERATURE, 0, 1000, 0},
66 	{HID_USAGE_SENSOR_TEMPERATURE, HID_USAGE_SENSOR_UNITS_DEGREES, 1000, 0},
67 
68 	{HID_USAGE_SENSOR_HUMIDITY, 0, 1000, 0},
69 };
70 
71 static int pow_10(unsigned power)
72 {
73 	int i;
74 	int ret = 1;
75 	for (i = 0; i < power; ++i)
76 		ret = ret * 10;
77 
78 	return ret;
79 }
80 
81 static void simple_div(int dividend, int divisor, int *whole,
82 				int *micro_frac)
83 {
84 	int rem;
85 	int exp = 0;
86 
87 	*micro_frac = 0;
88 	if (divisor == 0) {
89 		*whole = 0;
90 		return;
91 	}
92 	*whole = dividend/divisor;
93 	rem = dividend % divisor;
94 	if (rem) {
95 		while (rem <= divisor) {
96 			rem *= 10;
97 			exp++;
98 		}
99 		*micro_frac = (rem / divisor) * pow_10(6-exp);
100 	}
101 }
102 
103 static void split_micro_fraction(unsigned int no, int exp, int *val1, int *val2)
104 {
105 	*val1 = no/pow_10(exp);
106 	*val2 = no%pow_10(exp) * pow_10(6-exp);
107 }
108 
109 /*
110 VTF format uses exponent and variable size format.
111 For example if the size is 2 bytes
112 0x0067 with VTF16E14 format -> +1.03
113 To convert just change to 0x67 to decimal and use two decimal as E14 stands
114 for 10^-2.
115 Negative numbers are 2's complement
116 */
117 static void convert_from_vtf_format(u32 value, int size, int exp,
118 					int *val1, int *val2)
119 {
120 	int sign = 1;
121 
122 	if (value & BIT(size*8 - 1)) {
123 		value =  ((1LL << (size * 8)) - value);
124 		sign = -1;
125 	}
126 	exp = hid_sensor_convert_exponent(exp);
127 	if (exp >= 0) {
128 		*val1 = sign * value * pow_10(exp);
129 		*val2 = 0;
130 	} else {
131 		split_micro_fraction(value, -exp, val1, val2);
132 		if (*val1)
133 			*val1 = sign * (*val1);
134 		else
135 			*val2 = sign * (*val2);
136 	}
137 }
138 
139 static u32 convert_to_vtf_format(int size, int exp, int val1, int val2)
140 {
141 	u32 value;
142 	int sign = 1;
143 
144 	if (val1 < 0 || val2 < 0)
145 		sign = -1;
146 	exp = hid_sensor_convert_exponent(exp);
147 	if (exp < 0) {
148 		value = abs(val1) * pow_10(-exp);
149 		value += abs(val2) / pow_10(6+exp);
150 	} else
151 		value = abs(val1) / pow_10(exp);
152 	if (sign < 0)
153 		value =  ((1LL << (size * 8)) - value);
154 
155 	return value;
156 }
157 
158 s32 hid_sensor_read_poll_value(struct hid_sensor_common *st)
159 {
160 	s32 value = 0;
161 	int ret;
162 
163 	ret = sensor_hub_get_feature(st->hsdev,
164 				     st->poll.report_id,
165 				     st->poll.index, sizeof(value), &value);
166 
167 	if (ret < 0 || value < 0) {
168 		return -EINVAL;
169 	} else {
170 		if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND)
171 			value = value * 1000;
172 	}
173 
174 	return value;
175 }
176 EXPORT_SYMBOL(hid_sensor_read_poll_value);
177 
178 int hid_sensor_read_samp_freq_value(struct hid_sensor_common *st,
179 				int *val1, int *val2)
180 {
181 	s32 value;
182 	int ret;
183 
184 	ret = sensor_hub_get_feature(st->hsdev,
185 				     st->poll.report_id,
186 				     st->poll.index, sizeof(value), &value);
187 	if (ret < 0 || value < 0) {
188 		*val1 = *val2 = 0;
189 		return -EINVAL;
190 	} else {
191 		if (st->poll.units == HID_USAGE_SENSOR_UNITS_MILLISECOND)
192 			simple_div(1000, value, val1, val2);
193 		else if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND)
194 			simple_div(1, value, val1, val2);
195 		else {
196 			*val1 = *val2 = 0;
197 			return -EINVAL;
198 		}
199 	}
200 
201 	return IIO_VAL_INT_PLUS_MICRO;
202 }
203 EXPORT_SYMBOL(hid_sensor_read_samp_freq_value);
204 
205 int hid_sensor_write_samp_freq_value(struct hid_sensor_common *st,
206 				int val1, int val2)
207 {
208 	s32 value;
209 	int ret;
210 
211 	if (val1 < 0 || val2 < 0)
212 		return -EINVAL;
213 
214 	value = val1 * pow_10(6) + val2;
215 	if (value) {
216 		if (st->poll.units == HID_USAGE_SENSOR_UNITS_MILLISECOND)
217 			value = pow_10(9)/value;
218 		else if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND)
219 			value = pow_10(6)/value;
220 		else
221 			value = 0;
222 	}
223 	ret = sensor_hub_set_feature(st->hsdev, st->poll.report_id,
224 				     st->poll.index, sizeof(value), &value);
225 	if (ret < 0 || value < 0)
226 		return -EINVAL;
227 
228 	ret = sensor_hub_get_feature(st->hsdev,
229 				     st->poll.report_id,
230 				     st->poll.index, sizeof(value), &value);
231 	if (ret < 0 || value < 0)
232 		return -EINVAL;
233 
234 	st->poll_interval = value;
235 
236 	return 0;
237 }
238 EXPORT_SYMBOL(hid_sensor_write_samp_freq_value);
239 
240 int hid_sensor_read_raw_hyst_value(struct hid_sensor_common *st,
241 				int *val1, int *val2)
242 {
243 	s32 value;
244 	int ret;
245 
246 	ret = sensor_hub_get_feature(st->hsdev,
247 				     st->sensitivity.report_id,
248 				     st->sensitivity.index, sizeof(value),
249 				     &value);
250 	if (ret < 0 || value < 0) {
251 		*val1 = *val2 = 0;
252 		return -EINVAL;
253 	} else {
254 		convert_from_vtf_format(value, st->sensitivity.size,
255 					st->sensitivity.unit_expo,
256 					val1, val2);
257 	}
258 
259 	return IIO_VAL_INT_PLUS_MICRO;
260 }
261 EXPORT_SYMBOL(hid_sensor_read_raw_hyst_value);
262 
263 int hid_sensor_write_raw_hyst_value(struct hid_sensor_common *st,
264 					int val1, int val2)
265 {
266 	s32 value;
267 	int ret;
268 
269 	if (val1 < 0 || val2 < 0)
270 		return -EINVAL;
271 
272 	value = convert_to_vtf_format(st->sensitivity.size,
273 				st->sensitivity.unit_expo,
274 				val1, val2);
275 	ret = sensor_hub_set_feature(st->hsdev, st->sensitivity.report_id,
276 				     st->sensitivity.index, sizeof(value),
277 				     &value);
278 	if (ret < 0 || value < 0)
279 		return -EINVAL;
280 
281 	ret = sensor_hub_get_feature(st->hsdev,
282 				     st->sensitivity.report_id,
283 				     st->sensitivity.index, sizeof(value),
284 				     &value);
285 	if (ret < 0 || value < 0)
286 		return -EINVAL;
287 
288 	st->raw_hystersis = value;
289 
290 	return 0;
291 }
292 EXPORT_SYMBOL(hid_sensor_write_raw_hyst_value);
293 
294 /*
295  * This fuction applies the unit exponent to the scale.
296  * For example:
297  * 9.806650000 ->exp:2-> val0[980]val1[665000000]
298  * 9.000806000 ->exp:2-> val0[900]val1[80600000]
299  * 0.174535293 ->exp:2-> val0[17]val1[453529300]
300  * 1.001745329 ->exp:0-> val0[1]val1[1745329]
301  * 1.001745329 ->exp:2-> val0[100]val1[174532900]
302  * 1.001745329 ->exp:4-> val0[10017]val1[453290000]
303  * 9.806650000 ->exp:-2-> val0[0]val1[98066500]
304  */
305 static void adjust_exponent_nano(int *val0, int *val1, int scale0,
306 				  int scale1, int exp)
307 {
308 	int i;
309 	int x;
310 	int res;
311 	int rem;
312 
313 	if (exp > 0) {
314 		*val0 = scale0 * pow_10(exp);
315 		res = 0;
316 		if (exp > 9) {
317 			*val1 = 0;
318 			return;
319 		}
320 		for (i = 0; i < exp; ++i) {
321 			x = scale1 / pow_10(8 - i);
322 			res += (pow_10(exp - 1 - i) * x);
323 			scale1 = scale1 % pow_10(8 - i);
324 		}
325 		*val0 += res;
326 		*val1 = scale1 * pow_10(exp);
327 	} else if (exp < 0) {
328 		exp = abs(exp);
329 		if (exp > 9) {
330 			*val0 = *val1 = 0;
331 			return;
332 		}
333 		*val0 = scale0 / pow_10(exp);
334 		rem = scale0 % pow_10(exp);
335 		res = 0;
336 		for (i = 0; i < (9 - exp); ++i) {
337 			x = scale1 / pow_10(8 - i);
338 			res += (pow_10(8 - exp - i) * x);
339 			scale1 = scale1 % pow_10(8 - i);
340 		}
341 		*val1 = rem * pow_10(9 - exp) + res;
342 	} else {
343 		*val0 = scale0;
344 		*val1 = scale1;
345 	}
346 }
347 
348 int hid_sensor_format_scale(u32 usage_id,
349 			struct hid_sensor_hub_attribute_info *attr_info,
350 			int *val0, int *val1)
351 {
352 	int i;
353 	int exp;
354 
355 	*val0 = 1;
356 	*val1 = 0;
357 
358 	for (i = 0; i < ARRAY_SIZE(unit_conversion); ++i) {
359 		if (unit_conversion[i].usage_id == usage_id &&
360 			unit_conversion[i].unit == attr_info->units) {
361 			exp  = hid_sensor_convert_exponent(
362 						attr_info->unit_expo);
363 			adjust_exponent_nano(val0, val1,
364 					unit_conversion[i].scale_val0,
365 					unit_conversion[i].scale_val1, exp);
366 			break;
367 		}
368 	}
369 
370 	return IIO_VAL_INT_PLUS_NANO;
371 }
372 EXPORT_SYMBOL(hid_sensor_format_scale);
373 
374 int64_t hid_sensor_convert_timestamp(struct hid_sensor_common *st,
375 				     int64_t raw_value)
376 {
377 	return st->timestamp_ns_scale * raw_value;
378 }
379 EXPORT_SYMBOL(hid_sensor_convert_timestamp);
380 
381 static
382 int hid_sensor_get_reporting_interval(struct hid_sensor_hub_device *hsdev,
383 					u32 usage_id,
384 					struct hid_sensor_common *st)
385 {
386 	sensor_hub_input_get_attribute_info(hsdev,
387 					HID_FEATURE_REPORT, usage_id,
388 					HID_USAGE_SENSOR_PROP_REPORT_INTERVAL,
389 					&st->poll);
390 	/* Default unit of measure is milliseconds */
391 	if (st->poll.units == 0)
392 		st->poll.units = HID_USAGE_SENSOR_UNITS_MILLISECOND;
393 
394 	st->poll_interval = -1;
395 
396 	return 0;
397 
398 }
399 
400 static void hid_sensor_get_report_latency_info(struct hid_sensor_hub_device *hsdev,
401 					       u32 usage_id,
402 					       struct hid_sensor_common *st)
403 {
404 	sensor_hub_input_get_attribute_info(hsdev, HID_FEATURE_REPORT,
405 					    usage_id,
406 					    HID_USAGE_SENSOR_PROP_REPORT_LATENCY,
407 					    &st->report_latency);
408 
409 	hid_dbg(hsdev->hdev, "Report latency attributes: %x:%x\n",
410 		st->report_latency.index, st->report_latency.report_id);
411 }
412 
413 int hid_sensor_get_report_latency(struct hid_sensor_common *st)
414 {
415 	int ret;
416 	int value;
417 
418 	ret = sensor_hub_get_feature(st->hsdev, st->report_latency.report_id,
419 				     st->report_latency.index, sizeof(value),
420 				     &value);
421 	if (ret < 0)
422 		return ret;
423 
424 	return value;
425 }
426 EXPORT_SYMBOL(hid_sensor_get_report_latency);
427 
428 int hid_sensor_set_report_latency(struct hid_sensor_common *st, int latency_ms)
429 {
430 	return sensor_hub_set_feature(st->hsdev, st->report_latency.report_id,
431 				      st->report_latency.index,
432 				      sizeof(latency_ms), &latency_ms);
433 }
434 EXPORT_SYMBOL(hid_sensor_set_report_latency);
435 
436 bool hid_sensor_batch_mode_supported(struct hid_sensor_common *st)
437 {
438 	return st->report_latency.index > 0 && st->report_latency.report_id > 0;
439 }
440 EXPORT_SYMBOL(hid_sensor_batch_mode_supported);
441 
442 int hid_sensor_parse_common_attributes(struct hid_sensor_hub_device *hsdev,
443 					u32 usage_id,
444 					struct hid_sensor_common *st)
445 {
446 
447 	struct hid_sensor_hub_attribute_info timestamp;
448 	s32 value;
449 	int ret;
450 
451 	hid_sensor_get_reporting_interval(hsdev, usage_id, st);
452 
453 	sensor_hub_input_get_attribute_info(hsdev,
454 					HID_FEATURE_REPORT, usage_id,
455 					HID_USAGE_SENSOR_PROP_REPORT_STATE,
456 					&st->report_state);
457 
458 	sensor_hub_input_get_attribute_info(hsdev,
459 					HID_FEATURE_REPORT, usage_id,
460 					HID_USAGE_SENSOR_PROY_POWER_STATE,
461 					&st->power_state);
462 
463 	st->power_state.logical_minimum = 1;
464 	st->report_state.logical_minimum = 1;
465 
466 	sensor_hub_input_get_attribute_info(hsdev,
467 			HID_FEATURE_REPORT, usage_id,
468 			HID_USAGE_SENSOR_PROP_SENSITIVITY_ABS,
469 			 &st->sensitivity);
470 
471 	st->raw_hystersis = -1;
472 
473 	sensor_hub_input_get_attribute_info(hsdev,
474 					    HID_INPUT_REPORT, usage_id,
475 					    HID_USAGE_SENSOR_TIME_TIMESTAMP,
476 					    &timestamp);
477 	if (timestamp.index >= 0 && timestamp.report_id) {
478 		int val0, val1;
479 
480 		hid_sensor_format_scale(HID_USAGE_SENSOR_TIME_TIMESTAMP,
481 					&timestamp, &val0, &val1);
482 		st->timestamp_ns_scale = val0;
483 	} else
484 		st->timestamp_ns_scale = 1000000000;
485 
486 	hid_sensor_get_report_latency_info(hsdev, usage_id, st);
487 
488 	hid_dbg(hsdev->hdev, "common attributes: %x:%x, %x:%x, %x:%x %x:%x %x:%x\n",
489 		st->poll.index, st->poll.report_id,
490 		st->report_state.index, st->report_state.report_id,
491 		st->power_state.index, st->power_state.report_id,
492 		st->sensitivity.index, st->sensitivity.report_id,
493 		timestamp.index, timestamp.report_id);
494 
495 	ret = sensor_hub_get_feature(hsdev,
496 				st->power_state.report_id,
497 				st->power_state.index, sizeof(value), &value);
498 	if (ret < 0)
499 		return ret;
500 	if (value < 0)
501 		return -EINVAL;
502 
503 	return 0;
504 }
505 EXPORT_SYMBOL(hid_sensor_parse_common_attributes);
506 
507 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@intel.com>");
508 MODULE_DESCRIPTION("HID Sensor common attribute processing");
509 MODULE_LICENSE("GPL");
510