1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cros_ec_sensors_core - Common function for Chrome OS EC sensor driver.
4  *
5  * Copyright (C) 2016 Google, Inc
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/device.h>
10 #include <linux/iio/buffer.h>
11 #include <linux/iio/common/cros_ec_sensors_core.h>
12 #include <linux/iio/iio.h>
13 #include <linux/iio/kfifo_buf.h>
14 #include <linux/iio/sysfs.h>
15 #include <linux/iio/trigger_consumer.h>
16 #include <linux/iio/triggered_buffer.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/platform_data/cros_ec_commands.h>
21 #include <linux/platform_data/cros_ec_proto.h>
22 #include <linux/platform_data/cros_ec_sensorhub.h>
23 #include <linux/platform_device.h>
24 
25 /*
26  * Hard coded to the first device to support sensor fifo.  The EC has a 2048
27  * byte fifo and will trigger an interrupt when fifo is 2/3 full.
28  */
29 #define CROS_EC_FIFO_SIZE (2048 * 2 / 3)
30 
31 static char *cros_ec_loc[] = {
32 	[MOTIONSENSE_LOC_BASE] = "base",
33 	[MOTIONSENSE_LOC_LID] = "lid",
34 	[MOTIONSENSE_LOC_MAX] = "unknown",
35 };
36 
37 static int cros_ec_get_host_cmd_version_mask(struct cros_ec_device *ec_dev,
38 					     u16 cmd_offset, u16 cmd, u32 *mask)
39 {
40 	int ret;
41 	struct {
42 		struct cros_ec_command msg;
43 		union {
44 			struct ec_params_get_cmd_versions params;
45 			struct ec_response_get_cmd_versions resp;
46 		};
47 	} __packed buf = {
48 		.msg = {
49 			.command = EC_CMD_GET_CMD_VERSIONS + cmd_offset,
50 			.insize = sizeof(struct ec_response_get_cmd_versions),
51 			.outsize = sizeof(struct ec_params_get_cmd_versions)
52 			},
53 		.params = {.cmd = cmd}
54 	};
55 
56 	ret = cros_ec_cmd_xfer_status(ec_dev, &buf.msg);
57 	if (ret >= 0)
58 		*mask = buf.resp.version_mask;
59 	return ret;
60 }
61 
62 static void get_default_min_max_freq(enum motionsensor_type type,
63 				     u32 *min_freq,
64 				     u32 *max_freq,
65 				     u32 *max_fifo_events)
66 {
67 	/*
68 	 * We don't know fifo size, set to size previously used by older
69 	 * hardware.
70 	 */
71 	*max_fifo_events = CROS_EC_FIFO_SIZE;
72 
73 	switch (type) {
74 	case MOTIONSENSE_TYPE_ACCEL:
75 		*min_freq = 12500;
76 		*max_freq = 100000;
77 		break;
78 	case MOTIONSENSE_TYPE_GYRO:
79 		*min_freq = 25000;
80 		*max_freq = 100000;
81 		break;
82 	case MOTIONSENSE_TYPE_MAG:
83 		*min_freq = 5000;
84 		*max_freq = 25000;
85 		break;
86 	case MOTIONSENSE_TYPE_PROX:
87 	case MOTIONSENSE_TYPE_LIGHT:
88 		*min_freq = 100;
89 		*max_freq = 50000;
90 		break;
91 	case MOTIONSENSE_TYPE_BARO:
92 		*min_freq = 250;
93 		*max_freq = 20000;
94 		break;
95 	case MOTIONSENSE_TYPE_ACTIVITY:
96 	default:
97 		*min_freq = 0;
98 		*max_freq = 0;
99 		break;
100 	}
101 }
102 
103 static int cros_ec_sensor_set_ec_rate(struct cros_ec_sensors_core_state *st,
104 				      int rate)
105 {
106 	int ret;
107 
108 	if (rate > U16_MAX)
109 		rate = U16_MAX;
110 
111 	mutex_lock(&st->cmd_lock);
112 	st->param.cmd = MOTIONSENSE_CMD_EC_RATE;
113 	st->param.ec_rate.data = rate;
114 	ret = cros_ec_motion_send_host_cmd(st, 0);
115 	mutex_unlock(&st->cmd_lock);
116 	return ret;
117 }
118 
119 static ssize_t cros_ec_sensor_set_report_latency(struct device *dev,
120 						 struct device_attribute *attr,
121 						 const char *buf, size_t len)
122 {
123 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
124 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
125 	int integer, fract, ret;
126 	int latency;
127 
128 	ret = iio_str_to_fixpoint(buf, 100000, &integer, &fract);
129 	if (ret)
130 		return ret;
131 
132 	/* EC rate is in ms. */
133 	latency = integer * 1000 + fract / 1000;
134 	ret = cros_ec_sensor_set_ec_rate(st, latency);
135 	if (ret < 0)
136 		return ret;
137 
138 	return len;
139 }
140 
141 static ssize_t cros_ec_sensor_get_report_latency(struct device *dev,
142 						 struct device_attribute *attr,
143 						 char *buf)
144 {
145 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
146 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
147 	int latency, ret;
148 
149 	mutex_lock(&st->cmd_lock);
150 	st->param.cmd = MOTIONSENSE_CMD_EC_RATE;
151 	st->param.ec_rate.data = EC_MOTION_SENSE_NO_VALUE;
152 
153 	ret = cros_ec_motion_send_host_cmd(st, 0);
154 	latency = st->resp->ec_rate.ret;
155 	mutex_unlock(&st->cmd_lock);
156 	if (ret < 0)
157 		return ret;
158 
159 	return sprintf(buf, "%d.%06u\n",
160 		       latency / 1000,
161 		       (latency % 1000) * 1000);
162 }
163 
164 static IIO_DEVICE_ATTR(hwfifo_timeout, 0644,
165 		       cros_ec_sensor_get_report_latency,
166 		       cros_ec_sensor_set_report_latency, 0);
167 
168 static ssize_t hwfifo_watermark_max_show(struct device *dev,
169 					 struct device_attribute *attr,
170 					 char *buf)
171 {
172 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
173 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
174 
175 	return sprintf(buf, "%d\n", st->fifo_max_event_count);
176 }
177 
178 static IIO_DEVICE_ATTR_RO(hwfifo_watermark_max, 0);
179 
180 const struct attribute *cros_ec_sensor_fifo_attributes[] = {
181 	&iio_dev_attr_hwfifo_timeout.dev_attr.attr,
182 	&iio_dev_attr_hwfifo_watermark_max.dev_attr.attr,
183 	NULL,
184 };
185 EXPORT_SYMBOL_GPL(cros_ec_sensor_fifo_attributes);
186 
187 int cros_ec_sensors_push_data(struct iio_dev *indio_dev,
188 			      s16 *data,
189 			      s64 timestamp)
190 {
191 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
192 	s16 *out;
193 	s64 delta;
194 	unsigned int i;
195 
196 	/*
197 	 * Ignore samples if the buffer is not set: it is needed if the ODR is
198 	 * set but the buffer is not enabled yet.
199 	 */
200 	if (!iio_buffer_enabled(indio_dev))
201 		return 0;
202 
203 	out = (s16 *)st->samples;
204 	for_each_set_bit(i,
205 			 indio_dev->active_scan_mask,
206 			 indio_dev->masklength) {
207 		*out = data[i];
208 		out++;
209 	}
210 
211 	if (iio_device_get_clock(indio_dev) != CLOCK_BOOTTIME)
212 		delta = iio_get_time_ns(indio_dev) - cros_ec_get_time_ns();
213 	else
214 		delta = 0;
215 
216 	iio_push_to_buffers_with_timestamp(indio_dev, st->samples,
217 					   timestamp + delta);
218 
219 	return 0;
220 }
221 EXPORT_SYMBOL_GPL(cros_ec_sensors_push_data);
222 
223 static void cros_ec_sensors_core_clean(void *arg)
224 {
225 	struct platform_device *pdev = (struct platform_device *)arg;
226 	struct cros_ec_sensorhub *sensor_hub =
227 		dev_get_drvdata(pdev->dev.parent);
228 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
229 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
230 	u8 sensor_num = st->param.info.sensor_num;
231 
232 	cros_ec_sensorhub_unregister_push_data(sensor_hub, sensor_num);
233 }
234 
235 /**
236  * cros_ec_sensors_core_init() - basic initialization of the core structure
237  * @pdev:		platform device created for the sensors
238  * @indio_dev:		iio device structure of the device
239  * @physical_device:	true if the device refers to a physical device
240  * @trigger_capture:    function pointer to call buffer is triggered,
241  *    for backward compatibility.
242  * @push_data:          function to call when cros_ec_sensorhub receives
243  *    a sample for that sensor.
244  *
245  * Return: 0 on success, -errno on failure.
246  */
247 int cros_ec_sensors_core_init(struct platform_device *pdev,
248 			      struct iio_dev *indio_dev,
249 			      bool physical_device,
250 			      cros_ec_sensors_capture_t trigger_capture,
251 			      cros_ec_sensorhub_push_data_cb_t push_data)
252 {
253 	struct device *dev = &pdev->dev;
254 	struct cros_ec_sensors_core_state *state = iio_priv(indio_dev);
255 	struct cros_ec_sensorhub *sensor_hub = dev_get_drvdata(dev->parent);
256 	struct cros_ec_dev *ec = sensor_hub->ec;
257 	struct cros_ec_sensor_platform *sensor_platform = dev_get_platdata(dev);
258 	u32 ver_mask;
259 	int frequencies[ARRAY_SIZE(state->frequencies) / 2] = { 0 };
260 	int ret, i;
261 
262 	platform_set_drvdata(pdev, indio_dev);
263 
264 	state->ec = ec->ec_dev;
265 	state->msg = devm_kzalloc(&pdev->dev,
266 				max((u16)sizeof(struct ec_params_motion_sense),
267 				state->ec->max_response), GFP_KERNEL);
268 	if (!state->msg)
269 		return -ENOMEM;
270 
271 	state->resp = (struct ec_response_motion_sense *)state->msg->data;
272 
273 	mutex_init(&state->cmd_lock);
274 
275 	ret = cros_ec_get_host_cmd_version_mask(state->ec,
276 						ec->cmd_offset,
277 						EC_CMD_MOTION_SENSE_CMD,
278 						&ver_mask);
279 	if (ret < 0)
280 		return ret;
281 
282 	/* Set up the host command structure. */
283 	state->msg->version = fls(ver_mask) - 1;
284 	state->msg->command = EC_CMD_MOTION_SENSE_CMD + ec->cmd_offset;
285 	state->msg->outsize = sizeof(struct ec_params_motion_sense);
286 
287 	indio_dev->name = pdev->name;
288 
289 	if (physical_device) {
290 		state->param.cmd = MOTIONSENSE_CMD_INFO;
291 		state->param.info.sensor_num = sensor_platform->sensor_num;
292 		ret = cros_ec_motion_send_host_cmd(state, 0);
293 		if (ret) {
294 			dev_warn(dev, "Can not access sensor info\n");
295 			return ret;
296 		}
297 		state->type = state->resp->info.type;
298 		state->loc = state->resp->info.location;
299 
300 		/* Set sign vector, only used for backward compatibility. */
301 		memset(state->sign, 1, CROS_EC_SENSOR_MAX_AXIS);
302 
303 		for (i = CROS_EC_SENSOR_X; i < CROS_EC_SENSOR_MAX_AXIS; i++)
304 			state->calib[i].scale = MOTION_SENSE_DEFAULT_SCALE;
305 
306 		/* 0 is a correct value used to stop the device */
307 		if (state->msg->version < 3) {
308 			get_default_min_max_freq(state->resp->info.type,
309 						 &frequencies[1],
310 						 &frequencies[2],
311 						 &state->fifo_max_event_count);
312 		} else {
313 			frequencies[1] = state->resp->info_3.min_frequency;
314 			frequencies[2] = state->resp->info_3.max_frequency;
315 			state->fifo_max_event_count =
316 			    state->resp->info_3.fifo_max_event_count;
317 		}
318 		for (i = 0; i < ARRAY_SIZE(frequencies); i++) {
319 			state->frequencies[2 * i] = frequencies[i] / 1000;
320 			state->frequencies[2 * i + 1] =
321 				(frequencies[i] % 1000) * 1000;
322 		}
323 
324 		if (cros_ec_check_features(ec, EC_FEATURE_MOTION_SENSE_FIFO)) {
325 			/*
326 			 * Create a software buffer, feed by the EC FIFO.
327 			 * We can not use trigger here, as events are generated
328 			 * as soon as sample_frequency is set.
329 			 */
330 			struct iio_buffer *buffer;
331 
332 			buffer = devm_iio_kfifo_allocate(dev);
333 			if (!buffer)
334 				return -ENOMEM;
335 
336 			iio_device_attach_buffer(indio_dev, buffer);
337 			indio_dev->modes = INDIO_BUFFER_SOFTWARE;
338 
339 			ret = cros_ec_sensorhub_register_push_data(
340 					sensor_hub, sensor_platform->sensor_num,
341 					indio_dev, push_data);
342 			if (ret)
343 				return ret;
344 
345 			ret = devm_add_action_or_reset(
346 					dev, cros_ec_sensors_core_clean, pdev);
347 			if (ret)
348 				return ret;
349 
350 			/* Timestamp coming from FIFO are in ns since boot. */
351 			ret = iio_device_set_clock(indio_dev, CLOCK_BOOTTIME);
352 			if (ret)
353 				return ret;
354 		} else {
355 			/*
356 			 * The only way to get samples in buffer is to set a
357 			 * software trigger (systrig, hrtimer).
358 			 */
359 			ret = devm_iio_triggered_buffer_setup(
360 					dev, indio_dev, NULL, trigger_capture,
361 					NULL);
362 			if (ret)
363 				return ret;
364 		}
365 	}
366 
367 	return 0;
368 }
369 EXPORT_SYMBOL_GPL(cros_ec_sensors_core_init);
370 
371 /**
372  * cros_ec_motion_send_host_cmd() - send motion sense host command
373  * @state:		pointer to state information for device
374  * @opt_length:	optional length to reduce the response size, useful on the data
375  *		path. Otherwise, the maximal allowed response size is used
376  *
377  * When called, the sub-command is assumed to be set in param->cmd.
378  *
379  * Return: 0 on success, -errno on failure.
380  */
381 int cros_ec_motion_send_host_cmd(struct cros_ec_sensors_core_state *state,
382 				 u16 opt_length)
383 {
384 	int ret;
385 
386 	if (opt_length)
387 		state->msg->insize = min(opt_length, state->ec->max_response);
388 	else
389 		state->msg->insize = state->ec->max_response;
390 
391 	memcpy(state->msg->data, &state->param, sizeof(state->param));
392 
393 	ret = cros_ec_cmd_xfer_status(state->ec, state->msg);
394 	if (ret < 0)
395 		return ret;
396 
397 	if (ret &&
398 	    state->resp != (struct ec_response_motion_sense *)state->msg->data)
399 		memcpy(state->resp, state->msg->data, ret);
400 
401 	return 0;
402 }
403 EXPORT_SYMBOL_GPL(cros_ec_motion_send_host_cmd);
404 
405 static ssize_t cros_ec_sensors_calibrate(struct iio_dev *indio_dev,
406 		uintptr_t private, const struct iio_chan_spec *chan,
407 		const char *buf, size_t len)
408 {
409 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
410 	int ret, i;
411 	bool calibrate;
412 
413 	ret = strtobool(buf, &calibrate);
414 	if (ret < 0)
415 		return ret;
416 	if (!calibrate)
417 		return -EINVAL;
418 
419 	mutex_lock(&st->cmd_lock);
420 	st->param.cmd = MOTIONSENSE_CMD_PERFORM_CALIB;
421 	ret = cros_ec_motion_send_host_cmd(st, 0);
422 	if (ret != 0) {
423 		dev_warn(&indio_dev->dev, "Unable to calibrate sensor\n");
424 	} else {
425 		/* Save values */
426 		for (i = CROS_EC_SENSOR_X; i < CROS_EC_SENSOR_MAX_AXIS; i++)
427 			st->calib[i].offset = st->resp->perform_calib.offset[i];
428 	}
429 	mutex_unlock(&st->cmd_lock);
430 
431 	return ret ? ret : len;
432 }
433 
434 static ssize_t cros_ec_sensors_id(struct iio_dev *indio_dev,
435 				  uintptr_t private,
436 				  const struct iio_chan_spec *chan, char *buf)
437 {
438 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
439 
440 	return snprintf(buf, PAGE_SIZE, "%d\n", st->param.info.sensor_num);
441 }
442 
443 static ssize_t cros_ec_sensors_loc(struct iio_dev *indio_dev,
444 		uintptr_t private, const struct iio_chan_spec *chan,
445 		char *buf)
446 {
447 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
448 
449 	return snprintf(buf, PAGE_SIZE, "%s\n", cros_ec_loc[st->loc]);
450 }
451 
452 const struct iio_chan_spec_ext_info cros_ec_sensors_ext_info[] = {
453 	{
454 		.name = "calibrate",
455 		.shared = IIO_SHARED_BY_ALL,
456 		.write = cros_ec_sensors_calibrate
457 	},
458 	{
459 		.name = "id",
460 		.shared = IIO_SHARED_BY_ALL,
461 		.read = cros_ec_sensors_id
462 	},
463 	{
464 		.name = "location",
465 		.shared = IIO_SHARED_BY_ALL,
466 		.read = cros_ec_sensors_loc
467 	},
468 	{ },
469 };
470 EXPORT_SYMBOL_GPL(cros_ec_sensors_ext_info);
471 
472 /**
473  * cros_ec_sensors_idx_to_reg - convert index into offset in shared memory
474  * @st:		pointer to state information for device
475  * @idx:	sensor index (should be element of enum sensor_index)
476  *
477  * Return:	address to read at
478  */
479 static unsigned int cros_ec_sensors_idx_to_reg(
480 					struct cros_ec_sensors_core_state *st,
481 					unsigned int idx)
482 {
483 	/*
484 	 * When using LPC interface, only space for 2 Accel and one Gyro.
485 	 * First halfword of MOTIONSENSE_TYPE_ACCEL is used by angle.
486 	 */
487 	if (st->type == MOTIONSENSE_TYPE_ACCEL)
488 		return EC_MEMMAP_ACC_DATA + sizeof(u16) *
489 			(1 + idx + st->param.info.sensor_num *
490 			 CROS_EC_SENSOR_MAX_AXIS);
491 
492 	return EC_MEMMAP_GYRO_DATA + sizeof(u16) * idx;
493 }
494 
495 static int cros_ec_sensors_cmd_read_u8(struct cros_ec_device *ec,
496 				       unsigned int offset, u8 *dest)
497 {
498 	return ec->cmd_readmem(ec, offset, 1, dest);
499 }
500 
501 static int cros_ec_sensors_cmd_read_u16(struct cros_ec_device *ec,
502 					 unsigned int offset, u16 *dest)
503 {
504 	__le16 tmp;
505 	int ret = ec->cmd_readmem(ec, offset, 2, &tmp);
506 
507 	if (ret >= 0)
508 		*dest = le16_to_cpu(tmp);
509 
510 	return ret;
511 }
512 
513 /**
514  * cros_ec_sensors_read_until_not_busy() - read until is not busy
515  *
516  * @st:	pointer to state information for device
517  *
518  * Read from EC status byte until it reads not busy.
519  * Return: 8-bit status if ok, -errno on failure.
520  */
521 static int cros_ec_sensors_read_until_not_busy(
522 					struct cros_ec_sensors_core_state *st)
523 {
524 	struct cros_ec_device *ec = st->ec;
525 	u8 status;
526 	int ret, attempts = 0;
527 
528 	ret = cros_ec_sensors_cmd_read_u8(ec, EC_MEMMAP_ACC_STATUS, &status);
529 	if (ret < 0)
530 		return ret;
531 
532 	while (status & EC_MEMMAP_ACC_STATUS_BUSY_BIT) {
533 		/* Give up after enough attempts, return error. */
534 		if (attempts++ >= 50)
535 			return -EIO;
536 
537 		/* Small delay every so often. */
538 		if (attempts % 5 == 0)
539 			msleep(25);
540 
541 		ret = cros_ec_sensors_cmd_read_u8(ec, EC_MEMMAP_ACC_STATUS,
542 						  &status);
543 		if (ret < 0)
544 			return ret;
545 	}
546 
547 	return status;
548 }
549 
550 /**
551  * read_ec_sensors_data_unsafe() - read acceleration data from EC shared memory
552  * @indio_dev:	pointer to IIO device
553  * @scan_mask:	bitmap of the sensor indices to scan
554  * @data:	location to store data
555  *
556  * This is the unsafe function for reading the EC data. It does not guarantee
557  * that the EC will not modify the data as it is being read in.
558  *
559  * Return: 0 on success, -errno on failure.
560  */
561 static int cros_ec_sensors_read_data_unsafe(struct iio_dev *indio_dev,
562 			 unsigned long scan_mask, s16 *data)
563 {
564 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
565 	struct cros_ec_device *ec = st->ec;
566 	unsigned int i;
567 	int ret;
568 
569 	/* Read all sensors enabled in scan_mask. Each value is 2 bytes. */
570 	for_each_set_bit(i, &scan_mask, indio_dev->masklength) {
571 		ret = cros_ec_sensors_cmd_read_u16(ec,
572 					     cros_ec_sensors_idx_to_reg(st, i),
573 					     data);
574 		if (ret < 0)
575 			return ret;
576 
577 		*data *= st->sign[i];
578 		data++;
579 	}
580 
581 	return 0;
582 }
583 
584 /**
585  * cros_ec_sensors_read_lpc() - read acceleration data from EC shared memory.
586  * @indio_dev: pointer to IIO device.
587  * @scan_mask: bitmap of the sensor indices to scan.
588  * @data: location to store data.
589  *
590  * Note: this is the safe function for reading the EC data. It guarantees
591  * that the data sampled was not modified by the EC while being read.
592  *
593  * Return: 0 on success, -errno on failure.
594  */
595 int cros_ec_sensors_read_lpc(struct iio_dev *indio_dev,
596 			     unsigned long scan_mask, s16 *data)
597 {
598 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
599 	struct cros_ec_device *ec = st->ec;
600 	u8 samp_id = 0xff, status = 0;
601 	int ret, attempts = 0;
602 
603 	/*
604 	 * Continually read all data from EC until the status byte after
605 	 * all reads reflects that the EC is not busy and the sample id
606 	 * matches the sample id from before all reads. This guarantees
607 	 * that data read in was not modified by the EC while reading.
608 	 */
609 	while ((status & (EC_MEMMAP_ACC_STATUS_BUSY_BIT |
610 			  EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK)) != samp_id) {
611 		/* If we have tried to read too many times, return error. */
612 		if (attempts++ >= 5)
613 			return -EIO;
614 
615 		/* Read status byte until EC is not busy. */
616 		ret = cros_ec_sensors_read_until_not_busy(st);
617 		if (ret < 0)
618 			return ret;
619 
620 		/*
621 		 * Store the current sample id so that we can compare to the
622 		 * sample id after reading the data.
623 		 */
624 		samp_id = ret & EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK;
625 
626 		/* Read all EC data, format it, and store it into data. */
627 		ret = cros_ec_sensors_read_data_unsafe(indio_dev, scan_mask,
628 						       data);
629 		if (ret < 0)
630 			return ret;
631 
632 		/* Read status byte. */
633 		ret = cros_ec_sensors_cmd_read_u8(ec, EC_MEMMAP_ACC_STATUS,
634 						  &status);
635 		if (ret < 0)
636 			return ret;
637 	}
638 
639 	return 0;
640 }
641 EXPORT_SYMBOL_GPL(cros_ec_sensors_read_lpc);
642 
643 /**
644  * cros_ec_sensors_read_cmd() - retrieve data using the EC command protocol
645  * @indio_dev:	pointer to IIO device
646  * @scan_mask:	bitmap of the sensor indices to scan
647  * @data:	location to store data
648  *
649  * Return: 0 on success, -errno on failure.
650  */
651 int cros_ec_sensors_read_cmd(struct iio_dev *indio_dev,
652 			     unsigned long scan_mask, s16 *data)
653 {
654 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
655 	int ret;
656 	unsigned int i;
657 
658 	/* Read all sensor data through a command. */
659 	st->param.cmd = MOTIONSENSE_CMD_DATA;
660 	ret = cros_ec_motion_send_host_cmd(st, sizeof(st->resp->data));
661 	if (ret != 0) {
662 		dev_warn(&indio_dev->dev, "Unable to read sensor data\n");
663 		return ret;
664 	}
665 
666 	for_each_set_bit(i, &scan_mask, indio_dev->masklength) {
667 		*data = st->resp->data.data[i];
668 		data++;
669 	}
670 
671 	return 0;
672 }
673 EXPORT_SYMBOL_GPL(cros_ec_sensors_read_cmd);
674 
675 /**
676  * cros_ec_sensors_capture() - the trigger handler function
677  * @irq:	the interrupt number.
678  * @p:		a pointer to the poll function.
679  *
680  * On a trigger event occurring, if the pollfunc is attached then this
681  * handler is called as a threaded interrupt (and hence may sleep). It
682  * is responsible for grabbing data from the device and pushing it into
683  * the associated buffer.
684  *
685  * Return: IRQ_HANDLED
686  */
687 irqreturn_t cros_ec_sensors_capture(int irq, void *p)
688 {
689 	struct iio_poll_func *pf = p;
690 	struct iio_dev *indio_dev = pf->indio_dev;
691 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
692 	int ret;
693 
694 	mutex_lock(&st->cmd_lock);
695 
696 	/* Clear capture data. */
697 	memset(st->samples, 0, indio_dev->scan_bytes);
698 
699 	/* Read data based on which channels are enabled in scan mask. */
700 	ret = st->read_ec_sensors_data(indio_dev,
701 				       *(indio_dev->active_scan_mask),
702 				       (s16 *)st->samples);
703 	if (ret < 0)
704 		goto done;
705 
706 	iio_push_to_buffers_with_timestamp(indio_dev, st->samples,
707 					   iio_get_time_ns(indio_dev));
708 
709 done:
710 	/*
711 	 * Tell the core we are done with this trigger and ready for the
712 	 * next one.
713 	 */
714 	iio_trigger_notify_done(indio_dev->trig);
715 
716 	mutex_unlock(&st->cmd_lock);
717 
718 	return IRQ_HANDLED;
719 }
720 EXPORT_SYMBOL_GPL(cros_ec_sensors_capture);
721 
722 /**
723  * cros_ec_sensors_core_read() - function to request a value from the sensor
724  * @st:		pointer to state information for device
725  * @chan:	channel specification structure table
726  * @val:	will contain one element making up the returned value
727  * @val2:	will contain another element making up the returned value
728  * @mask:	specifies which values to be requested
729  *
730  * Return:	the type of value returned by the device
731  */
732 int cros_ec_sensors_core_read(struct cros_ec_sensors_core_state *st,
733 			  struct iio_chan_spec const *chan,
734 			  int *val, int *val2, long mask)
735 {
736 	int ret, frequency;
737 
738 	switch (mask) {
739 	case IIO_CHAN_INFO_SAMP_FREQ:
740 		st->param.cmd = MOTIONSENSE_CMD_SENSOR_ODR;
741 		st->param.sensor_odr.data =
742 			EC_MOTION_SENSE_NO_VALUE;
743 
744 		ret = cros_ec_motion_send_host_cmd(st, 0);
745 		if (ret)
746 			break;
747 
748 		frequency = st->resp->sensor_odr.ret;
749 		*val = frequency / 1000;
750 		*val2 = (frequency % 1000) * 1000;
751 		ret = IIO_VAL_INT_PLUS_MICRO;
752 		break;
753 	default:
754 		ret = -EINVAL;
755 		break;
756 	}
757 
758 	return ret;
759 }
760 EXPORT_SYMBOL_GPL(cros_ec_sensors_core_read);
761 
762 /**
763  * cros_ec_sensors_core_read_avail() - get available values
764  * @indio_dev:		pointer to state information for device
765  * @chan:	channel specification structure table
766  * @vals:	list of available values
767  * @type:	type of data returned
768  * @length:	number of data returned in the array
769  * @mask:	specifies which values to be requested
770  *
771  * Return:	an error code, IIO_AVAIL_RANGE or IIO_AVAIL_LIST
772  */
773 int cros_ec_sensors_core_read_avail(struct iio_dev *indio_dev,
774 				    struct iio_chan_spec const *chan,
775 				    const int **vals,
776 				    int *type,
777 				    int *length,
778 				    long mask)
779 {
780 	struct cros_ec_sensors_core_state *state = iio_priv(indio_dev);
781 
782 	switch (mask) {
783 	case IIO_CHAN_INFO_SAMP_FREQ:
784 		*length = ARRAY_SIZE(state->frequencies);
785 		*vals = (const int *)&state->frequencies;
786 		*type = IIO_VAL_INT_PLUS_MICRO;
787 		return IIO_AVAIL_LIST;
788 	}
789 
790 	return -EINVAL;
791 }
792 EXPORT_SYMBOL_GPL(cros_ec_sensors_core_read_avail);
793 
794 /**
795  * cros_ec_sensors_core_write() - function to write a value to the sensor
796  * @st:		pointer to state information for device
797  * @chan:	channel specification structure table
798  * @val:	first part of value to write
799  * @val2:	second part of value to write
800  * @mask:	specifies which values to write
801  *
802  * Return:	the type of value returned by the device
803  */
804 int cros_ec_sensors_core_write(struct cros_ec_sensors_core_state *st,
805 			       struct iio_chan_spec const *chan,
806 			       int val, int val2, long mask)
807 {
808 	int ret, frequency;
809 
810 	switch (mask) {
811 	case IIO_CHAN_INFO_SAMP_FREQ:
812 		frequency = val * 1000 + val2 / 1000;
813 		st->param.cmd = MOTIONSENSE_CMD_SENSOR_ODR;
814 		st->param.sensor_odr.data = frequency;
815 
816 		/* Always roundup, so caller gets at least what it asks for. */
817 		st->param.sensor_odr.roundup = 1;
818 
819 		ret = cros_ec_motion_send_host_cmd(st, 0);
820 		break;
821 	default:
822 		ret = -EINVAL;
823 		break;
824 	}
825 	return ret;
826 }
827 EXPORT_SYMBOL_GPL(cros_ec_sensors_core_write);
828 
829 static int __maybe_unused cros_ec_sensors_resume(struct device *dev)
830 {
831 	struct platform_device *pdev = to_platform_device(dev);
832 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
833 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
834 	int ret = 0;
835 
836 	if (st->range_updated) {
837 		mutex_lock(&st->cmd_lock);
838 		st->param.cmd = MOTIONSENSE_CMD_SENSOR_RANGE;
839 		st->param.sensor_range.data = st->curr_range;
840 		st->param.sensor_range.roundup = 1;
841 		ret = cros_ec_motion_send_host_cmd(st, 0);
842 		mutex_unlock(&st->cmd_lock);
843 	}
844 	return ret;
845 }
846 
847 SIMPLE_DEV_PM_OPS(cros_ec_sensors_pm_ops, NULL, cros_ec_sensors_resume);
848 EXPORT_SYMBOL_GPL(cros_ec_sensors_pm_ops);
849 
850 MODULE_DESCRIPTION("ChromeOS EC sensor hub core functions");
851 MODULE_LICENSE("GPL v2");
852