1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cros_ec_sensors_core - Common function for Chrome OS EC sensor driver.
4  *
5  * Copyright (C) 2016 Google, Inc
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/device.h>
10 #include <linux/iio/buffer.h>
11 #include <linux/iio/common/cros_ec_sensors_core.h>
12 #include <linux/iio/iio.h>
13 #include <linux/iio/kfifo_buf.h>
14 #include <linux/iio/sysfs.h>
15 #include <linux/iio/trigger_consumer.h>
16 #include <linux/iio/triggered_buffer.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/platform_data/cros_ec_commands.h>
21 #include <linux/platform_data/cros_ec_proto.h>
22 #include <linux/platform_data/cros_ec_sensorhub.h>
23 #include <linux/platform_device.h>
24 
25 /*
26  * Hard coded to the first device to support sensor fifo.  The EC has a 2048
27  * byte fifo and will trigger an interrupt when fifo is 2/3 full.
28  */
29 #define CROS_EC_FIFO_SIZE (2048 * 2 / 3)
30 
31 static char *cros_ec_loc[] = {
32 	[MOTIONSENSE_LOC_BASE] = "base",
33 	[MOTIONSENSE_LOC_LID] = "lid",
34 	[MOTIONSENSE_LOC_MAX] = "unknown",
35 };
36 
37 static int cros_ec_get_host_cmd_version_mask(struct cros_ec_device *ec_dev,
38 					     u16 cmd_offset, u16 cmd, u32 *mask)
39 {
40 	int ret;
41 	struct {
42 		struct cros_ec_command msg;
43 		union {
44 			struct ec_params_get_cmd_versions params;
45 			struct ec_response_get_cmd_versions resp;
46 		};
47 	} __packed buf = {
48 		.msg = {
49 			.command = EC_CMD_GET_CMD_VERSIONS + cmd_offset,
50 			.insize = sizeof(struct ec_response_get_cmd_versions),
51 			.outsize = sizeof(struct ec_params_get_cmd_versions)
52 			},
53 		.params = {.cmd = cmd}
54 	};
55 
56 	ret = cros_ec_cmd_xfer_status(ec_dev, &buf.msg);
57 	if (ret >= 0)
58 		*mask = buf.resp.version_mask;
59 	return ret;
60 }
61 
62 static void get_default_min_max_freq(enum motionsensor_type type,
63 				     u32 *min_freq,
64 				     u32 *max_freq,
65 				     u32 *max_fifo_events)
66 {
67 	/*
68 	 * We don't know fifo size, set to size previously used by older
69 	 * hardware.
70 	 */
71 	*max_fifo_events = CROS_EC_FIFO_SIZE;
72 
73 	switch (type) {
74 	case MOTIONSENSE_TYPE_ACCEL:
75 	case MOTIONSENSE_TYPE_GYRO:
76 		*min_freq = 12500;
77 		*max_freq = 100000;
78 		break;
79 	case MOTIONSENSE_TYPE_MAG:
80 		*min_freq = 5000;
81 		*max_freq = 25000;
82 		break;
83 	case MOTIONSENSE_TYPE_PROX:
84 	case MOTIONSENSE_TYPE_LIGHT:
85 		*min_freq = 100;
86 		*max_freq = 50000;
87 		break;
88 	case MOTIONSENSE_TYPE_BARO:
89 		*min_freq = 250;
90 		*max_freq = 20000;
91 		break;
92 	case MOTIONSENSE_TYPE_ACTIVITY:
93 	default:
94 		*min_freq = 0;
95 		*max_freq = 0;
96 		break;
97 	}
98 }
99 
100 static int cros_ec_sensor_set_ec_rate(struct cros_ec_sensors_core_state *st,
101 				      int rate)
102 {
103 	int ret;
104 
105 	if (rate > U16_MAX)
106 		rate = U16_MAX;
107 
108 	mutex_lock(&st->cmd_lock);
109 	st->param.cmd = MOTIONSENSE_CMD_EC_RATE;
110 	st->param.ec_rate.data = rate;
111 	ret = cros_ec_motion_send_host_cmd(st, 0);
112 	mutex_unlock(&st->cmd_lock);
113 	return ret;
114 }
115 
116 static ssize_t cros_ec_sensor_set_report_latency(struct device *dev,
117 						 struct device_attribute *attr,
118 						 const char *buf, size_t len)
119 {
120 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
121 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
122 	int integer, fract, ret;
123 	int latency;
124 
125 	ret = iio_str_to_fixpoint(buf, 100000, &integer, &fract);
126 	if (ret)
127 		return ret;
128 
129 	/* EC rate is in ms. */
130 	latency = integer * 1000 + fract / 1000;
131 	ret = cros_ec_sensor_set_ec_rate(st, latency);
132 	if (ret < 0)
133 		return ret;
134 
135 	return len;
136 }
137 
138 static ssize_t cros_ec_sensor_get_report_latency(struct device *dev,
139 						 struct device_attribute *attr,
140 						 char *buf)
141 {
142 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
143 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
144 	int latency, ret;
145 
146 	mutex_lock(&st->cmd_lock);
147 	st->param.cmd = MOTIONSENSE_CMD_EC_RATE;
148 	st->param.ec_rate.data = EC_MOTION_SENSE_NO_VALUE;
149 
150 	ret = cros_ec_motion_send_host_cmd(st, 0);
151 	latency = st->resp->ec_rate.ret;
152 	mutex_unlock(&st->cmd_lock);
153 	if (ret < 0)
154 		return ret;
155 
156 	return sprintf(buf, "%d.%06u\n",
157 		       latency / 1000,
158 		       (latency % 1000) * 1000);
159 }
160 
161 static IIO_DEVICE_ATTR(hwfifo_timeout, 0644,
162 		       cros_ec_sensor_get_report_latency,
163 		       cros_ec_sensor_set_report_latency, 0);
164 
165 static ssize_t hwfifo_watermark_max_show(struct device *dev,
166 					 struct device_attribute *attr,
167 					 char *buf)
168 {
169 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
170 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
171 
172 	return sprintf(buf, "%d\n", st->fifo_max_event_count);
173 }
174 
175 static IIO_DEVICE_ATTR_RO(hwfifo_watermark_max, 0);
176 
177 const struct attribute *cros_ec_sensor_fifo_attributes[] = {
178 	&iio_dev_attr_hwfifo_timeout.dev_attr.attr,
179 	&iio_dev_attr_hwfifo_watermark_max.dev_attr.attr,
180 	NULL,
181 };
182 EXPORT_SYMBOL_GPL(cros_ec_sensor_fifo_attributes);
183 
184 int cros_ec_sensors_push_data(struct iio_dev *indio_dev,
185 			      s16 *data,
186 			      s64 timestamp)
187 {
188 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
189 	s16 *out;
190 	s64 delta;
191 	unsigned int i;
192 
193 	/*
194 	 * Ignore samples if the buffer is not set: it is needed if the ODR is
195 	 * set but the buffer is not enabled yet.
196 	 */
197 	if (!iio_buffer_enabled(indio_dev))
198 		return 0;
199 
200 	out = (s16 *)st->samples;
201 	for_each_set_bit(i,
202 			 indio_dev->active_scan_mask,
203 			 indio_dev->masklength) {
204 		*out = data[i];
205 		out++;
206 	}
207 
208 	if (iio_device_get_clock(indio_dev) != CLOCK_BOOTTIME)
209 		delta = iio_get_time_ns(indio_dev) - cros_ec_get_time_ns();
210 	else
211 		delta = 0;
212 
213 	iio_push_to_buffers_with_timestamp(indio_dev, st->samples,
214 					   timestamp + delta);
215 
216 	return 0;
217 }
218 EXPORT_SYMBOL_GPL(cros_ec_sensors_push_data);
219 
220 static void cros_ec_sensors_core_clean(void *arg)
221 {
222 	struct platform_device *pdev = (struct platform_device *)arg;
223 	struct cros_ec_sensorhub *sensor_hub =
224 		dev_get_drvdata(pdev->dev.parent);
225 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
226 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
227 	u8 sensor_num = st->param.info.sensor_num;
228 
229 	cros_ec_sensorhub_unregister_push_data(sensor_hub, sensor_num);
230 }
231 
232 /**
233  * cros_ec_sensors_core_init() - basic initialization of the core structure
234  * @pdev:		platform device created for the sensors
235  * @indio_dev:		iio device structure of the device
236  * @physical_device:	true if the device refers to a physical device
237  * @trigger_capture:    function pointer to call buffer is triggered,
238  *    for backward compatibility.
239  * @push_data:          function to call when cros_ec_sensorhub receives
240  *    a sample for that sensor.
241  *
242  * Return: 0 on success, -errno on failure.
243  */
244 int cros_ec_sensors_core_init(struct platform_device *pdev,
245 			      struct iio_dev *indio_dev,
246 			      bool physical_device,
247 			      cros_ec_sensors_capture_t trigger_capture,
248 			      cros_ec_sensorhub_push_data_cb_t push_data)
249 {
250 	struct device *dev = &pdev->dev;
251 	struct cros_ec_sensors_core_state *state = iio_priv(indio_dev);
252 	struct cros_ec_sensorhub *sensor_hub = dev_get_drvdata(dev->parent);
253 	struct cros_ec_dev *ec = sensor_hub->ec;
254 	struct cros_ec_sensor_platform *sensor_platform = dev_get_platdata(dev);
255 	u32 ver_mask;
256 	int frequencies[ARRAY_SIZE(state->frequencies) / 2] = { 0 };
257 	int ret, i;
258 
259 	platform_set_drvdata(pdev, indio_dev);
260 
261 	state->ec = ec->ec_dev;
262 	state->msg = devm_kzalloc(&pdev->dev,
263 				max((u16)sizeof(struct ec_params_motion_sense),
264 				state->ec->max_response), GFP_KERNEL);
265 	if (!state->msg)
266 		return -ENOMEM;
267 
268 	state->resp = (struct ec_response_motion_sense *)state->msg->data;
269 
270 	mutex_init(&state->cmd_lock);
271 
272 	ret = cros_ec_get_host_cmd_version_mask(state->ec,
273 						ec->cmd_offset,
274 						EC_CMD_MOTION_SENSE_CMD,
275 						&ver_mask);
276 	if (ret < 0)
277 		return ret;
278 
279 	/* Set up the host command structure. */
280 	state->msg->version = fls(ver_mask) - 1;
281 	state->msg->command = EC_CMD_MOTION_SENSE_CMD + ec->cmd_offset;
282 	state->msg->outsize = sizeof(struct ec_params_motion_sense);
283 
284 	indio_dev->name = pdev->name;
285 
286 	if (physical_device) {
287 		state->param.cmd = MOTIONSENSE_CMD_INFO;
288 		state->param.info.sensor_num = sensor_platform->sensor_num;
289 		ret = cros_ec_motion_send_host_cmd(state, 0);
290 		if (ret) {
291 			dev_warn(dev, "Can not access sensor info\n");
292 			return ret;
293 		}
294 		state->type = state->resp->info.type;
295 		state->loc = state->resp->info.location;
296 
297 		/* Set sign vector, only used for backward compatibility. */
298 		memset(state->sign, 1, CROS_EC_SENSOR_MAX_AXIS);
299 
300 		for (i = CROS_EC_SENSOR_X; i < CROS_EC_SENSOR_MAX_AXIS; i++)
301 			state->calib[i].scale = MOTION_SENSE_DEFAULT_SCALE;
302 
303 		/* 0 is a correct value used to stop the device */
304 		if (state->msg->version < 3) {
305 			get_default_min_max_freq(state->resp->info.type,
306 						 &frequencies[1],
307 						 &frequencies[2],
308 						 &state->fifo_max_event_count);
309 		} else {
310 			frequencies[1] = state->resp->info_3.min_frequency;
311 			frequencies[2] = state->resp->info_3.max_frequency;
312 			state->fifo_max_event_count =
313 			    state->resp->info_3.fifo_max_event_count;
314 		}
315 		for (i = 0; i < ARRAY_SIZE(frequencies); i++) {
316 			state->frequencies[2 * i] = frequencies[i] / 1000;
317 			state->frequencies[2 * i + 1] =
318 				(frequencies[i] % 1000) * 1000;
319 		}
320 
321 		if (cros_ec_check_features(ec, EC_FEATURE_MOTION_SENSE_FIFO)) {
322 			/*
323 			 * Create a software buffer, feed by the EC FIFO.
324 			 * We can not use trigger here, as events are generated
325 			 * as soon as sample_frequency is set.
326 			 */
327 			struct iio_buffer *buffer;
328 
329 			buffer = devm_iio_kfifo_allocate(dev);
330 			if (!buffer)
331 				return -ENOMEM;
332 
333 			iio_device_attach_buffer(indio_dev, buffer);
334 			indio_dev->modes = INDIO_BUFFER_SOFTWARE;
335 
336 			ret = cros_ec_sensorhub_register_push_data(
337 					sensor_hub, sensor_platform->sensor_num,
338 					indio_dev, push_data);
339 			if (ret)
340 				return ret;
341 
342 			ret = devm_add_action_or_reset(
343 					dev, cros_ec_sensors_core_clean, pdev);
344 			if (ret)
345 				return ret;
346 
347 			/* Timestamp coming from FIFO are in ns since boot. */
348 			ret = iio_device_set_clock(indio_dev, CLOCK_BOOTTIME);
349 			if (ret)
350 				return ret;
351 		} else {
352 			/*
353 			 * The only way to get samples in buffer is to set a
354 			 * software trigger (systrig, hrtimer).
355 			 */
356 			ret = devm_iio_triggered_buffer_setup(
357 					dev, indio_dev, NULL, trigger_capture,
358 					NULL);
359 			if (ret)
360 				return ret;
361 		}
362 	}
363 
364 	return 0;
365 }
366 EXPORT_SYMBOL_GPL(cros_ec_sensors_core_init);
367 
368 /**
369  * cros_ec_motion_send_host_cmd() - send motion sense host command
370  * @state:		pointer to state information for device
371  * @opt_length:	optional length to reduce the response size, useful on the data
372  *		path. Otherwise, the maximal allowed response size is used
373  *
374  * When called, the sub-command is assumed to be set in param->cmd.
375  *
376  * Return: 0 on success, -errno on failure.
377  */
378 int cros_ec_motion_send_host_cmd(struct cros_ec_sensors_core_state *state,
379 				 u16 opt_length)
380 {
381 	int ret;
382 
383 	if (opt_length)
384 		state->msg->insize = min(opt_length, state->ec->max_response);
385 	else
386 		state->msg->insize = state->ec->max_response;
387 
388 	memcpy(state->msg->data, &state->param, sizeof(state->param));
389 
390 	ret = cros_ec_cmd_xfer_status(state->ec, state->msg);
391 	if (ret < 0)
392 		return ret;
393 
394 	if (ret &&
395 	    state->resp != (struct ec_response_motion_sense *)state->msg->data)
396 		memcpy(state->resp, state->msg->data, ret);
397 
398 	return 0;
399 }
400 EXPORT_SYMBOL_GPL(cros_ec_motion_send_host_cmd);
401 
402 static ssize_t cros_ec_sensors_calibrate(struct iio_dev *indio_dev,
403 		uintptr_t private, const struct iio_chan_spec *chan,
404 		const char *buf, size_t len)
405 {
406 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
407 	int ret, i;
408 	bool calibrate;
409 
410 	ret = strtobool(buf, &calibrate);
411 	if (ret < 0)
412 		return ret;
413 	if (!calibrate)
414 		return -EINVAL;
415 
416 	mutex_lock(&st->cmd_lock);
417 	st->param.cmd = MOTIONSENSE_CMD_PERFORM_CALIB;
418 	ret = cros_ec_motion_send_host_cmd(st, 0);
419 	if (ret != 0) {
420 		dev_warn(&indio_dev->dev, "Unable to calibrate sensor\n");
421 	} else {
422 		/* Save values */
423 		for (i = CROS_EC_SENSOR_X; i < CROS_EC_SENSOR_MAX_AXIS; i++)
424 			st->calib[i].offset = st->resp->perform_calib.offset[i];
425 	}
426 	mutex_unlock(&st->cmd_lock);
427 
428 	return ret ? ret : len;
429 }
430 
431 static ssize_t cros_ec_sensors_id(struct iio_dev *indio_dev,
432 				  uintptr_t private,
433 				  const struct iio_chan_spec *chan, char *buf)
434 {
435 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
436 
437 	return snprintf(buf, PAGE_SIZE, "%d\n", st->param.info.sensor_num);
438 }
439 
440 static ssize_t cros_ec_sensors_loc(struct iio_dev *indio_dev,
441 		uintptr_t private, const struct iio_chan_spec *chan,
442 		char *buf)
443 {
444 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
445 
446 	return snprintf(buf, PAGE_SIZE, "%s\n", cros_ec_loc[st->loc]);
447 }
448 
449 const struct iio_chan_spec_ext_info cros_ec_sensors_ext_info[] = {
450 	{
451 		.name = "calibrate",
452 		.shared = IIO_SHARED_BY_ALL,
453 		.write = cros_ec_sensors_calibrate
454 	},
455 	{
456 		.name = "id",
457 		.shared = IIO_SHARED_BY_ALL,
458 		.read = cros_ec_sensors_id
459 	},
460 	{
461 		.name = "location",
462 		.shared = IIO_SHARED_BY_ALL,
463 		.read = cros_ec_sensors_loc
464 	},
465 	{ },
466 };
467 EXPORT_SYMBOL_GPL(cros_ec_sensors_ext_info);
468 
469 /**
470  * cros_ec_sensors_idx_to_reg - convert index into offset in shared memory
471  * @st:		pointer to state information for device
472  * @idx:	sensor index (should be element of enum sensor_index)
473  *
474  * Return:	address to read at
475  */
476 static unsigned int cros_ec_sensors_idx_to_reg(
477 					struct cros_ec_sensors_core_state *st,
478 					unsigned int idx)
479 {
480 	/*
481 	 * When using LPC interface, only space for 2 Accel and one Gyro.
482 	 * First halfword of MOTIONSENSE_TYPE_ACCEL is used by angle.
483 	 */
484 	if (st->type == MOTIONSENSE_TYPE_ACCEL)
485 		return EC_MEMMAP_ACC_DATA + sizeof(u16) *
486 			(1 + idx + st->param.info.sensor_num *
487 			 CROS_EC_SENSOR_MAX_AXIS);
488 
489 	return EC_MEMMAP_GYRO_DATA + sizeof(u16) * idx;
490 }
491 
492 static int cros_ec_sensors_cmd_read_u8(struct cros_ec_device *ec,
493 				       unsigned int offset, u8 *dest)
494 {
495 	return ec->cmd_readmem(ec, offset, 1, dest);
496 }
497 
498 static int cros_ec_sensors_cmd_read_u16(struct cros_ec_device *ec,
499 					 unsigned int offset, u16 *dest)
500 {
501 	__le16 tmp;
502 	int ret = ec->cmd_readmem(ec, offset, 2, &tmp);
503 
504 	if (ret >= 0)
505 		*dest = le16_to_cpu(tmp);
506 
507 	return ret;
508 }
509 
510 /**
511  * cros_ec_sensors_read_until_not_busy() - read until is not busy
512  *
513  * @st:	pointer to state information for device
514  *
515  * Read from EC status byte until it reads not busy.
516  * Return: 8-bit status if ok, -errno on failure.
517  */
518 static int cros_ec_sensors_read_until_not_busy(
519 					struct cros_ec_sensors_core_state *st)
520 {
521 	struct cros_ec_device *ec = st->ec;
522 	u8 status;
523 	int ret, attempts = 0;
524 
525 	ret = cros_ec_sensors_cmd_read_u8(ec, EC_MEMMAP_ACC_STATUS, &status);
526 	if (ret < 0)
527 		return ret;
528 
529 	while (status & EC_MEMMAP_ACC_STATUS_BUSY_BIT) {
530 		/* Give up after enough attempts, return error. */
531 		if (attempts++ >= 50)
532 			return -EIO;
533 
534 		/* Small delay every so often. */
535 		if (attempts % 5 == 0)
536 			msleep(25);
537 
538 		ret = cros_ec_sensors_cmd_read_u8(ec, EC_MEMMAP_ACC_STATUS,
539 						  &status);
540 		if (ret < 0)
541 			return ret;
542 	}
543 
544 	return status;
545 }
546 
547 /**
548  * read_ec_sensors_data_unsafe() - read acceleration data from EC shared memory
549  * @indio_dev:	pointer to IIO device
550  * @scan_mask:	bitmap of the sensor indices to scan
551  * @data:	location to store data
552  *
553  * This is the unsafe function for reading the EC data. It does not guarantee
554  * that the EC will not modify the data as it is being read in.
555  *
556  * Return: 0 on success, -errno on failure.
557  */
558 static int cros_ec_sensors_read_data_unsafe(struct iio_dev *indio_dev,
559 			 unsigned long scan_mask, s16 *data)
560 {
561 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
562 	struct cros_ec_device *ec = st->ec;
563 	unsigned int i;
564 	int ret;
565 
566 	/* Read all sensors enabled in scan_mask. Each value is 2 bytes. */
567 	for_each_set_bit(i, &scan_mask, indio_dev->masklength) {
568 		ret = cros_ec_sensors_cmd_read_u16(ec,
569 					     cros_ec_sensors_idx_to_reg(st, i),
570 					     data);
571 		if (ret < 0)
572 			return ret;
573 
574 		*data *= st->sign[i];
575 		data++;
576 	}
577 
578 	return 0;
579 }
580 
581 /**
582  * cros_ec_sensors_read_lpc() - read acceleration data from EC shared memory.
583  * @indio_dev: pointer to IIO device.
584  * @scan_mask: bitmap of the sensor indices to scan.
585  * @data: location to store data.
586  *
587  * Note: this is the safe function for reading the EC data. It guarantees
588  * that the data sampled was not modified by the EC while being read.
589  *
590  * Return: 0 on success, -errno on failure.
591  */
592 int cros_ec_sensors_read_lpc(struct iio_dev *indio_dev,
593 			     unsigned long scan_mask, s16 *data)
594 {
595 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
596 	struct cros_ec_device *ec = st->ec;
597 	u8 samp_id = 0xff, status = 0;
598 	int ret, attempts = 0;
599 
600 	/*
601 	 * Continually read all data from EC until the status byte after
602 	 * all reads reflects that the EC is not busy and the sample id
603 	 * matches the sample id from before all reads. This guarantees
604 	 * that data read in was not modified by the EC while reading.
605 	 */
606 	while ((status & (EC_MEMMAP_ACC_STATUS_BUSY_BIT |
607 			  EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK)) != samp_id) {
608 		/* If we have tried to read too many times, return error. */
609 		if (attempts++ >= 5)
610 			return -EIO;
611 
612 		/* Read status byte until EC is not busy. */
613 		ret = cros_ec_sensors_read_until_not_busy(st);
614 		if (ret < 0)
615 			return ret;
616 
617 		/*
618 		 * Store the current sample id so that we can compare to the
619 		 * sample id after reading the data.
620 		 */
621 		samp_id = ret & EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK;
622 
623 		/* Read all EC data, format it, and store it into data. */
624 		ret = cros_ec_sensors_read_data_unsafe(indio_dev, scan_mask,
625 						       data);
626 		if (ret < 0)
627 			return ret;
628 
629 		/* Read status byte. */
630 		ret = cros_ec_sensors_cmd_read_u8(ec, EC_MEMMAP_ACC_STATUS,
631 						  &status);
632 		if (ret < 0)
633 			return ret;
634 	}
635 
636 	return 0;
637 }
638 EXPORT_SYMBOL_GPL(cros_ec_sensors_read_lpc);
639 
640 /**
641  * cros_ec_sensors_read_cmd() - retrieve data using the EC command protocol
642  * @indio_dev:	pointer to IIO device
643  * @scan_mask:	bitmap of the sensor indices to scan
644  * @data:	location to store data
645  *
646  * Return: 0 on success, -errno on failure.
647  */
648 int cros_ec_sensors_read_cmd(struct iio_dev *indio_dev,
649 			     unsigned long scan_mask, s16 *data)
650 {
651 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
652 	int ret;
653 	unsigned int i;
654 
655 	/* Read all sensor data through a command. */
656 	st->param.cmd = MOTIONSENSE_CMD_DATA;
657 	ret = cros_ec_motion_send_host_cmd(st, sizeof(st->resp->data));
658 	if (ret != 0) {
659 		dev_warn(&indio_dev->dev, "Unable to read sensor data\n");
660 		return ret;
661 	}
662 
663 	for_each_set_bit(i, &scan_mask, indio_dev->masklength) {
664 		*data = st->resp->data.data[i];
665 		data++;
666 	}
667 
668 	return 0;
669 }
670 EXPORT_SYMBOL_GPL(cros_ec_sensors_read_cmd);
671 
672 /**
673  * cros_ec_sensors_capture() - the trigger handler function
674  * @irq:	the interrupt number.
675  * @p:		a pointer to the poll function.
676  *
677  * On a trigger event occurring, if the pollfunc is attached then this
678  * handler is called as a threaded interrupt (and hence may sleep). It
679  * is responsible for grabbing data from the device and pushing it into
680  * the associated buffer.
681  *
682  * Return: IRQ_HANDLED
683  */
684 irqreturn_t cros_ec_sensors_capture(int irq, void *p)
685 {
686 	struct iio_poll_func *pf = p;
687 	struct iio_dev *indio_dev = pf->indio_dev;
688 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
689 	int ret;
690 
691 	mutex_lock(&st->cmd_lock);
692 
693 	/* Clear capture data. */
694 	memset(st->samples, 0, indio_dev->scan_bytes);
695 
696 	/* Read data based on which channels are enabled in scan mask. */
697 	ret = st->read_ec_sensors_data(indio_dev,
698 				       *(indio_dev->active_scan_mask),
699 				       (s16 *)st->samples);
700 	if (ret < 0)
701 		goto done;
702 
703 	iio_push_to_buffers_with_timestamp(indio_dev, st->samples,
704 					   iio_get_time_ns(indio_dev));
705 
706 done:
707 	/*
708 	 * Tell the core we are done with this trigger and ready for the
709 	 * next one.
710 	 */
711 	iio_trigger_notify_done(indio_dev->trig);
712 
713 	mutex_unlock(&st->cmd_lock);
714 
715 	return IRQ_HANDLED;
716 }
717 EXPORT_SYMBOL_GPL(cros_ec_sensors_capture);
718 
719 /**
720  * cros_ec_sensors_core_read() - function to request a value from the sensor
721  * @st:		pointer to state information for device
722  * @chan:	channel specification structure table
723  * @val:	will contain one element making up the returned value
724  * @val2:	will contain another element making up the returned value
725  * @mask:	specifies which values to be requested
726  *
727  * Return:	the type of value returned by the device
728  */
729 int cros_ec_sensors_core_read(struct cros_ec_sensors_core_state *st,
730 			  struct iio_chan_spec const *chan,
731 			  int *val, int *val2, long mask)
732 {
733 	int ret, frequency;
734 
735 	switch (mask) {
736 	case IIO_CHAN_INFO_SAMP_FREQ:
737 		st->param.cmd = MOTIONSENSE_CMD_SENSOR_ODR;
738 		st->param.sensor_odr.data =
739 			EC_MOTION_SENSE_NO_VALUE;
740 
741 		ret = cros_ec_motion_send_host_cmd(st, 0);
742 		if (ret)
743 			break;
744 
745 		frequency = st->resp->sensor_odr.ret;
746 		*val = frequency / 1000;
747 		*val2 = (frequency % 1000) * 1000;
748 		ret = IIO_VAL_INT_PLUS_MICRO;
749 		break;
750 	default:
751 		ret = -EINVAL;
752 		break;
753 	}
754 
755 	return ret;
756 }
757 EXPORT_SYMBOL_GPL(cros_ec_sensors_core_read);
758 
759 /**
760  * cros_ec_sensors_core_read_avail() - get available values
761  * @indio_dev:		pointer to state information for device
762  * @chan:	channel specification structure table
763  * @vals:	list of available values
764  * @type:	type of data returned
765  * @length:	number of data returned in the array
766  * @mask:	specifies which values to be requested
767  *
768  * Return:	an error code, IIO_AVAIL_RANGE or IIO_AVAIL_LIST
769  */
770 int cros_ec_sensors_core_read_avail(struct iio_dev *indio_dev,
771 				    struct iio_chan_spec const *chan,
772 				    const int **vals,
773 				    int *type,
774 				    int *length,
775 				    long mask)
776 {
777 	struct cros_ec_sensors_core_state *state = iio_priv(indio_dev);
778 
779 	switch (mask) {
780 	case IIO_CHAN_INFO_SAMP_FREQ:
781 		*length = ARRAY_SIZE(state->frequencies);
782 		*vals = (const int *)&state->frequencies;
783 		*type = IIO_VAL_INT_PLUS_MICRO;
784 		return IIO_AVAIL_LIST;
785 	}
786 
787 	return -EINVAL;
788 }
789 EXPORT_SYMBOL_GPL(cros_ec_sensors_core_read_avail);
790 
791 /**
792  * cros_ec_sensors_core_write() - function to write a value to the sensor
793  * @st:		pointer to state information for device
794  * @chan:	channel specification structure table
795  * @val:	first part of value to write
796  * @val2:	second part of value to write
797  * @mask:	specifies which values to write
798  *
799  * Return:	the type of value returned by the device
800  */
801 int cros_ec_sensors_core_write(struct cros_ec_sensors_core_state *st,
802 			       struct iio_chan_spec const *chan,
803 			       int val, int val2, long mask)
804 {
805 	int ret, frequency;
806 
807 	switch (mask) {
808 	case IIO_CHAN_INFO_SAMP_FREQ:
809 		frequency = val * 1000 + val2 / 1000;
810 		st->param.cmd = MOTIONSENSE_CMD_SENSOR_ODR;
811 		st->param.sensor_odr.data = frequency;
812 
813 		/* Always roundup, so caller gets at least what it asks for. */
814 		st->param.sensor_odr.roundup = 1;
815 
816 		ret = cros_ec_motion_send_host_cmd(st, 0);
817 		break;
818 	default:
819 		ret = -EINVAL;
820 		break;
821 	}
822 	return ret;
823 }
824 EXPORT_SYMBOL_GPL(cros_ec_sensors_core_write);
825 
826 static int __maybe_unused cros_ec_sensors_resume(struct device *dev)
827 {
828 	struct platform_device *pdev = to_platform_device(dev);
829 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
830 	struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
831 	int ret = 0;
832 
833 	if (st->range_updated) {
834 		mutex_lock(&st->cmd_lock);
835 		st->param.cmd = MOTIONSENSE_CMD_SENSOR_RANGE;
836 		st->param.sensor_range.data = st->curr_range;
837 		st->param.sensor_range.roundup = 1;
838 		ret = cros_ec_motion_send_host_cmd(st, 0);
839 		mutex_unlock(&st->cmd_lock);
840 	}
841 	return ret;
842 }
843 
844 SIMPLE_DEV_PM_OPS(cros_ec_sensors_pm_ops, NULL, cros_ec_sensors_resume);
845 EXPORT_SYMBOL_GPL(cros_ec_sensors_pm_ops);
846 
847 MODULE_DESCRIPTION("ChromeOS EC sensor hub core functions");
848 MODULE_LICENSE("GPL v2");
849