xref: /openbmc/linux/drivers/iio/chemical/bme680_core.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Bosch BME680 - Temperature, Pressure, Humidity & Gas Sensor
4  *
5  * Copyright (C) 2017 - 2018 Bosch Sensortec GmbH
6  * Copyright (C) 2018 Himanshu Jha <himanshujha199640@gmail.com>
7  *
8  * Datasheet:
9  * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME680-DS001-00.pdf
10  */
11 #include <linux/acpi.h>
12 #include <linux/bitfield.h>
13 #include <linux/device.h>
14 #include <linux/module.h>
15 #include <linux/log2.h>
16 #include <linux/regmap.h>
17 #include <linux/iio/iio.h>
18 #include <linux/iio/sysfs.h>
19 
20 #include "bme680.h"
21 
22 struct bme680_calib {
23 	u16 par_t1;
24 	s16 par_t2;
25 	s8  par_t3;
26 	u16 par_p1;
27 	s16 par_p2;
28 	s8  par_p3;
29 	s16 par_p4;
30 	s16 par_p5;
31 	s8  par_p6;
32 	s8  par_p7;
33 	s16 par_p8;
34 	s16 par_p9;
35 	u8  par_p10;
36 	u16 par_h1;
37 	u16 par_h2;
38 	s8  par_h3;
39 	s8  par_h4;
40 	s8  par_h5;
41 	s8  par_h6;
42 	s8  par_h7;
43 	s8  par_gh1;
44 	s16 par_gh2;
45 	s8  par_gh3;
46 	u8  res_heat_range;
47 	s8  res_heat_val;
48 	s8  range_sw_err;
49 };
50 
51 struct bme680_data {
52 	struct regmap *regmap;
53 	struct bme680_calib bme680;
54 	u8 oversampling_temp;
55 	u8 oversampling_press;
56 	u8 oversampling_humid;
57 	u16 heater_dur;
58 	u16 heater_temp;
59 	/*
60 	 * Carryover value from temperature conversion, used in pressure
61 	 * and humidity compensation calculations.
62 	 */
63 	s32 t_fine;
64 };
65 
66 static const struct regmap_range bme680_volatile_ranges[] = {
67 	regmap_reg_range(BME680_REG_MEAS_STAT_0, BME680_REG_GAS_R_LSB),
68 	regmap_reg_range(BME680_REG_STATUS, BME680_REG_STATUS),
69 	regmap_reg_range(BME680_T2_LSB_REG, BME680_GH3_REG),
70 };
71 
72 static const struct regmap_access_table bme680_volatile_table = {
73 	.yes_ranges	= bme680_volatile_ranges,
74 	.n_yes_ranges	= ARRAY_SIZE(bme680_volatile_ranges),
75 };
76 
77 const struct regmap_config bme680_regmap_config = {
78 	.reg_bits = 8,
79 	.val_bits = 8,
80 	.max_register = 0xef,
81 	.volatile_table = &bme680_volatile_table,
82 	.cache_type = REGCACHE_RBTREE,
83 };
84 EXPORT_SYMBOL(bme680_regmap_config);
85 
86 static const struct iio_chan_spec bme680_channels[] = {
87 	{
88 		.type = IIO_TEMP,
89 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
90 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
91 	},
92 	{
93 		.type = IIO_PRESSURE,
94 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
95 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
96 	},
97 	{
98 		.type = IIO_HUMIDITYRELATIVE,
99 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
100 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
101 	},
102 	{
103 		.type = IIO_RESISTANCE,
104 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
105 	},
106 };
107 
108 static int bme680_read_calib(struct bme680_data *data,
109 			     struct bme680_calib *calib)
110 {
111 	struct device *dev = regmap_get_device(data->regmap);
112 	unsigned int tmp, tmp_msb, tmp_lsb;
113 	int ret;
114 	__le16 buf;
115 
116 	/* Temperature related coefficients */
117 	ret = regmap_bulk_read(data->regmap, BME680_T1_LSB_REG, (u8 *) &buf, 2);
118 	if (ret < 0) {
119 		dev_err(dev, "failed to read BME680_T1_LSB_REG\n");
120 		return ret;
121 	}
122 	calib->par_t1 = le16_to_cpu(buf);
123 
124 	ret = regmap_bulk_read(data->regmap, BME680_T2_LSB_REG, (u8 *) &buf, 2);
125 	if (ret < 0) {
126 		dev_err(dev, "failed to read BME680_T2_LSB_REG\n");
127 		return ret;
128 	}
129 	calib->par_t2 = le16_to_cpu(buf);
130 
131 	ret = regmap_read(data->regmap, BME680_T3_REG, &tmp);
132 	if (ret < 0) {
133 		dev_err(dev, "failed to read BME680_T3_REG\n");
134 		return ret;
135 	}
136 	calib->par_t3 = tmp;
137 
138 	/* Pressure related coefficients */
139 	ret = regmap_bulk_read(data->regmap, BME680_P1_LSB_REG, (u8 *) &buf, 2);
140 	if (ret < 0) {
141 		dev_err(dev, "failed to read BME680_P1_LSB_REG\n");
142 		return ret;
143 	}
144 	calib->par_p1 = le16_to_cpu(buf);
145 
146 	ret = regmap_bulk_read(data->regmap, BME680_P2_LSB_REG, (u8 *) &buf, 2);
147 	if (ret < 0) {
148 		dev_err(dev, "failed to read BME680_P2_LSB_REG\n");
149 		return ret;
150 	}
151 	calib->par_p2 = le16_to_cpu(buf);
152 
153 	ret = regmap_read(data->regmap, BME680_P3_REG, &tmp);
154 	if (ret < 0) {
155 		dev_err(dev, "failed to read BME680_P3_REG\n");
156 		return ret;
157 	}
158 	calib->par_p3 = tmp;
159 
160 	ret = regmap_bulk_read(data->regmap, BME680_P4_LSB_REG, (u8 *) &buf, 2);
161 	if (ret < 0) {
162 		dev_err(dev, "failed to read BME680_P4_LSB_REG\n");
163 		return ret;
164 	}
165 	calib->par_p4 = le16_to_cpu(buf);
166 
167 	ret = regmap_bulk_read(data->regmap, BME680_P5_LSB_REG, (u8 *) &buf, 2);
168 	if (ret < 0) {
169 		dev_err(dev, "failed to read BME680_P5_LSB_REG\n");
170 		return ret;
171 	}
172 	calib->par_p5 = le16_to_cpu(buf);
173 
174 	ret = regmap_read(data->regmap, BME680_P6_REG, &tmp);
175 	if (ret < 0) {
176 		dev_err(dev, "failed to read BME680_P6_REG\n");
177 		return ret;
178 	}
179 	calib->par_p6 = tmp;
180 
181 	ret = regmap_read(data->regmap, BME680_P7_REG, &tmp);
182 	if (ret < 0) {
183 		dev_err(dev, "failed to read BME680_P7_REG\n");
184 		return ret;
185 	}
186 	calib->par_p7 = tmp;
187 
188 	ret = regmap_bulk_read(data->regmap, BME680_P8_LSB_REG, (u8 *) &buf, 2);
189 	if (ret < 0) {
190 		dev_err(dev, "failed to read BME680_P8_LSB_REG\n");
191 		return ret;
192 	}
193 	calib->par_p8 = le16_to_cpu(buf);
194 
195 	ret = regmap_bulk_read(data->regmap, BME680_P9_LSB_REG, (u8 *) &buf, 2);
196 	if (ret < 0) {
197 		dev_err(dev, "failed to read BME680_P9_LSB_REG\n");
198 		return ret;
199 	}
200 	calib->par_p9 = le16_to_cpu(buf);
201 
202 	ret = regmap_read(data->regmap, BME680_P10_REG, &tmp);
203 	if (ret < 0) {
204 		dev_err(dev, "failed to read BME680_P10_REG\n");
205 		return ret;
206 	}
207 	calib->par_p10 = tmp;
208 
209 	/* Humidity related coefficients */
210 	ret = regmap_read(data->regmap, BME680_H1_MSB_REG, &tmp_msb);
211 	if (ret < 0) {
212 		dev_err(dev, "failed to read BME680_H1_MSB_REG\n");
213 		return ret;
214 	}
215 	ret = regmap_read(data->regmap, BME680_H1_LSB_REG, &tmp_lsb);
216 	if (ret < 0) {
217 		dev_err(dev, "failed to read BME680_H1_LSB_REG\n");
218 		return ret;
219 	}
220 	calib->par_h1 = (tmp_msb << BME680_HUM_REG_SHIFT_VAL) |
221 			(tmp_lsb & BME680_BIT_H1_DATA_MASK);
222 
223 	ret = regmap_read(data->regmap, BME680_H2_MSB_REG, &tmp_msb);
224 	if (ret < 0) {
225 		dev_err(dev, "failed to read BME680_H2_MSB_REG\n");
226 		return ret;
227 	}
228 	ret = regmap_read(data->regmap, BME680_H2_LSB_REG, &tmp_lsb);
229 	if (ret < 0) {
230 		dev_err(dev, "failed to read BME680_H2_LSB_REG\n");
231 		return ret;
232 	}
233 	calib->par_h2 = (tmp_msb << BME680_HUM_REG_SHIFT_VAL) |
234 			(tmp_lsb >> BME680_HUM_REG_SHIFT_VAL);
235 
236 	ret = regmap_read(data->regmap, BME680_H3_REG, &tmp);
237 	if (ret < 0) {
238 		dev_err(dev, "failed to read BME680_H3_REG\n");
239 		return ret;
240 	}
241 	calib->par_h3 = tmp;
242 
243 	ret = regmap_read(data->regmap, BME680_H4_REG, &tmp);
244 	if (ret < 0) {
245 		dev_err(dev, "failed to read BME680_H4_REG\n");
246 		return ret;
247 	}
248 	calib->par_h4 = tmp;
249 
250 	ret = regmap_read(data->regmap, BME680_H5_REG, &tmp);
251 	if (ret < 0) {
252 		dev_err(dev, "failed to read BME680_H5_REG\n");
253 		return ret;
254 	}
255 	calib->par_h5 = tmp;
256 
257 	ret = regmap_read(data->regmap, BME680_H6_REG, &tmp);
258 	if (ret < 0) {
259 		dev_err(dev, "failed to read BME680_H6_REG\n");
260 		return ret;
261 	}
262 	calib->par_h6 = tmp;
263 
264 	ret = regmap_read(data->regmap, BME680_H7_REG, &tmp);
265 	if (ret < 0) {
266 		dev_err(dev, "failed to read BME680_H7_REG\n");
267 		return ret;
268 	}
269 	calib->par_h7 = tmp;
270 
271 	/* Gas heater related coefficients */
272 	ret = regmap_read(data->regmap, BME680_GH1_REG, &tmp);
273 	if (ret < 0) {
274 		dev_err(dev, "failed to read BME680_GH1_REG\n");
275 		return ret;
276 	}
277 	calib->par_gh1 = tmp;
278 
279 	ret = regmap_bulk_read(data->regmap, BME680_GH2_LSB_REG, (u8 *) &buf,
280 			       2);
281 	if (ret < 0) {
282 		dev_err(dev, "failed to read BME680_GH2_LSB_REG\n");
283 		return ret;
284 	}
285 	calib->par_gh2 = le16_to_cpu(buf);
286 
287 	ret = regmap_read(data->regmap, BME680_GH3_REG, &tmp);
288 	if (ret < 0) {
289 		dev_err(dev, "failed to read BME680_GH3_REG\n");
290 		return ret;
291 	}
292 	calib->par_gh3 = tmp;
293 
294 	/* Other coefficients */
295 	ret = regmap_read(data->regmap, BME680_REG_RES_HEAT_RANGE, &tmp);
296 	if (ret < 0) {
297 		dev_err(dev, "failed to read resistance heat range\n");
298 		return ret;
299 	}
300 	calib->res_heat_range = FIELD_GET(BME680_RHRANGE_MASK, tmp);
301 
302 	ret = regmap_read(data->regmap, BME680_REG_RES_HEAT_VAL, &tmp);
303 	if (ret < 0) {
304 		dev_err(dev, "failed to read resistance heat value\n");
305 		return ret;
306 	}
307 	calib->res_heat_val = tmp;
308 
309 	ret = regmap_read(data->regmap, BME680_REG_RANGE_SW_ERR, &tmp);
310 	if (ret < 0) {
311 		dev_err(dev, "failed to read range software error\n");
312 		return ret;
313 	}
314 	calib->range_sw_err = FIELD_GET(BME680_RSERROR_MASK, tmp);
315 
316 	return 0;
317 }
318 
319 /*
320  * Taken from Bosch BME680 API:
321  * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L876
322  *
323  * Returns temperature measurement in DegC, resolutions is 0.01 DegC. Therefore,
324  * output value of "3233" represents 32.33 DegC.
325  */
326 static s16 bme680_compensate_temp(struct bme680_data *data,
327 				  s32 adc_temp)
328 {
329 	struct bme680_calib *calib = &data->bme680;
330 	s64 var1, var2, var3;
331 	s16 calc_temp;
332 
333 	/* If the calibration is invalid, attempt to reload it */
334 	if (!calib->par_t2)
335 		bme680_read_calib(data, calib);
336 
337 	var1 = (adc_temp >> 3) - (calib->par_t1 << 1);
338 	var2 = (var1 * calib->par_t2) >> 11;
339 	var3 = ((var1 >> 1) * (var1 >> 1)) >> 12;
340 	var3 = (var3 * (calib->par_t3 << 4)) >> 14;
341 	data->t_fine = var2 + var3;
342 	calc_temp = (data->t_fine * 5 + 128) >> 8;
343 
344 	return calc_temp;
345 }
346 
347 /*
348  * Taken from Bosch BME680 API:
349  * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L896
350  *
351  * Returns pressure measurement in Pa. Output value of "97356" represents
352  * 97356 Pa = 973.56 hPa.
353  */
354 static u32 bme680_compensate_press(struct bme680_data *data,
355 				   u32 adc_press)
356 {
357 	struct bme680_calib *calib = &data->bme680;
358 	s32 var1, var2, var3, press_comp;
359 
360 	var1 = (data->t_fine >> 1) - 64000;
361 	var2 = ((((var1 >> 2) * (var1 >> 2)) >> 11) * calib->par_p6) >> 2;
362 	var2 = var2 + (var1 * calib->par_p5 << 1);
363 	var2 = (var2 >> 2) + (calib->par_p4 << 16);
364 	var1 = (((((var1 >> 2) * (var1 >> 2)) >> 13) *
365 			(calib->par_p3 << 5)) >> 3) +
366 			((calib->par_p2 * var1) >> 1);
367 	var1 = var1 >> 18;
368 	var1 = ((32768 + var1) * calib->par_p1) >> 15;
369 	press_comp = 1048576 - adc_press;
370 	press_comp = ((press_comp - (var2 >> 12)) * 3125);
371 
372 	if (press_comp >= BME680_MAX_OVERFLOW_VAL)
373 		press_comp = ((press_comp / (u32)var1) << 1);
374 	else
375 		press_comp = ((press_comp << 1) / (u32)var1);
376 
377 	var1 = (calib->par_p9 * (((press_comp >> 3) *
378 			(press_comp >> 3)) >> 13)) >> 12;
379 	var2 = ((press_comp >> 2) * calib->par_p8) >> 13;
380 	var3 = ((press_comp >> 8) * (press_comp >> 8) *
381 			(press_comp >> 8) * calib->par_p10) >> 17;
382 
383 	press_comp += (var1 + var2 + var3 + (calib->par_p7 << 7)) >> 4;
384 
385 	return press_comp;
386 }
387 
388 /*
389  * Taken from Bosch BME680 API:
390  * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L937
391  *
392  * Returns humidity measurement in percent, resolution is 0.001 percent. Output
393  * value of "43215" represents 43.215 %rH.
394  */
395 static u32 bme680_compensate_humid(struct bme680_data *data,
396 				   u16 adc_humid)
397 {
398 	struct bme680_calib *calib = &data->bme680;
399 	s32 var1, var2, var3, var4, var5, var6, temp_scaled, calc_hum;
400 
401 	temp_scaled = (data->t_fine * 5 + 128) >> 8;
402 	var1 = (adc_humid - ((s32) ((s32) calib->par_h1 * 16))) -
403 		(((temp_scaled * (s32) calib->par_h3) / 100) >> 1);
404 	var2 = ((s32) calib->par_h2 *
405 		(((temp_scaled * calib->par_h4) / 100) +
406 		 (((temp_scaled * ((temp_scaled * calib->par_h5) / 100))
407 		   >> 6) / 100) + (1 << 14))) >> 10;
408 	var3 = var1 * var2;
409 	var4 = calib->par_h6 << 7;
410 	var4 = (var4 + ((temp_scaled * calib->par_h7) / 100)) >> 4;
411 	var5 = ((var3 >> 14) * (var3 >> 14)) >> 10;
412 	var6 = (var4 * var5) >> 1;
413 	calc_hum = (((var3 + var6) >> 10) * 1000) >> 12;
414 
415 	calc_hum = clamp(calc_hum, 0, 100000); /* clamp between 0-100 %rH */
416 
417 	return calc_hum;
418 }
419 
420 /*
421  * Taken from Bosch BME680 API:
422  * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L973
423  *
424  * Returns gas measurement in Ohm. Output value of "82986" represent 82986 ohms.
425  */
426 static u32 bme680_compensate_gas(struct bme680_data *data, u16 gas_res_adc,
427 				 u8 gas_range)
428 {
429 	struct bme680_calib *calib = &data->bme680;
430 	s64 var1;
431 	u64 var2;
432 	s64 var3;
433 	u32 calc_gas_res;
434 
435 	/* Look up table for the possible gas range values */
436 	const u32 lookupTable[16] = {2147483647u, 2147483647u,
437 				2147483647u, 2147483647u, 2147483647u,
438 				2126008810u, 2147483647u, 2130303777u,
439 				2147483647u, 2147483647u, 2143188679u,
440 				2136746228u, 2147483647u, 2126008810u,
441 				2147483647u, 2147483647u};
442 
443 	var1 = ((1340 + (5 * (s64) calib->range_sw_err)) *
444 			((s64) lookupTable[gas_range])) >> 16;
445 	var2 = ((gas_res_adc << 15) - 16777216) + var1;
446 	var3 = ((125000 << (15 - gas_range)) * var1) >> 9;
447 	var3 += (var2 >> 1);
448 	calc_gas_res = div64_s64(var3, (s64) var2);
449 
450 	return calc_gas_res;
451 }
452 
453 /*
454  * Taken from Bosch BME680 API:
455  * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L1002
456  */
457 static u8 bme680_calc_heater_res(struct bme680_data *data, u16 temp)
458 {
459 	struct bme680_calib *calib = &data->bme680;
460 	s32 var1, var2, var3, var4, var5, heatr_res_x100;
461 	u8 heatr_res;
462 
463 	if (temp > 400) /* Cap temperature */
464 		temp = 400;
465 
466 	var1 = (((s32) BME680_AMB_TEMP * calib->par_gh3) / 1000) * 256;
467 	var2 = (calib->par_gh1 + 784) * (((((calib->par_gh2 + 154009) *
468 						temp * 5) / 100)
469 						+ 3276800) / 10);
470 	var3 = var1 + (var2 / 2);
471 	var4 = (var3 / (calib->res_heat_range + 4));
472 	var5 = 131 * calib->res_heat_val + 65536;
473 	heatr_res_x100 = ((var4 / var5) - 250) * 34;
474 	heatr_res = (heatr_res_x100 + 50) / 100;
475 
476 	return heatr_res;
477 }
478 
479 /*
480  * Taken from Bosch BME680 API:
481  * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L1188
482  */
483 static u8 bme680_calc_heater_dur(u16 dur)
484 {
485 	u8 durval, factor = 0;
486 
487 	if (dur >= 0xfc0) {
488 		durval = 0xff; /* Max duration */
489 	} else {
490 		while (dur > 0x3F) {
491 			dur = dur / 4;
492 			factor += 1;
493 		}
494 		durval = dur + (factor * 64);
495 	}
496 
497 	return durval;
498 }
499 
500 static int bme680_set_mode(struct bme680_data *data, bool mode)
501 {
502 	struct device *dev = regmap_get_device(data->regmap);
503 	int ret;
504 
505 	if (mode) {
506 		ret = regmap_write_bits(data->regmap, BME680_REG_CTRL_MEAS,
507 					BME680_MODE_MASK, BME680_MODE_FORCED);
508 		if (ret < 0)
509 			dev_err(dev, "failed to set forced mode\n");
510 
511 	} else {
512 		ret = regmap_write_bits(data->regmap, BME680_REG_CTRL_MEAS,
513 					BME680_MODE_MASK, BME680_MODE_SLEEP);
514 		if (ret < 0)
515 			dev_err(dev, "failed to set sleep mode\n");
516 
517 	}
518 
519 	return ret;
520 }
521 
522 static u8 bme680_oversampling_to_reg(u8 val)
523 {
524 	return ilog2(val) + 1;
525 }
526 
527 static int bme680_chip_config(struct bme680_data *data)
528 {
529 	struct device *dev = regmap_get_device(data->regmap);
530 	int ret;
531 	u8 osrs;
532 
533 	osrs = FIELD_PREP(
534 		BME680_OSRS_HUMIDITY_MASK,
535 		bme680_oversampling_to_reg(data->oversampling_humid));
536 	/*
537 	 * Highly recommended to set oversampling of humidity before
538 	 * temperature/pressure oversampling.
539 	 */
540 	ret = regmap_update_bits(data->regmap, BME680_REG_CTRL_HUMIDITY,
541 				 BME680_OSRS_HUMIDITY_MASK, osrs);
542 	if (ret < 0) {
543 		dev_err(dev, "failed to write ctrl_hum register\n");
544 		return ret;
545 	}
546 
547 	/* IIR filter settings */
548 	ret = regmap_update_bits(data->regmap, BME680_REG_CONFIG,
549 				 BME680_FILTER_MASK,
550 				 BME680_FILTER_COEFF_VAL);
551 	if (ret < 0) {
552 		dev_err(dev, "failed to write config register\n");
553 		return ret;
554 	}
555 
556 	osrs = FIELD_PREP(BME680_OSRS_TEMP_MASK,
557 			  bme680_oversampling_to_reg(data->oversampling_temp)) |
558 	       FIELD_PREP(BME680_OSRS_PRESS_MASK,
559 			  bme680_oversampling_to_reg(data->oversampling_press));
560 	ret = regmap_write_bits(data->regmap, BME680_REG_CTRL_MEAS,
561 				BME680_OSRS_TEMP_MASK | BME680_OSRS_PRESS_MASK,
562 				osrs);
563 	if (ret < 0)
564 		dev_err(dev, "failed to write ctrl_meas register\n");
565 
566 	return ret;
567 }
568 
569 static int bme680_gas_config(struct bme680_data *data)
570 {
571 	struct device *dev = regmap_get_device(data->regmap);
572 	int ret;
573 	u8 heatr_res, heatr_dur;
574 
575 	heatr_res = bme680_calc_heater_res(data, data->heater_temp);
576 
577 	/* set target heater temperature */
578 	ret = regmap_write(data->regmap, BME680_REG_RES_HEAT_0, heatr_res);
579 	if (ret < 0) {
580 		dev_err(dev, "failed to write res_heat_0 register\n");
581 		return ret;
582 	}
583 
584 	heatr_dur = bme680_calc_heater_dur(data->heater_dur);
585 
586 	/* set target heating duration */
587 	ret = regmap_write(data->regmap, BME680_REG_GAS_WAIT_0, heatr_dur);
588 	if (ret < 0) {
589 		dev_err(dev, "failed to write gas_wait_0 register\n");
590 		return ret;
591 	}
592 
593 	/* Enable the gas sensor and select heater profile set-point 0 */
594 	ret = regmap_update_bits(data->regmap, BME680_REG_CTRL_GAS_1,
595 				 BME680_RUN_GAS_MASK | BME680_NB_CONV_MASK,
596 				 FIELD_PREP(BME680_RUN_GAS_MASK, 1) |
597 				 FIELD_PREP(BME680_NB_CONV_MASK, 0));
598 	if (ret < 0)
599 		dev_err(dev, "failed to write ctrl_gas_1 register\n");
600 
601 	return ret;
602 }
603 
604 static int bme680_read_temp(struct bme680_data *data, int *val)
605 {
606 	struct device *dev = regmap_get_device(data->regmap);
607 	int ret;
608 	__be32 tmp = 0;
609 	s32 adc_temp;
610 	s16 comp_temp;
611 
612 	/* set forced mode to trigger measurement */
613 	ret = bme680_set_mode(data, true);
614 	if (ret < 0)
615 		return ret;
616 
617 	ret = regmap_bulk_read(data->regmap, BME680_REG_TEMP_MSB,
618 			       (u8 *) &tmp, 3);
619 	if (ret < 0) {
620 		dev_err(dev, "failed to read temperature\n");
621 		return ret;
622 	}
623 
624 	adc_temp = be32_to_cpu(tmp) >> 12;
625 	if (adc_temp == BME680_MEAS_SKIPPED) {
626 		/* reading was skipped */
627 		dev_err(dev, "reading temperature skipped\n");
628 		return -EINVAL;
629 	}
630 	comp_temp = bme680_compensate_temp(data, adc_temp);
631 	/*
632 	 * val might be NULL if we're called by the read_press/read_humid
633 	 * routine which is callled to get t_fine value used in
634 	 * compensate_press/compensate_humid to get compensated
635 	 * pressure/humidity readings.
636 	 */
637 	if (val) {
638 		*val = comp_temp * 10; /* Centidegrees to millidegrees */
639 		return IIO_VAL_INT;
640 	}
641 
642 	return ret;
643 }
644 
645 static int bme680_read_press(struct bme680_data *data,
646 			     int *val, int *val2)
647 {
648 	struct device *dev = regmap_get_device(data->regmap);
649 	int ret;
650 	__be32 tmp = 0;
651 	s32 adc_press;
652 
653 	/* Read and compensate temperature to get a reading of t_fine */
654 	ret = bme680_read_temp(data, NULL);
655 	if (ret < 0)
656 		return ret;
657 
658 	ret = regmap_bulk_read(data->regmap, BME680_REG_PRESS_MSB,
659 			       (u8 *) &tmp, 3);
660 	if (ret < 0) {
661 		dev_err(dev, "failed to read pressure\n");
662 		return ret;
663 	}
664 
665 	adc_press = be32_to_cpu(tmp) >> 12;
666 	if (adc_press == BME680_MEAS_SKIPPED) {
667 		/* reading was skipped */
668 		dev_err(dev, "reading pressure skipped\n");
669 		return -EINVAL;
670 	}
671 
672 	*val = bme680_compensate_press(data, adc_press);
673 	*val2 = 100;
674 	return IIO_VAL_FRACTIONAL;
675 }
676 
677 static int bme680_read_humid(struct bme680_data *data,
678 			     int *val, int *val2)
679 {
680 	struct device *dev = regmap_get_device(data->regmap);
681 	int ret;
682 	__be16 tmp = 0;
683 	s32 adc_humidity;
684 	u32 comp_humidity;
685 
686 	/* Read and compensate temperature to get a reading of t_fine */
687 	ret = bme680_read_temp(data, NULL);
688 	if (ret < 0)
689 		return ret;
690 
691 	ret = regmap_bulk_read(data->regmap, BM6880_REG_HUMIDITY_MSB,
692 			       (u8 *) &tmp, 2);
693 	if (ret < 0) {
694 		dev_err(dev, "failed to read humidity\n");
695 		return ret;
696 	}
697 
698 	adc_humidity = be16_to_cpu(tmp);
699 	if (adc_humidity == BME680_MEAS_SKIPPED) {
700 		/* reading was skipped */
701 		dev_err(dev, "reading humidity skipped\n");
702 		return -EINVAL;
703 	}
704 	comp_humidity = bme680_compensate_humid(data, adc_humidity);
705 
706 	*val = comp_humidity;
707 	*val2 = 1000;
708 	return IIO_VAL_FRACTIONAL;
709 }
710 
711 static int bme680_read_gas(struct bme680_data *data,
712 			   int *val)
713 {
714 	struct device *dev = regmap_get_device(data->regmap);
715 	int ret;
716 	__be16 tmp = 0;
717 	unsigned int check;
718 	u16 adc_gas_res;
719 	u8 gas_range;
720 
721 	/* Set heater settings */
722 	ret = bme680_gas_config(data);
723 	if (ret < 0) {
724 		dev_err(dev, "failed to set gas config\n");
725 		return ret;
726 	}
727 
728 	/* set forced mode to trigger measurement */
729 	ret = bme680_set_mode(data, true);
730 	if (ret < 0)
731 		return ret;
732 
733 	ret = regmap_read(data->regmap, BME680_REG_MEAS_STAT_0, &check);
734 	if (check & BME680_GAS_MEAS_BIT) {
735 		dev_err(dev, "gas measurement incomplete\n");
736 		return -EBUSY;
737 	}
738 
739 	ret = regmap_read(data->regmap, BME680_REG_GAS_R_LSB, &check);
740 	if (ret < 0) {
741 		dev_err(dev, "failed to read gas_r_lsb register\n");
742 		return ret;
743 	}
744 
745 	/*
746 	 * occurs if either the gas heating duration was insuffient
747 	 * to reach the target heater temperature or the target
748 	 * heater temperature was too high for the heater sink to
749 	 * reach.
750 	 */
751 	if ((check & BME680_GAS_STAB_BIT) == 0) {
752 		dev_err(dev, "heater failed to reach the target temperature\n");
753 		return -EINVAL;
754 	}
755 
756 	ret = regmap_bulk_read(data->regmap, BME680_REG_GAS_MSB,
757 			       (u8 *) &tmp, 2);
758 	if (ret < 0) {
759 		dev_err(dev, "failed to read gas resistance\n");
760 		return ret;
761 	}
762 
763 	gas_range = check & BME680_GAS_RANGE_MASK;
764 	adc_gas_res = be16_to_cpu(tmp) >> BME680_ADC_GAS_RES_SHIFT;
765 
766 	*val = bme680_compensate_gas(data, adc_gas_res, gas_range);
767 	return IIO_VAL_INT;
768 }
769 
770 static int bme680_read_raw(struct iio_dev *indio_dev,
771 			   struct iio_chan_spec const *chan,
772 			   int *val, int *val2, long mask)
773 {
774 	struct bme680_data *data = iio_priv(indio_dev);
775 
776 	switch (mask) {
777 	case IIO_CHAN_INFO_PROCESSED:
778 		switch (chan->type) {
779 		case IIO_TEMP:
780 			return bme680_read_temp(data, val);
781 		case IIO_PRESSURE:
782 			return bme680_read_press(data, val, val2);
783 		case IIO_HUMIDITYRELATIVE:
784 			return bme680_read_humid(data, val, val2);
785 		case IIO_RESISTANCE:
786 			return bme680_read_gas(data, val);
787 		default:
788 			return -EINVAL;
789 		}
790 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
791 		switch (chan->type) {
792 		case IIO_TEMP:
793 			*val = data->oversampling_temp;
794 			return IIO_VAL_INT;
795 		case IIO_PRESSURE:
796 			*val = data->oversampling_press;
797 			return IIO_VAL_INT;
798 		case IIO_HUMIDITYRELATIVE:
799 			*val = data->oversampling_humid;
800 			return IIO_VAL_INT;
801 		default:
802 			return -EINVAL;
803 		}
804 	default:
805 		return -EINVAL;
806 	}
807 }
808 
809 static bool bme680_is_valid_oversampling(int rate)
810 {
811 	return (rate > 0 && rate <= 16 && is_power_of_2(rate));
812 }
813 
814 static int bme680_write_raw(struct iio_dev *indio_dev,
815 			    struct iio_chan_spec const *chan,
816 			    int val, int val2, long mask)
817 {
818 	struct bme680_data *data = iio_priv(indio_dev);
819 
820 	if (val2 != 0)
821 		return -EINVAL;
822 
823 	switch (mask) {
824 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
825 	{
826 		if (!bme680_is_valid_oversampling(val))
827 			return -EINVAL;
828 
829 		switch (chan->type) {
830 		case IIO_TEMP:
831 			data->oversampling_temp = val;
832 			break;
833 		case IIO_PRESSURE:
834 			data->oversampling_press = val;
835 			break;
836 		case IIO_HUMIDITYRELATIVE:
837 			data->oversampling_humid = val;
838 			break;
839 		default:
840 			return -EINVAL;
841 		}
842 
843 		return bme680_chip_config(data);
844 	}
845 	default:
846 		return -EINVAL;
847 	}
848 }
849 
850 static const char bme680_oversampling_ratio_show[] = "1 2 4 8 16";
851 
852 static IIO_CONST_ATTR(oversampling_ratio_available,
853 		      bme680_oversampling_ratio_show);
854 
855 static struct attribute *bme680_attributes[] = {
856 	&iio_const_attr_oversampling_ratio_available.dev_attr.attr,
857 	NULL,
858 };
859 
860 static const struct attribute_group bme680_attribute_group = {
861 	.attrs = bme680_attributes,
862 };
863 
864 static const struct iio_info bme680_info = {
865 	.read_raw = &bme680_read_raw,
866 	.write_raw = &bme680_write_raw,
867 	.attrs = &bme680_attribute_group,
868 };
869 
870 static const char *bme680_match_acpi_device(struct device *dev)
871 {
872 	const struct acpi_device_id *id;
873 
874 	id = acpi_match_device(dev->driver->acpi_match_table, dev);
875 	if (!id)
876 		return NULL;
877 
878 	return dev_name(dev);
879 }
880 
881 int bme680_core_probe(struct device *dev, struct regmap *regmap,
882 		      const char *name)
883 {
884 	struct iio_dev *indio_dev;
885 	struct bme680_data *data;
886 	unsigned int val;
887 	int ret;
888 
889 	ret = regmap_write(regmap, BME680_REG_SOFT_RESET,
890 			   BME680_CMD_SOFTRESET);
891 	if (ret < 0) {
892 		dev_err(dev, "Failed to reset chip\n");
893 		return ret;
894 	}
895 
896 	ret = regmap_read(regmap, BME680_REG_CHIP_ID, &val);
897 	if (ret < 0) {
898 		dev_err(dev, "Error reading chip ID\n");
899 		return ret;
900 	}
901 
902 	if (val != BME680_CHIP_ID_VAL) {
903 		dev_err(dev, "Wrong chip ID, got %x expected %x\n",
904 				val, BME680_CHIP_ID_VAL);
905 		return -ENODEV;
906 	}
907 
908 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
909 	if (!indio_dev)
910 		return -ENOMEM;
911 
912 	if (!name && ACPI_HANDLE(dev))
913 		name = bme680_match_acpi_device(dev);
914 
915 	data = iio_priv(indio_dev);
916 	dev_set_drvdata(dev, indio_dev);
917 	data->regmap = regmap;
918 	indio_dev->dev.parent = dev;
919 	indio_dev->name = name;
920 	indio_dev->channels = bme680_channels;
921 	indio_dev->num_channels = ARRAY_SIZE(bme680_channels);
922 	indio_dev->info = &bme680_info;
923 	indio_dev->modes = INDIO_DIRECT_MODE;
924 
925 	/* default values for the sensor */
926 	data->oversampling_humid = 2; /* 2X oversampling rate */
927 	data->oversampling_press = 4; /* 4X oversampling rate */
928 	data->oversampling_temp = 8;  /* 8X oversampling rate */
929 	data->heater_temp = 320; /* degree Celsius */
930 	data->heater_dur = 150;  /* milliseconds */
931 
932 	ret = bme680_chip_config(data);
933 	if (ret < 0) {
934 		dev_err(dev, "failed to set chip_config data\n");
935 		return ret;
936 	}
937 
938 	ret = bme680_gas_config(data);
939 	if (ret < 0) {
940 		dev_err(dev, "failed to set gas config data\n");
941 		return ret;
942 	}
943 
944 	ret = bme680_read_calib(data, &data->bme680);
945 	if (ret < 0) {
946 		dev_err(dev,
947 			"failed to read calibration coefficients at probe\n");
948 		return ret;
949 	}
950 
951 	return devm_iio_device_register(dev, indio_dev);
952 }
953 EXPORT_SYMBOL_GPL(bme680_core_probe);
954 
955 MODULE_AUTHOR("Himanshu Jha <himanshujha199640@gmail.com>");
956 MODULE_DESCRIPTION("Bosch BME680 Driver");
957 MODULE_LICENSE("GPL v2");
958