1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * atlas-sensor.c - Support for Atlas Scientific OEM SM sensors 4 * 5 * Copyright (C) 2015-2019 Konsulko Group 6 * Author: Matt Ranostay <matt.ranostay@konsulko.com> 7 */ 8 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/interrupt.h> 12 #include <linux/delay.h> 13 #include <linux/mutex.h> 14 #include <linux/err.h> 15 #include <linux/irq.h> 16 #include <linux/irq_work.h> 17 #include <linux/i2c.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/regmap.h> 20 #include <linux/iio/iio.h> 21 #include <linux/iio/buffer.h> 22 #include <linux/iio/trigger.h> 23 #include <linux/iio/trigger_consumer.h> 24 #include <linux/iio/triggered_buffer.h> 25 #include <linux/pm_runtime.h> 26 27 #define ATLAS_REGMAP_NAME "atlas_regmap" 28 #define ATLAS_DRV_NAME "atlas" 29 30 #define ATLAS_REG_DEV_TYPE 0x00 31 #define ATLAS_REG_DEV_VERSION 0x01 32 33 #define ATLAS_REG_INT_CONTROL 0x04 34 #define ATLAS_REG_INT_CONTROL_EN BIT(3) 35 36 #define ATLAS_REG_PWR_CONTROL 0x06 37 38 #define ATLAS_REG_PH_CALIB_STATUS 0x0d 39 #define ATLAS_REG_PH_CALIB_STATUS_MASK 0x07 40 #define ATLAS_REG_PH_CALIB_STATUS_LOW BIT(0) 41 #define ATLAS_REG_PH_CALIB_STATUS_MID BIT(1) 42 #define ATLAS_REG_PH_CALIB_STATUS_HIGH BIT(2) 43 44 #define ATLAS_REG_EC_CALIB_STATUS 0x0f 45 #define ATLAS_REG_EC_CALIB_STATUS_MASK 0x0f 46 #define ATLAS_REG_EC_CALIB_STATUS_DRY BIT(0) 47 #define ATLAS_REG_EC_CALIB_STATUS_SINGLE BIT(1) 48 #define ATLAS_REG_EC_CALIB_STATUS_LOW BIT(2) 49 #define ATLAS_REG_EC_CALIB_STATUS_HIGH BIT(3) 50 51 #define ATLAS_REG_DO_CALIB_STATUS 0x09 52 #define ATLAS_REG_DO_CALIB_STATUS_MASK 0x03 53 #define ATLAS_REG_DO_CALIB_STATUS_PRESSURE BIT(0) 54 #define ATLAS_REG_DO_CALIB_STATUS_DO BIT(1) 55 56 #define ATLAS_REG_RTD_DATA 0x0e 57 58 #define ATLAS_REG_PH_TEMP_DATA 0x0e 59 #define ATLAS_REG_PH_DATA 0x16 60 61 #define ATLAS_REG_EC_PROBE 0x08 62 #define ATLAS_REG_EC_TEMP_DATA 0x10 63 #define ATLAS_REG_EC_DATA 0x18 64 #define ATLAS_REG_TDS_DATA 0x1c 65 #define ATLAS_REG_PSS_DATA 0x20 66 67 #define ATLAS_REG_ORP_CALIB_STATUS 0x0d 68 #define ATLAS_REG_ORP_DATA 0x0e 69 70 #define ATLAS_REG_DO_TEMP_DATA 0x12 71 #define ATLAS_REG_DO_DATA 0x22 72 73 #define ATLAS_PH_INT_TIME_IN_MS 450 74 #define ATLAS_EC_INT_TIME_IN_MS 650 75 #define ATLAS_ORP_INT_TIME_IN_MS 450 76 #define ATLAS_DO_INT_TIME_IN_MS 450 77 #define ATLAS_RTD_INT_TIME_IN_MS 450 78 79 enum { 80 ATLAS_PH_SM, 81 ATLAS_EC_SM, 82 ATLAS_ORP_SM, 83 ATLAS_DO_SM, 84 ATLAS_RTD_SM, 85 }; 86 87 struct atlas_data { 88 struct i2c_client *client; 89 struct iio_trigger *trig; 90 struct atlas_device *chip; 91 struct regmap *regmap; 92 struct irq_work work; 93 unsigned int interrupt_enabled; 94 /* 96-bit data + 32-bit pad + 64-bit timestamp */ 95 __be32 buffer[6] __aligned(8); 96 }; 97 98 static const struct regmap_config atlas_regmap_config = { 99 .name = ATLAS_REGMAP_NAME, 100 .reg_bits = 8, 101 .val_bits = 8, 102 }; 103 104 static int atlas_buffer_num_channels(const struct iio_chan_spec *spec) 105 { 106 int idx = 0; 107 108 for (; spec->type != IIO_TIMESTAMP; spec++) 109 idx++; 110 111 return idx; 112 }; 113 114 static const struct iio_chan_spec atlas_ph_channels[] = { 115 { 116 .type = IIO_PH, 117 .address = ATLAS_REG_PH_DATA, 118 .info_mask_separate = 119 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 120 .scan_index = 0, 121 .scan_type = { 122 .sign = 'u', 123 .realbits = 32, 124 .storagebits = 32, 125 .endianness = IIO_BE, 126 }, 127 }, 128 IIO_CHAN_SOFT_TIMESTAMP(1), 129 { 130 .type = IIO_TEMP, 131 .address = ATLAS_REG_PH_TEMP_DATA, 132 .info_mask_separate = 133 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 134 .output = 1, 135 .scan_index = -1 136 }, 137 }; 138 139 #define ATLAS_CONCENTRATION_CHANNEL(_idx, _addr) \ 140 {\ 141 .type = IIO_CONCENTRATION, \ 142 .indexed = 1, \ 143 .channel = _idx, \ 144 .address = _addr, \ 145 .info_mask_separate = \ 146 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), \ 147 .scan_index = _idx + 1, \ 148 .scan_type = { \ 149 .sign = 'u', \ 150 .realbits = 32, \ 151 .storagebits = 32, \ 152 .endianness = IIO_BE, \ 153 }, \ 154 } 155 156 static const struct iio_chan_spec atlas_ec_channels[] = { 157 { 158 .type = IIO_ELECTRICALCONDUCTIVITY, 159 .address = ATLAS_REG_EC_DATA, 160 .info_mask_separate = 161 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 162 .scan_index = 0, 163 .scan_type = { 164 .sign = 'u', 165 .realbits = 32, 166 .storagebits = 32, 167 .endianness = IIO_BE, 168 }, 169 }, 170 ATLAS_CONCENTRATION_CHANNEL(0, ATLAS_REG_TDS_DATA), 171 ATLAS_CONCENTRATION_CHANNEL(1, ATLAS_REG_PSS_DATA), 172 IIO_CHAN_SOFT_TIMESTAMP(3), 173 { 174 .type = IIO_TEMP, 175 .address = ATLAS_REG_EC_TEMP_DATA, 176 .info_mask_separate = 177 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 178 .output = 1, 179 .scan_index = -1 180 }, 181 }; 182 183 static const struct iio_chan_spec atlas_orp_channels[] = { 184 { 185 .type = IIO_VOLTAGE, 186 .address = ATLAS_REG_ORP_DATA, 187 .info_mask_separate = 188 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 189 .scan_index = 0, 190 .scan_type = { 191 .sign = 's', 192 .realbits = 32, 193 .storagebits = 32, 194 .endianness = IIO_BE, 195 }, 196 }, 197 IIO_CHAN_SOFT_TIMESTAMP(1), 198 }; 199 200 static const struct iio_chan_spec atlas_do_channels[] = { 201 { 202 .type = IIO_CONCENTRATION, 203 .address = ATLAS_REG_DO_DATA, 204 .info_mask_separate = 205 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 206 .scan_index = 0, 207 .scan_type = { 208 .sign = 'u', 209 .realbits = 32, 210 .storagebits = 32, 211 .endianness = IIO_BE, 212 }, 213 }, 214 IIO_CHAN_SOFT_TIMESTAMP(1), 215 { 216 .type = IIO_TEMP, 217 .address = ATLAS_REG_DO_TEMP_DATA, 218 .info_mask_separate = 219 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 220 .output = 1, 221 .scan_index = -1 222 }, 223 }; 224 225 static const struct iio_chan_spec atlas_rtd_channels[] = { 226 { 227 .type = IIO_TEMP, 228 .address = ATLAS_REG_RTD_DATA, 229 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), 230 .scan_index = 0, 231 .scan_type = { 232 .sign = 's', 233 .realbits = 32, 234 .storagebits = 32, 235 .endianness = IIO_BE, 236 }, 237 }, 238 IIO_CHAN_SOFT_TIMESTAMP(1), 239 }; 240 241 static int atlas_check_ph_calibration(struct atlas_data *data) 242 { 243 struct device *dev = &data->client->dev; 244 int ret; 245 unsigned int val; 246 247 ret = regmap_read(data->regmap, ATLAS_REG_PH_CALIB_STATUS, &val); 248 if (ret) 249 return ret; 250 251 if (!(val & ATLAS_REG_PH_CALIB_STATUS_MASK)) { 252 dev_warn(dev, "device has not been calibrated\n"); 253 return 0; 254 } 255 256 if (!(val & ATLAS_REG_PH_CALIB_STATUS_LOW)) 257 dev_warn(dev, "device missing low point calibration\n"); 258 259 if (!(val & ATLAS_REG_PH_CALIB_STATUS_MID)) 260 dev_warn(dev, "device missing mid point calibration\n"); 261 262 if (!(val & ATLAS_REG_PH_CALIB_STATUS_HIGH)) 263 dev_warn(dev, "device missing high point calibration\n"); 264 265 return 0; 266 } 267 268 static int atlas_check_ec_calibration(struct atlas_data *data) 269 { 270 struct device *dev = &data->client->dev; 271 int ret; 272 unsigned int val; 273 __be16 rval; 274 275 ret = regmap_bulk_read(data->regmap, ATLAS_REG_EC_PROBE, &rval, 2); 276 if (ret) 277 return ret; 278 279 val = be16_to_cpu(rval); 280 dev_info(dev, "probe set to K = %d.%.2d", val / 100, val % 100); 281 282 ret = regmap_read(data->regmap, ATLAS_REG_EC_CALIB_STATUS, &val); 283 if (ret) 284 return ret; 285 286 if (!(val & ATLAS_REG_EC_CALIB_STATUS_MASK)) { 287 dev_warn(dev, "device has not been calibrated\n"); 288 return 0; 289 } 290 291 if (!(val & ATLAS_REG_EC_CALIB_STATUS_DRY)) 292 dev_warn(dev, "device missing dry point calibration\n"); 293 294 if (val & ATLAS_REG_EC_CALIB_STATUS_SINGLE) { 295 dev_warn(dev, "device using single point calibration\n"); 296 } else { 297 if (!(val & ATLAS_REG_EC_CALIB_STATUS_LOW)) 298 dev_warn(dev, "device missing low point calibration\n"); 299 300 if (!(val & ATLAS_REG_EC_CALIB_STATUS_HIGH)) 301 dev_warn(dev, "device missing high point calibration\n"); 302 } 303 304 return 0; 305 } 306 307 static int atlas_check_orp_calibration(struct atlas_data *data) 308 { 309 struct device *dev = &data->client->dev; 310 int ret; 311 unsigned int val; 312 313 ret = regmap_read(data->regmap, ATLAS_REG_ORP_CALIB_STATUS, &val); 314 if (ret) 315 return ret; 316 317 if (!val) 318 dev_warn(dev, "device has not been calibrated\n"); 319 320 return 0; 321 } 322 323 static int atlas_check_do_calibration(struct atlas_data *data) 324 { 325 struct device *dev = &data->client->dev; 326 int ret; 327 unsigned int val; 328 329 ret = regmap_read(data->regmap, ATLAS_REG_DO_CALIB_STATUS, &val); 330 if (ret) 331 return ret; 332 333 if (!(val & ATLAS_REG_DO_CALIB_STATUS_MASK)) { 334 dev_warn(dev, "device has not been calibrated\n"); 335 return 0; 336 } 337 338 if (!(val & ATLAS_REG_DO_CALIB_STATUS_PRESSURE)) 339 dev_warn(dev, "device missing atmospheric pressure calibration\n"); 340 341 if (!(val & ATLAS_REG_DO_CALIB_STATUS_DO)) 342 dev_warn(dev, "device missing dissolved oxygen calibration\n"); 343 344 return 0; 345 } 346 347 struct atlas_device { 348 const struct iio_chan_spec *channels; 349 int num_channels; 350 int data_reg; 351 352 int (*calibration)(struct atlas_data *data); 353 int delay; 354 }; 355 356 static struct atlas_device atlas_devices[] = { 357 [ATLAS_PH_SM] = { 358 .channels = atlas_ph_channels, 359 .num_channels = 3, 360 .data_reg = ATLAS_REG_PH_DATA, 361 .calibration = &atlas_check_ph_calibration, 362 .delay = ATLAS_PH_INT_TIME_IN_MS, 363 }, 364 [ATLAS_EC_SM] = { 365 .channels = atlas_ec_channels, 366 .num_channels = 5, 367 .data_reg = ATLAS_REG_EC_DATA, 368 .calibration = &atlas_check_ec_calibration, 369 .delay = ATLAS_EC_INT_TIME_IN_MS, 370 }, 371 [ATLAS_ORP_SM] = { 372 .channels = atlas_orp_channels, 373 .num_channels = 2, 374 .data_reg = ATLAS_REG_ORP_DATA, 375 .calibration = &atlas_check_orp_calibration, 376 .delay = ATLAS_ORP_INT_TIME_IN_MS, 377 }, 378 [ATLAS_DO_SM] = { 379 .channels = atlas_do_channels, 380 .num_channels = 3, 381 .data_reg = ATLAS_REG_DO_DATA, 382 .calibration = &atlas_check_do_calibration, 383 .delay = ATLAS_DO_INT_TIME_IN_MS, 384 }, 385 [ATLAS_RTD_SM] = { 386 .channels = atlas_rtd_channels, 387 .num_channels = 2, 388 .data_reg = ATLAS_REG_RTD_DATA, 389 .delay = ATLAS_RTD_INT_TIME_IN_MS, 390 }, 391 }; 392 393 static int atlas_set_powermode(struct atlas_data *data, int on) 394 { 395 return regmap_write(data->regmap, ATLAS_REG_PWR_CONTROL, on); 396 } 397 398 static int atlas_set_interrupt(struct atlas_data *data, bool state) 399 { 400 if (!data->interrupt_enabled) 401 return 0; 402 403 return regmap_update_bits(data->regmap, ATLAS_REG_INT_CONTROL, 404 ATLAS_REG_INT_CONTROL_EN, 405 state ? ATLAS_REG_INT_CONTROL_EN : 0); 406 } 407 408 static int atlas_buffer_postenable(struct iio_dev *indio_dev) 409 { 410 struct atlas_data *data = iio_priv(indio_dev); 411 int ret; 412 413 ret = pm_runtime_resume_and_get(&data->client->dev); 414 if (ret) 415 return ret; 416 417 return atlas_set_interrupt(data, true); 418 } 419 420 static int atlas_buffer_predisable(struct iio_dev *indio_dev) 421 { 422 struct atlas_data *data = iio_priv(indio_dev); 423 int ret; 424 425 ret = atlas_set_interrupt(data, false); 426 if (ret) 427 return ret; 428 429 pm_runtime_mark_last_busy(&data->client->dev); 430 ret = pm_runtime_put_autosuspend(&data->client->dev); 431 if (ret) 432 return ret; 433 434 return 0; 435 } 436 437 static const struct iio_buffer_setup_ops atlas_buffer_setup_ops = { 438 .postenable = atlas_buffer_postenable, 439 .predisable = atlas_buffer_predisable, 440 }; 441 442 static void atlas_work_handler(struct irq_work *work) 443 { 444 struct atlas_data *data = container_of(work, struct atlas_data, work); 445 446 iio_trigger_poll(data->trig); 447 } 448 449 static irqreturn_t atlas_trigger_handler(int irq, void *private) 450 { 451 struct iio_poll_func *pf = private; 452 struct iio_dev *indio_dev = pf->indio_dev; 453 struct atlas_data *data = iio_priv(indio_dev); 454 int channels = atlas_buffer_num_channels(data->chip->channels); 455 int ret; 456 457 ret = regmap_bulk_read(data->regmap, data->chip->data_reg, 458 &data->buffer, sizeof(__be32) * channels); 459 460 if (!ret) 461 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer, 462 iio_get_time_ns(indio_dev)); 463 464 iio_trigger_notify_done(indio_dev->trig); 465 466 return IRQ_HANDLED; 467 } 468 469 static irqreturn_t atlas_interrupt_handler(int irq, void *private) 470 { 471 struct iio_dev *indio_dev = private; 472 struct atlas_data *data = iio_priv(indio_dev); 473 474 irq_work_queue(&data->work); 475 476 return IRQ_HANDLED; 477 } 478 479 static int atlas_read_measurement(struct atlas_data *data, int reg, __be32 *val) 480 { 481 struct device *dev = &data->client->dev; 482 int suspended = pm_runtime_suspended(dev); 483 int ret; 484 485 ret = pm_runtime_resume_and_get(dev); 486 if (ret) 487 return ret; 488 489 if (suspended) 490 msleep(data->chip->delay); 491 492 ret = regmap_bulk_read(data->regmap, reg, val, sizeof(*val)); 493 494 pm_runtime_mark_last_busy(dev); 495 pm_runtime_put_autosuspend(dev); 496 497 return ret; 498 } 499 500 static int atlas_read_raw(struct iio_dev *indio_dev, 501 struct iio_chan_spec const *chan, 502 int *val, int *val2, long mask) 503 { 504 struct atlas_data *data = iio_priv(indio_dev); 505 506 switch (mask) { 507 case IIO_CHAN_INFO_PROCESSED: 508 case IIO_CHAN_INFO_RAW: { 509 int ret; 510 __be32 reg; 511 512 switch (chan->type) { 513 case IIO_TEMP: 514 ret = regmap_bulk_read(data->regmap, chan->address, 515 ®, sizeof(reg)); 516 break; 517 case IIO_PH: 518 case IIO_CONCENTRATION: 519 case IIO_ELECTRICALCONDUCTIVITY: 520 case IIO_VOLTAGE: 521 ret = iio_device_claim_direct_mode(indio_dev); 522 if (ret) 523 return ret; 524 525 ret = atlas_read_measurement(data, chan->address, ®); 526 527 iio_device_release_direct_mode(indio_dev); 528 break; 529 default: 530 ret = -EINVAL; 531 } 532 533 if (!ret) { 534 *val = be32_to_cpu(reg); 535 ret = IIO_VAL_INT; 536 } 537 return ret; 538 } 539 case IIO_CHAN_INFO_SCALE: 540 switch (chan->type) { 541 case IIO_TEMP: 542 *val = 10; 543 return IIO_VAL_INT; 544 case IIO_PH: 545 *val = 1; /* 0.001 */ 546 *val2 = 1000; 547 break; 548 case IIO_ELECTRICALCONDUCTIVITY: 549 *val = 1; /* 0.00001 */ 550 *val2 = 100000; 551 break; 552 case IIO_CONCENTRATION: 553 *val = 0; /* 0.000000001 */ 554 *val2 = 1000; 555 return IIO_VAL_INT_PLUS_NANO; 556 case IIO_VOLTAGE: 557 *val = 1; /* 0.1 */ 558 *val2 = 10; 559 break; 560 default: 561 return -EINVAL; 562 } 563 return IIO_VAL_FRACTIONAL; 564 } 565 566 return -EINVAL; 567 } 568 569 static int atlas_write_raw(struct iio_dev *indio_dev, 570 struct iio_chan_spec const *chan, 571 int val, int val2, long mask) 572 { 573 struct atlas_data *data = iio_priv(indio_dev); 574 __be32 reg = cpu_to_be32(val / 10); 575 576 if (val2 != 0 || val < 0 || val > 20000) 577 return -EINVAL; 578 579 if (mask != IIO_CHAN_INFO_RAW || chan->type != IIO_TEMP) 580 return -EINVAL; 581 582 return regmap_bulk_write(data->regmap, chan->address, 583 ®, sizeof(reg)); 584 } 585 586 static const struct iio_info atlas_info = { 587 .read_raw = atlas_read_raw, 588 .write_raw = atlas_write_raw, 589 }; 590 591 static const struct i2c_device_id atlas_id[] = { 592 { "atlas-ph-sm", ATLAS_PH_SM }, 593 { "atlas-ec-sm", ATLAS_EC_SM }, 594 { "atlas-orp-sm", ATLAS_ORP_SM }, 595 { "atlas-do-sm", ATLAS_DO_SM }, 596 { "atlas-rtd-sm", ATLAS_RTD_SM }, 597 {} 598 }; 599 MODULE_DEVICE_TABLE(i2c, atlas_id); 600 601 static const struct of_device_id atlas_dt_ids[] = { 602 { .compatible = "atlas,ph-sm", .data = (void *)ATLAS_PH_SM, }, 603 { .compatible = "atlas,ec-sm", .data = (void *)ATLAS_EC_SM, }, 604 { .compatible = "atlas,orp-sm", .data = (void *)ATLAS_ORP_SM, }, 605 { .compatible = "atlas,do-sm", .data = (void *)ATLAS_DO_SM, }, 606 { .compatible = "atlas,rtd-sm", .data = (void *)ATLAS_RTD_SM, }, 607 { } 608 }; 609 MODULE_DEVICE_TABLE(of, atlas_dt_ids); 610 611 static int atlas_probe(struct i2c_client *client, 612 const struct i2c_device_id *id) 613 { 614 struct atlas_data *data; 615 struct atlas_device *chip; 616 struct iio_trigger *trig; 617 struct iio_dev *indio_dev; 618 int ret; 619 620 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); 621 if (!indio_dev) 622 return -ENOMEM; 623 624 if (!dev_fwnode(&client->dev)) 625 chip = &atlas_devices[id->driver_data]; 626 else 627 chip = &atlas_devices[(unsigned long)device_get_match_data(&client->dev)]; 628 629 indio_dev->info = &atlas_info; 630 indio_dev->name = ATLAS_DRV_NAME; 631 indio_dev->channels = chip->channels; 632 indio_dev->num_channels = chip->num_channels; 633 indio_dev->modes = INDIO_BUFFER_SOFTWARE | INDIO_DIRECT_MODE; 634 635 trig = devm_iio_trigger_alloc(&client->dev, "%s-dev%d", 636 indio_dev->name, iio_device_id(indio_dev)); 637 638 if (!trig) 639 return -ENOMEM; 640 641 data = iio_priv(indio_dev); 642 data->client = client; 643 data->trig = trig; 644 data->chip = chip; 645 iio_trigger_set_drvdata(trig, indio_dev); 646 647 i2c_set_clientdata(client, indio_dev); 648 649 data->regmap = devm_regmap_init_i2c(client, &atlas_regmap_config); 650 if (IS_ERR(data->regmap)) { 651 dev_err(&client->dev, "regmap initialization failed\n"); 652 return PTR_ERR(data->regmap); 653 } 654 655 ret = pm_runtime_set_active(&client->dev); 656 if (ret) 657 return ret; 658 659 ret = chip->calibration(data); 660 if (ret) 661 return ret; 662 663 ret = iio_trigger_register(trig); 664 if (ret) { 665 dev_err(&client->dev, "failed to register trigger\n"); 666 return ret; 667 } 668 669 ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time, 670 &atlas_trigger_handler, &atlas_buffer_setup_ops); 671 if (ret) { 672 dev_err(&client->dev, "cannot setup iio trigger\n"); 673 goto unregister_trigger; 674 } 675 676 init_irq_work(&data->work, atlas_work_handler); 677 678 if (client->irq > 0) { 679 /* interrupt pin toggles on new conversion */ 680 ret = devm_request_threaded_irq(&client->dev, client->irq, 681 NULL, atlas_interrupt_handler, 682 IRQF_TRIGGER_RISING | 683 IRQF_TRIGGER_FALLING | IRQF_ONESHOT, 684 "atlas_irq", 685 indio_dev); 686 687 if (ret) 688 dev_warn(&client->dev, 689 "request irq (%d) failed\n", client->irq); 690 else 691 data->interrupt_enabled = 1; 692 } 693 694 ret = atlas_set_powermode(data, 1); 695 if (ret) { 696 dev_err(&client->dev, "cannot power device on"); 697 goto unregister_buffer; 698 } 699 700 pm_runtime_enable(&client->dev); 701 pm_runtime_set_autosuspend_delay(&client->dev, 2500); 702 pm_runtime_use_autosuspend(&client->dev); 703 704 ret = iio_device_register(indio_dev); 705 if (ret) { 706 dev_err(&client->dev, "unable to register device\n"); 707 goto unregister_pm; 708 } 709 710 return 0; 711 712 unregister_pm: 713 pm_runtime_disable(&client->dev); 714 atlas_set_powermode(data, 0); 715 716 unregister_buffer: 717 iio_triggered_buffer_cleanup(indio_dev); 718 719 unregister_trigger: 720 iio_trigger_unregister(data->trig); 721 722 return ret; 723 } 724 725 static int atlas_remove(struct i2c_client *client) 726 { 727 struct iio_dev *indio_dev = i2c_get_clientdata(client); 728 struct atlas_data *data = iio_priv(indio_dev); 729 730 iio_device_unregister(indio_dev); 731 iio_triggered_buffer_cleanup(indio_dev); 732 iio_trigger_unregister(data->trig); 733 734 pm_runtime_disable(&client->dev); 735 pm_runtime_set_suspended(&client->dev); 736 737 return atlas_set_powermode(data, 0); 738 } 739 740 static int atlas_runtime_suspend(struct device *dev) 741 { 742 struct atlas_data *data = 743 iio_priv(i2c_get_clientdata(to_i2c_client(dev))); 744 745 return atlas_set_powermode(data, 0); 746 } 747 748 static int atlas_runtime_resume(struct device *dev) 749 { 750 struct atlas_data *data = 751 iio_priv(i2c_get_clientdata(to_i2c_client(dev))); 752 753 return atlas_set_powermode(data, 1); 754 } 755 756 static const struct dev_pm_ops atlas_pm_ops = { 757 RUNTIME_PM_OPS(atlas_runtime_suspend, atlas_runtime_resume, NULL) 758 }; 759 760 static struct i2c_driver atlas_driver = { 761 .driver = { 762 .name = ATLAS_DRV_NAME, 763 .of_match_table = atlas_dt_ids, 764 .pm = pm_ptr(&atlas_pm_ops), 765 }, 766 .probe = atlas_probe, 767 .remove = atlas_remove, 768 .id_table = atlas_id, 769 }; 770 module_i2c_driver(atlas_driver); 771 772 MODULE_AUTHOR("Matt Ranostay <matt.ranostay@konsulko.com>"); 773 MODULE_DESCRIPTION("Atlas Scientific SM sensors"); 774 MODULE_LICENSE("GPL"); 775