1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * AD7150 capacitive sensor driver supporting AD7150/1/6 4 * 5 * Copyright 2010-2011 Analog Devices Inc. 6 * Copyright 2021 Jonathan Cameron <Jonathan.Cameron@huawei.com> 7 */ 8 9 #include <linux/bitfield.h> 10 #include <linux/device.h> 11 #include <linux/interrupt.h> 12 #include <linux/irq.h> 13 #include <linux/i2c.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/mod_devicetable.h> 17 #include <linux/regulator/consumer.h> 18 #include <linux/slab.h> 19 20 #include <linux/iio/iio.h> 21 #include <linux/iio/sysfs.h> 22 #include <linux/iio/events.h> 23 24 #define AD7150_STATUS_REG 0 25 #define AD7150_STATUS_OUT1 BIT(3) 26 #define AD7150_STATUS_OUT2 BIT(5) 27 #define AD7150_CH1_DATA_HIGH_REG 1 28 #define AD7150_CH2_DATA_HIGH_REG 3 29 #define AD7150_CH1_AVG_HIGH_REG 5 30 #define AD7150_CH2_AVG_HIGH_REG 7 31 #define AD7150_CH1_SENSITIVITY_REG 9 32 #define AD7150_CH1_THR_HOLD_H_REG 9 33 #define AD7150_CH1_TIMEOUT_REG 10 34 #define AD7150_CH_TIMEOUT_RECEDING GENMASK(3, 0) 35 #define AD7150_CH_TIMEOUT_APPROACHING GENMASK(7, 4) 36 #define AD7150_CH1_SETUP_REG 11 37 #define AD7150_CH2_SENSITIVITY_REG 12 38 #define AD7150_CH2_THR_HOLD_H_REG 12 39 #define AD7150_CH2_TIMEOUT_REG 13 40 #define AD7150_CH2_SETUP_REG 14 41 #define AD7150_CFG_REG 15 42 #define AD7150_CFG_FIX BIT(7) 43 #define AD7150_CFG_THRESHTYPE_MSK GENMASK(6, 5) 44 #define AD7150_CFG_TT_NEG 0x0 45 #define AD7150_CFG_TT_POS 0x1 46 #define AD7150_CFG_TT_IN_WINDOW 0x2 47 #define AD7150_CFG_TT_OUT_WINDOW 0x3 48 #define AD7150_PD_TIMER_REG 16 49 #define AD7150_CH1_CAPDAC_REG 17 50 #define AD7150_CH2_CAPDAC_REG 18 51 #define AD7150_SN3_REG 19 52 #define AD7150_SN2_REG 20 53 #define AD7150_SN1_REG 21 54 #define AD7150_SN0_REG 22 55 #define AD7150_ID_REG 23 56 57 enum { 58 AD7150, 59 AD7151, 60 }; 61 62 /** 63 * struct ad7150_chip_info - instance specific chip data 64 * @client: i2c client for this device 65 * @threshold: thresholds for simple capacitance value events 66 * @thresh_sensitivity: threshold for simple capacitance offset 67 * from 'average' value. 68 * @thresh_timeout: a timeout, in samples from the moment an 69 * adaptive threshold event occurs to when the average 70 * value jumps to current value. Note made up of two fields, 71 * 3:0 are for timeout receding - applies if below lower threshold 72 * 7:4 are for timeout approaching - applies if above upper threshold 73 * @state_lock: ensure consistent state of this structure wrt the 74 * hardware. 75 * @interrupts: one or two interrupt numbers depending on device type. 76 * @int_enabled: is a given interrupt currently enabled. 77 * @type: threshold type 78 * @dir: threshold direction 79 */ 80 struct ad7150_chip_info { 81 struct i2c_client *client; 82 u16 threshold[2][2]; 83 u8 thresh_sensitivity[2][2]; 84 u8 thresh_timeout[2][2]; 85 struct mutex state_lock; 86 int interrupts[2]; 87 bool int_enabled[2]; 88 enum iio_event_type type; 89 enum iio_event_direction dir; 90 }; 91 92 static const u8 ad7150_addresses[][6] = { 93 { AD7150_CH1_DATA_HIGH_REG, AD7150_CH1_AVG_HIGH_REG, 94 AD7150_CH1_SETUP_REG, AD7150_CH1_THR_HOLD_H_REG, 95 AD7150_CH1_SENSITIVITY_REG, AD7150_CH1_TIMEOUT_REG }, 96 { AD7150_CH2_DATA_HIGH_REG, AD7150_CH2_AVG_HIGH_REG, 97 AD7150_CH2_SETUP_REG, AD7150_CH2_THR_HOLD_H_REG, 98 AD7150_CH2_SENSITIVITY_REG, AD7150_CH2_TIMEOUT_REG }, 99 }; 100 101 static int ad7150_read_raw(struct iio_dev *indio_dev, 102 struct iio_chan_spec const *chan, 103 int *val, 104 int *val2, 105 long mask) 106 { 107 struct ad7150_chip_info *chip = iio_priv(indio_dev); 108 int channel = chan->channel; 109 int ret; 110 111 switch (mask) { 112 case IIO_CHAN_INFO_RAW: 113 ret = i2c_smbus_read_word_swapped(chip->client, 114 ad7150_addresses[channel][0]); 115 if (ret < 0) 116 return ret; 117 *val = ret >> 4; 118 119 return IIO_VAL_INT; 120 case IIO_CHAN_INFO_AVERAGE_RAW: 121 ret = i2c_smbus_read_word_swapped(chip->client, 122 ad7150_addresses[channel][1]); 123 if (ret < 0) 124 return ret; 125 *val = ret; 126 127 return IIO_VAL_INT; 128 case IIO_CHAN_INFO_SCALE: 129 /* 130 * Base units for capacitance are nano farads and the value 131 * calculated from the datasheet formula is in picofarad 132 * so multiply by 1000 133 */ 134 *val = 1000; 135 *val2 = 40944 >> 4; /* To match shift in _RAW */ 136 return IIO_VAL_FRACTIONAL; 137 case IIO_CHAN_INFO_OFFSET: 138 *val = -(12288 >> 4); /* To match shift in _RAW */ 139 return IIO_VAL_INT; 140 case IIO_CHAN_INFO_SAMP_FREQ: 141 /* Strangely same for both 1 and 2 chan parts */ 142 *val = 100; 143 return IIO_VAL_INT; 144 default: 145 return -EINVAL; 146 } 147 } 148 149 static int ad7150_read_event_config(struct iio_dev *indio_dev, 150 const struct iio_chan_spec *chan, 151 enum iio_event_type type, 152 enum iio_event_direction dir) 153 { 154 struct ad7150_chip_info *chip = iio_priv(indio_dev); 155 u8 threshtype; 156 bool thrfixed; 157 int ret; 158 159 ret = i2c_smbus_read_byte_data(chip->client, AD7150_CFG_REG); 160 if (ret < 0) 161 return ret; 162 163 threshtype = FIELD_GET(AD7150_CFG_THRESHTYPE_MSK, ret); 164 165 /*check if threshold mode is fixed or adaptive*/ 166 thrfixed = FIELD_GET(AD7150_CFG_FIX, ret); 167 168 switch (type) { 169 case IIO_EV_TYPE_THRESH_ADAPTIVE: 170 if (dir == IIO_EV_DIR_RISING) 171 return !thrfixed && (threshtype == AD7150_CFG_TT_POS); 172 return !thrfixed && (threshtype == AD7150_CFG_TT_NEG); 173 case IIO_EV_TYPE_THRESH: 174 if (dir == IIO_EV_DIR_RISING) 175 return thrfixed && (threshtype == AD7150_CFG_TT_POS); 176 return thrfixed && (threshtype == AD7150_CFG_TT_NEG); 177 default: 178 break; 179 } 180 return -EINVAL; 181 } 182 183 /* state_lock should be held to ensure consistent state */ 184 static int ad7150_write_event_params(struct iio_dev *indio_dev, 185 unsigned int chan, 186 enum iio_event_type type, 187 enum iio_event_direction dir) 188 { 189 struct ad7150_chip_info *chip = iio_priv(indio_dev); 190 int rising = (dir == IIO_EV_DIR_RISING); 191 192 /* Only update value live, if parameter is in use */ 193 if ((type != chip->type) || (dir != chip->dir)) 194 return 0; 195 196 switch (type) { 197 /* Note completely different from the adaptive versions */ 198 case IIO_EV_TYPE_THRESH: { 199 u16 value = chip->threshold[rising][chan]; 200 return i2c_smbus_write_word_swapped(chip->client, 201 ad7150_addresses[chan][3], 202 value); 203 } 204 case IIO_EV_TYPE_THRESH_ADAPTIVE: { 205 int ret; 206 u8 sens, timeout; 207 208 sens = chip->thresh_sensitivity[rising][chan]; 209 ret = i2c_smbus_write_byte_data(chip->client, 210 ad7150_addresses[chan][4], 211 sens); 212 if (ret) 213 return ret; 214 215 /* 216 * Single timeout register contains timeouts for both 217 * directions. 218 */ 219 timeout = FIELD_PREP(AD7150_CH_TIMEOUT_APPROACHING, 220 chip->thresh_timeout[1][chan]); 221 timeout |= FIELD_PREP(AD7150_CH_TIMEOUT_RECEDING, 222 chip->thresh_timeout[0][chan]); 223 return i2c_smbus_write_byte_data(chip->client, 224 ad7150_addresses[chan][5], 225 timeout); 226 } 227 default: 228 return -EINVAL; 229 } 230 } 231 232 static int ad7150_write_event_config(struct iio_dev *indio_dev, 233 const struct iio_chan_spec *chan, 234 enum iio_event_type type, 235 enum iio_event_direction dir, int state) 236 { 237 struct ad7150_chip_info *chip = iio_priv(indio_dev); 238 int ret = 0; 239 240 /* 241 * There is only a single shared control and no on chip 242 * interrupt disables for the two interrupt lines. 243 * So, enabling will switch the events configured to enable 244 * whatever was most recently requested and if necessary enable_irq() 245 * the interrupt and any disable will disable_irq() for that 246 * channels interrupt. 247 */ 248 if (!state) { 249 if ((chip->int_enabled[chan->channel]) && 250 (type == chip->type) && (dir == chip->dir)) { 251 disable_irq(chip->interrupts[chan->channel]); 252 chip->int_enabled[chan->channel] = false; 253 } 254 return 0; 255 } 256 257 mutex_lock(&chip->state_lock); 258 if ((type != chip->type) || (dir != chip->dir)) { 259 int rising = (dir == IIO_EV_DIR_RISING); 260 u8 thresh_type, cfg, fixed; 261 262 /* 263 * Need to temporarily disable both interrupts if 264 * enabled - this is to avoid races around changing 265 * config and thresholds. 266 * Note enable/disable_irq() are reference counted so 267 * no need to check if already enabled. 268 */ 269 disable_irq(chip->interrupts[0]); 270 disable_irq(chip->interrupts[1]); 271 272 ret = i2c_smbus_read_byte_data(chip->client, AD7150_CFG_REG); 273 if (ret < 0) 274 goto error_ret; 275 276 cfg = ret & ~(AD7150_CFG_THRESHTYPE_MSK | AD7150_CFG_FIX); 277 278 if (type == IIO_EV_TYPE_THRESH_ADAPTIVE) 279 fixed = 0; 280 else 281 fixed = 1; 282 283 if (rising) 284 thresh_type = AD7150_CFG_TT_POS; 285 else 286 thresh_type = AD7150_CFG_TT_NEG; 287 288 cfg |= FIELD_PREP(AD7150_CFG_FIX, fixed) | 289 FIELD_PREP(AD7150_CFG_THRESHTYPE_MSK, thresh_type); 290 291 ret = i2c_smbus_write_byte_data(chip->client, AD7150_CFG_REG, 292 cfg); 293 if (ret < 0) 294 goto error_ret; 295 296 /* 297 * There is a potential race condition here, but not easy 298 * to close given we can't disable the interrupt at the 299 * chip side of things. Rely on the status bit. 300 */ 301 chip->type = type; 302 chip->dir = dir; 303 304 /* update control attributes */ 305 ret = ad7150_write_event_params(indio_dev, chan->channel, type, 306 dir); 307 if (ret) 308 goto error_ret; 309 /* reenable any irq's we disabled whilst changing mode */ 310 enable_irq(chip->interrupts[0]); 311 enable_irq(chip->interrupts[1]); 312 } 313 if (!chip->int_enabled[chan->channel]) { 314 enable_irq(chip->interrupts[chan->channel]); 315 chip->int_enabled[chan->channel] = true; 316 } 317 318 error_ret: 319 mutex_unlock(&chip->state_lock); 320 321 return ret; 322 } 323 324 static int ad7150_read_event_value(struct iio_dev *indio_dev, 325 const struct iio_chan_spec *chan, 326 enum iio_event_type type, 327 enum iio_event_direction dir, 328 enum iio_event_info info, 329 int *val, int *val2) 330 { 331 struct ad7150_chip_info *chip = iio_priv(indio_dev); 332 int rising = (dir == IIO_EV_DIR_RISING); 333 334 /* Complex register sharing going on here */ 335 switch (info) { 336 case IIO_EV_INFO_VALUE: 337 switch (type) { 338 case IIO_EV_TYPE_THRESH_ADAPTIVE: 339 *val = chip->thresh_sensitivity[rising][chan->channel]; 340 return IIO_VAL_INT; 341 case IIO_EV_TYPE_THRESH: 342 *val = chip->threshold[rising][chan->channel]; 343 return IIO_VAL_INT; 344 default: 345 return -EINVAL; 346 } 347 case IIO_EV_INFO_TIMEOUT: 348 *val = 0; 349 *val2 = chip->thresh_timeout[rising][chan->channel] * 10000; 350 return IIO_VAL_INT_PLUS_MICRO; 351 default: 352 return -EINVAL; 353 } 354 } 355 356 static int ad7150_write_event_value(struct iio_dev *indio_dev, 357 const struct iio_chan_spec *chan, 358 enum iio_event_type type, 359 enum iio_event_direction dir, 360 enum iio_event_info info, 361 int val, int val2) 362 { 363 int ret; 364 struct ad7150_chip_info *chip = iio_priv(indio_dev); 365 int rising = (dir == IIO_EV_DIR_RISING); 366 367 mutex_lock(&chip->state_lock); 368 switch (info) { 369 case IIO_EV_INFO_VALUE: 370 switch (type) { 371 case IIO_EV_TYPE_THRESH_ADAPTIVE: 372 chip->thresh_sensitivity[rising][chan->channel] = val; 373 break; 374 case IIO_EV_TYPE_THRESH: 375 chip->threshold[rising][chan->channel] = val; 376 break; 377 default: 378 ret = -EINVAL; 379 goto error_ret; 380 } 381 break; 382 case IIO_EV_INFO_TIMEOUT: { 383 /* 384 * Raw timeout is in cycles of 10 msecs as long as both 385 * channels are enabled. 386 * In terms of INT_PLUS_MICRO, that is in units of 10,000 387 */ 388 int timeout = val2 / 10000; 389 390 if (val != 0 || timeout < 0 || timeout > 15 || val2 % 10000) { 391 ret = -EINVAL; 392 goto error_ret; 393 } 394 395 chip->thresh_timeout[rising][chan->channel] = timeout; 396 break; 397 } 398 default: 399 ret = -EINVAL; 400 goto error_ret; 401 } 402 403 /* write back if active */ 404 ret = ad7150_write_event_params(indio_dev, chan->channel, type, dir); 405 406 error_ret: 407 mutex_unlock(&chip->state_lock); 408 return ret; 409 } 410 411 static const struct iio_event_spec ad7150_events[] = { 412 { 413 .type = IIO_EV_TYPE_THRESH, 414 .dir = IIO_EV_DIR_RISING, 415 .mask_separate = BIT(IIO_EV_INFO_VALUE) | 416 BIT(IIO_EV_INFO_ENABLE), 417 }, { 418 .type = IIO_EV_TYPE_THRESH, 419 .dir = IIO_EV_DIR_FALLING, 420 .mask_separate = BIT(IIO_EV_INFO_VALUE) | 421 BIT(IIO_EV_INFO_ENABLE), 422 }, { 423 .type = IIO_EV_TYPE_THRESH_ADAPTIVE, 424 .dir = IIO_EV_DIR_RISING, 425 .mask_separate = BIT(IIO_EV_INFO_VALUE) | 426 BIT(IIO_EV_INFO_ENABLE) | 427 BIT(IIO_EV_INFO_TIMEOUT), 428 }, { 429 .type = IIO_EV_TYPE_THRESH_ADAPTIVE, 430 .dir = IIO_EV_DIR_FALLING, 431 .mask_separate = BIT(IIO_EV_INFO_VALUE) | 432 BIT(IIO_EV_INFO_ENABLE) | 433 BIT(IIO_EV_INFO_TIMEOUT), 434 }, 435 }; 436 437 #define AD7150_CAPACITANCE_CHAN(_chan) { \ 438 .type = IIO_CAPACITANCE, \ 439 .indexed = 1, \ 440 .channel = _chan, \ 441 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 442 BIT(IIO_CHAN_INFO_AVERAGE_RAW), \ 443 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ 444 BIT(IIO_CHAN_INFO_OFFSET), \ 445 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\ 446 .event_spec = ad7150_events, \ 447 .num_event_specs = ARRAY_SIZE(ad7150_events), \ 448 } 449 450 #define AD7150_CAPACITANCE_CHAN_NO_IRQ(_chan) { \ 451 .type = IIO_CAPACITANCE, \ 452 .indexed = 1, \ 453 .channel = _chan, \ 454 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 455 BIT(IIO_CHAN_INFO_AVERAGE_RAW), \ 456 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ 457 BIT(IIO_CHAN_INFO_OFFSET), \ 458 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\ 459 } 460 461 static const struct iio_chan_spec ad7150_channels[] = { 462 AD7150_CAPACITANCE_CHAN(0), 463 AD7150_CAPACITANCE_CHAN(1), 464 }; 465 466 static const struct iio_chan_spec ad7150_channels_no_irq[] = { 467 AD7150_CAPACITANCE_CHAN_NO_IRQ(0), 468 AD7150_CAPACITANCE_CHAN_NO_IRQ(1), 469 }; 470 471 static const struct iio_chan_spec ad7151_channels[] = { 472 AD7150_CAPACITANCE_CHAN(0), 473 }; 474 475 static const struct iio_chan_spec ad7151_channels_no_irq[] = { 476 AD7150_CAPACITANCE_CHAN_NO_IRQ(0), 477 }; 478 479 static irqreturn_t __ad7150_event_handler(void *private, u8 status_mask, 480 int channel) 481 { 482 struct iio_dev *indio_dev = private; 483 struct ad7150_chip_info *chip = iio_priv(indio_dev); 484 s64 timestamp = iio_get_time_ns(indio_dev); 485 int int_status; 486 487 int_status = i2c_smbus_read_byte_data(chip->client, AD7150_STATUS_REG); 488 if (int_status < 0) 489 return IRQ_HANDLED; 490 491 if (!(int_status & status_mask)) 492 return IRQ_HANDLED; 493 494 iio_push_event(indio_dev, 495 IIO_UNMOD_EVENT_CODE(IIO_CAPACITANCE, channel, 496 chip->type, chip->dir), 497 timestamp); 498 499 return IRQ_HANDLED; 500 } 501 502 static irqreturn_t ad7150_event_handler_ch1(int irq, void *private) 503 { 504 return __ad7150_event_handler(private, AD7150_STATUS_OUT1, 0); 505 } 506 507 static irqreturn_t ad7150_event_handler_ch2(int irq, void *private) 508 { 509 return __ad7150_event_handler(private, AD7150_STATUS_OUT2, 1); 510 } 511 512 static IIO_CONST_ATTR(in_capacitance_thresh_adaptive_timeout_available, 513 "[0 0.01 0.15]"); 514 515 static struct attribute *ad7150_event_attributes[] = { 516 &iio_const_attr_in_capacitance_thresh_adaptive_timeout_available 517 .dev_attr.attr, 518 NULL, 519 }; 520 521 static const struct attribute_group ad7150_event_attribute_group = { 522 .attrs = ad7150_event_attributes, 523 .name = "events", 524 }; 525 526 static const struct iio_info ad7150_info = { 527 .event_attrs = &ad7150_event_attribute_group, 528 .read_raw = &ad7150_read_raw, 529 .read_event_config = &ad7150_read_event_config, 530 .write_event_config = &ad7150_write_event_config, 531 .read_event_value = &ad7150_read_event_value, 532 .write_event_value = &ad7150_write_event_value, 533 }; 534 535 static const struct iio_info ad7150_info_no_irq = { 536 .read_raw = &ad7150_read_raw, 537 }; 538 539 static int ad7150_probe(struct i2c_client *client) 540 { 541 const struct i2c_device_id *id = i2c_client_get_device_id(client); 542 struct ad7150_chip_info *chip; 543 struct iio_dev *indio_dev; 544 int ret; 545 546 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*chip)); 547 if (!indio_dev) 548 return -ENOMEM; 549 550 chip = iio_priv(indio_dev); 551 mutex_init(&chip->state_lock); 552 chip->client = client; 553 554 indio_dev->name = id->name; 555 556 indio_dev->modes = INDIO_DIRECT_MODE; 557 558 ret = devm_regulator_get_enable(&client->dev, "vdd"); 559 if (ret) 560 return ret; 561 562 chip->interrupts[0] = fwnode_irq_get(dev_fwnode(&client->dev), 0); 563 if (chip->interrupts[0] < 0) 564 return chip->interrupts[0]; 565 if (id->driver_data == AD7150) { 566 chip->interrupts[1] = fwnode_irq_get(dev_fwnode(&client->dev), 1); 567 if (chip->interrupts[1] < 0) 568 return chip->interrupts[1]; 569 } 570 if (chip->interrupts[0] && 571 (id->driver_data == AD7151 || chip->interrupts[1])) { 572 irq_set_status_flags(chip->interrupts[0], IRQ_NOAUTOEN); 573 ret = devm_request_threaded_irq(&client->dev, 574 chip->interrupts[0], 575 NULL, 576 &ad7150_event_handler_ch1, 577 IRQF_TRIGGER_RISING | 578 IRQF_ONESHOT, 579 "ad7150_irq1", 580 indio_dev); 581 if (ret) 582 return ret; 583 584 indio_dev->info = &ad7150_info; 585 switch (id->driver_data) { 586 case AD7150: 587 indio_dev->channels = ad7150_channels; 588 indio_dev->num_channels = ARRAY_SIZE(ad7150_channels); 589 irq_set_status_flags(chip->interrupts[1], IRQ_NOAUTOEN); 590 ret = devm_request_threaded_irq(&client->dev, 591 chip->interrupts[1], 592 NULL, 593 &ad7150_event_handler_ch2, 594 IRQF_TRIGGER_RISING | 595 IRQF_ONESHOT, 596 "ad7150_irq2", 597 indio_dev); 598 if (ret) 599 return ret; 600 break; 601 case AD7151: 602 indio_dev->channels = ad7151_channels; 603 indio_dev->num_channels = ARRAY_SIZE(ad7151_channels); 604 break; 605 default: 606 return -EINVAL; 607 } 608 609 } else { 610 indio_dev->info = &ad7150_info_no_irq; 611 switch (id->driver_data) { 612 case AD7150: 613 indio_dev->channels = ad7150_channels_no_irq; 614 indio_dev->num_channels = 615 ARRAY_SIZE(ad7150_channels_no_irq); 616 break; 617 case AD7151: 618 indio_dev->channels = ad7151_channels_no_irq; 619 indio_dev->num_channels = 620 ARRAY_SIZE(ad7151_channels_no_irq); 621 break; 622 default: 623 return -EINVAL; 624 } 625 } 626 627 return devm_iio_device_register(indio_dev->dev.parent, indio_dev); 628 } 629 630 static const struct i2c_device_id ad7150_id[] = { 631 { "ad7150", AD7150 }, 632 { "ad7151", AD7151 }, 633 { "ad7156", AD7150 }, 634 {} 635 }; 636 637 MODULE_DEVICE_TABLE(i2c, ad7150_id); 638 639 static const struct of_device_id ad7150_of_match[] = { 640 { "adi,ad7150" }, 641 { "adi,ad7151" }, 642 { "adi,ad7156" }, 643 {} 644 }; 645 static struct i2c_driver ad7150_driver = { 646 .driver = { 647 .name = "ad7150", 648 .of_match_table = ad7150_of_match, 649 }, 650 .probe = ad7150_probe, 651 .id_table = ad7150_id, 652 }; 653 module_i2c_driver(ad7150_driver); 654 655 MODULE_AUTHOR("Barry Song <21cnbao@gmail.com>"); 656 MODULE_DESCRIPTION("Analog Devices AD7150/1/6 capacitive sensor driver"); 657 MODULE_LICENSE("GPL v2"); 658