xref: /openbmc/linux/drivers/iio/afe/iio-rescale.c (revision c9933d494c54f72290831191c09bb8488bfd5905)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * IIO rescale driver
4  *
5  * Copyright (C) 2018 Axentia Technologies AB
6  * Copyright (C) 2022 Liam Beguin <liambeguin@gmail.com>
7  *
8  * Author: Peter Rosin <peda@axentia.se>
9  */
10 
11 #include <linux/err.h>
12 #include <linux/gcd.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/of_device.h>
16 #include <linux/platform_device.h>
17 #include <linux/property.h>
18 
19 #include <linux/iio/afe/rescale.h>
20 #include <linux/iio/consumer.h>
21 #include <linux/iio/iio.h>
22 
23 int rescale_process_scale(struct rescale *rescale, int scale_type,
24 			  int *val, int *val2)
25 {
26 	s64 tmp;
27 	int _val, _val2;
28 	s32 rem, rem2;
29 	u32 mult;
30 	u32 neg;
31 
32 	switch (scale_type) {
33 	case IIO_VAL_INT:
34 		*val *= rescale->numerator;
35 		if (rescale->denominator == 1)
36 			return scale_type;
37 		*val2 = rescale->denominator;
38 		return IIO_VAL_FRACTIONAL;
39 	case IIO_VAL_FRACTIONAL:
40 		/*
41 		 * When the product of both scales doesn't overflow, avoid
42 		 * potential accuracy loss (for in kernel consumers) by
43 		 * keeping a fractional representation.
44 		 */
45 		if (!check_mul_overflow(*val, rescale->numerator, &_val) &&
46 		    !check_mul_overflow(*val2, rescale->denominator, &_val2)) {
47 			*val = _val;
48 			*val2 = _val2;
49 			return IIO_VAL_FRACTIONAL;
50 		}
51 		fallthrough;
52 	case IIO_VAL_FRACTIONAL_LOG2:
53 		tmp = (s64)*val * 1000000000LL;
54 		tmp = div_s64(tmp, rescale->denominator);
55 		tmp *= rescale->numerator;
56 
57 		tmp = div_s64_rem(tmp, 1000000000LL, &rem);
58 		*val = tmp;
59 
60 		if (!rem)
61 			return scale_type;
62 
63 		if (scale_type == IIO_VAL_FRACTIONAL)
64 			tmp = *val2;
65 		else
66 			tmp = ULL(1) << *val2;
67 
68 		rem2 = *val % (int)tmp;
69 		*val = *val / (int)tmp;
70 
71 		*val2 = rem / (int)tmp;
72 		if (rem2)
73 			*val2 += div_s64((s64)rem2 * 1000000000LL, tmp);
74 
75 		return IIO_VAL_INT_PLUS_NANO;
76 	case IIO_VAL_INT_PLUS_NANO:
77 	case IIO_VAL_INT_PLUS_MICRO:
78 		mult = scale_type == IIO_VAL_INT_PLUS_NANO ? 1000000000L : 1000000L;
79 
80 		/*
81 		 * For IIO_VAL_INT_PLUS_{MICRO,NANO} scale types if either *val
82 		 * OR *val2 is negative the schan scale is negative, i.e.
83 		 * *val = 1 and *val2 = -0.5 yields -1.5 not -0.5.
84 		 */
85 		neg = *val < 0 || *val2 < 0;
86 
87 		tmp = (s64)abs(*val) * abs(rescale->numerator);
88 		*val = div_s64_rem(tmp, abs(rescale->denominator), &rem);
89 
90 		tmp = (s64)rem * mult + (s64)abs(*val2) * abs(rescale->numerator);
91 		tmp = div_s64(tmp, abs(rescale->denominator));
92 
93 		*val += div_s64_rem(tmp, mult, val2);
94 
95 		/*
96 		 * If only one of the rescaler elements or the schan scale is
97 		 * negative, the combined scale is negative.
98 		 */
99 		if (neg ^ ((rescale->numerator < 0) ^ (rescale->denominator < 0))) {
100 			if (*val)
101 				*val = -*val;
102 			else
103 				*val2 = -*val2;
104 		}
105 
106 		return scale_type;
107 	default:
108 		return -EOPNOTSUPP;
109 	}
110 }
111 
112 int rescale_process_offset(struct rescale *rescale, int scale_type,
113 			   int scale, int scale2, int schan_off,
114 			   int *val, int *val2)
115 {
116 	s64 tmp, tmp2;
117 
118 	switch (scale_type) {
119 	case IIO_VAL_FRACTIONAL:
120 		tmp = (s64)rescale->offset * scale2;
121 		*val = div_s64(tmp, scale) + schan_off;
122 		return IIO_VAL_INT;
123 	case IIO_VAL_INT:
124 		*val = div_s64(rescale->offset, scale) + schan_off;
125 		return IIO_VAL_INT;
126 	case IIO_VAL_FRACTIONAL_LOG2:
127 		tmp = (s64)rescale->offset * (1 << scale2);
128 		*val = div_s64(tmp, scale) + schan_off;
129 		return IIO_VAL_INT;
130 	case IIO_VAL_INT_PLUS_NANO:
131 		tmp = (s64)rescale->offset * 1000000000LL;
132 		tmp2 = ((s64)scale * 1000000000LL) + scale2;
133 		*val = div64_s64(tmp, tmp2) + schan_off;
134 		return IIO_VAL_INT;
135 	case IIO_VAL_INT_PLUS_MICRO:
136 		tmp = (s64)rescale->offset * 1000000LL;
137 		tmp2 = ((s64)scale * 1000000LL) + scale2;
138 		*val = div64_s64(tmp, tmp2) + schan_off;
139 		return IIO_VAL_INT;
140 	default:
141 		return -EOPNOTSUPP;
142 	}
143 }
144 
145 static int rescale_read_raw(struct iio_dev *indio_dev,
146 			    struct iio_chan_spec const *chan,
147 			    int *val, int *val2, long mask)
148 {
149 	struct rescale *rescale = iio_priv(indio_dev);
150 	int scale, scale2;
151 	int schan_off = 0;
152 	int ret;
153 
154 	switch (mask) {
155 	case IIO_CHAN_INFO_RAW:
156 		if (rescale->chan_processed)
157 			/*
158 			 * When only processed channels are supported, we
159 			 * read the processed data and scale it by 1/1
160 			 * augmented with whatever the rescaler has calculated.
161 			 */
162 			return iio_read_channel_processed(rescale->source, val);
163 		else
164 			return iio_read_channel_raw(rescale->source, val);
165 
166 	case IIO_CHAN_INFO_SCALE:
167 		if (rescale->chan_processed) {
168 			/*
169 			 * Processed channels are scaled 1-to-1
170 			 */
171 			*val = 1;
172 			*val2 = 1;
173 			ret = IIO_VAL_FRACTIONAL;
174 		} else {
175 			ret = iio_read_channel_scale(rescale->source, val, val2);
176 		}
177 		return rescale_process_scale(rescale, ret, val, val2);
178 	case IIO_CHAN_INFO_OFFSET:
179 		/*
180 		 * Processed channels are scaled 1-to-1 and source offset is
181 		 * already taken into account.
182 		 *
183 		 * In other cases, real world measurement are expressed as:
184 		 *
185 		 *	schan_scale * (raw + schan_offset)
186 		 *
187 		 * Given that the rescaler parameters are applied recursively:
188 		 *
189 		 *	rescaler_scale * (schan_scale * (raw + schan_offset) +
190 		 *		rescaler_offset)
191 		 *
192 		 * Or,
193 		 *
194 		 *	(rescaler_scale * schan_scale) * (raw +
195 		 *		(schan_offset +	rescaler_offset / schan_scale)
196 		 *
197 		 * Thus, reusing the original expression the parameters exposed
198 		 * to userspace are:
199 		 *
200 		 *	scale = schan_scale * rescaler_scale
201 		 *	offset = schan_offset + rescaler_offset / schan_scale
202 		 */
203 		if (rescale->chan_processed) {
204 			*val = rescale->offset;
205 			return IIO_VAL_INT;
206 		}
207 
208 		if (iio_channel_has_info(rescale->source->channel,
209 					 IIO_CHAN_INFO_OFFSET)) {
210 			ret = iio_read_channel_offset(rescale->source,
211 						      &schan_off, NULL);
212 			if (ret != IIO_VAL_INT)
213 				return ret < 0 ? ret : -EOPNOTSUPP;
214 		}
215 
216 		ret = iio_read_channel_scale(rescale->source, &scale, &scale2);
217 		return rescale_process_offset(rescale, ret, scale, scale2,
218 					      schan_off, val, val2);
219 	default:
220 		return -EINVAL;
221 	}
222 }
223 
224 static int rescale_read_avail(struct iio_dev *indio_dev,
225 			      struct iio_chan_spec const *chan,
226 			      const int **vals, int *type, int *length,
227 			      long mask)
228 {
229 	struct rescale *rescale = iio_priv(indio_dev);
230 
231 	switch (mask) {
232 	case IIO_CHAN_INFO_RAW:
233 		*type = IIO_VAL_INT;
234 		return iio_read_avail_channel_raw(rescale->source,
235 						  vals, length);
236 	default:
237 		return -EINVAL;
238 	}
239 }
240 
241 static const struct iio_info rescale_info = {
242 	.read_raw = rescale_read_raw,
243 	.read_avail = rescale_read_avail,
244 };
245 
246 static ssize_t rescale_read_ext_info(struct iio_dev *indio_dev,
247 				     uintptr_t private,
248 				     struct iio_chan_spec const *chan,
249 				     char *buf)
250 {
251 	struct rescale *rescale = iio_priv(indio_dev);
252 
253 	return iio_read_channel_ext_info(rescale->source,
254 					 rescale->ext_info[private].name,
255 					 buf);
256 }
257 
258 static ssize_t rescale_write_ext_info(struct iio_dev *indio_dev,
259 				      uintptr_t private,
260 				      struct iio_chan_spec const *chan,
261 				      const char *buf, size_t len)
262 {
263 	struct rescale *rescale = iio_priv(indio_dev);
264 
265 	return iio_write_channel_ext_info(rescale->source,
266 					  rescale->ext_info[private].name,
267 					  buf, len);
268 }
269 
270 static int rescale_configure_channel(struct device *dev,
271 				     struct rescale *rescale)
272 {
273 	struct iio_chan_spec *chan = &rescale->chan;
274 	struct iio_chan_spec const *schan = rescale->source->channel;
275 
276 	chan->indexed = 1;
277 	chan->output = schan->output;
278 	chan->ext_info = rescale->ext_info;
279 	chan->type = rescale->cfg->type;
280 
281 	if (iio_channel_has_info(schan, IIO_CHAN_INFO_RAW) ||
282 	    iio_channel_has_info(schan, IIO_CHAN_INFO_SCALE)) {
283 		dev_info(dev, "using raw+scale source channel\n");
284 	} else if (iio_channel_has_info(schan, IIO_CHAN_INFO_PROCESSED)) {
285 		dev_info(dev, "using processed channel\n");
286 		rescale->chan_processed = true;
287 	} else {
288 		dev_err(dev, "source channel is not supported\n");
289 		return -EINVAL;
290 	}
291 
292 	chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
293 		BIT(IIO_CHAN_INFO_SCALE);
294 
295 	if (rescale->offset)
296 		chan->info_mask_separate |= BIT(IIO_CHAN_INFO_OFFSET);
297 
298 	/*
299 	 * Using .read_avail() is fringe to begin with and makes no sense
300 	 * whatsoever for processed channels, so we make sure that this cannot
301 	 * be called on a processed channel.
302 	 */
303 	if (iio_channel_has_available(schan, IIO_CHAN_INFO_RAW) &&
304 	    !rescale->chan_processed)
305 		chan->info_mask_separate_available |= BIT(IIO_CHAN_INFO_RAW);
306 
307 	return 0;
308 }
309 
310 static int rescale_current_sense_amplifier_props(struct device *dev,
311 						 struct rescale *rescale)
312 {
313 	u32 sense;
314 	u32 gain_mult = 1;
315 	u32 gain_div = 1;
316 	u32 factor;
317 	int ret;
318 
319 	ret = device_property_read_u32(dev, "sense-resistor-micro-ohms",
320 				       &sense);
321 	if (ret) {
322 		dev_err(dev, "failed to read the sense resistance: %d\n", ret);
323 		return ret;
324 	}
325 
326 	device_property_read_u32(dev, "sense-gain-mult", &gain_mult);
327 	device_property_read_u32(dev, "sense-gain-div", &gain_div);
328 
329 	/*
330 	 * Calculate the scaling factor, 1 / (gain * sense), or
331 	 * gain_div / (gain_mult * sense), while trying to keep the
332 	 * numerator/denominator from overflowing.
333 	 */
334 	factor = gcd(sense, 1000000);
335 	rescale->numerator = 1000000 / factor;
336 	rescale->denominator = sense / factor;
337 
338 	factor = gcd(rescale->numerator, gain_mult);
339 	rescale->numerator /= factor;
340 	rescale->denominator *= gain_mult / factor;
341 
342 	factor = gcd(rescale->denominator, gain_div);
343 	rescale->numerator *= gain_div / factor;
344 	rescale->denominator /= factor;
345 
346 	return 0;
347 }
348 
349 static int rescale_current_sense_shunt_props(struct device *dev,
350 					     struct rescale *rescale)
351 {
352 	u32 shunt;
353 	u32 factor;
354 	int ret;
355 
356 	ret = device_property_read_u32(dev, "shunt-resistor-micro-ohms",
357 				       &shunt);
358 	if (ret) {
359 		dev_err(dev, "failed to read the shunt resistance: %d\n", ret);
360 		return ret;
361 	}
362 
363 	factor = gcd(shunt, 1000000);
364 	rescale->numerator = 1000000 / factor;
365 	rescale->denominator = shunt / factor;
366 
367 	return 0;
368 }
369 
370 static int rescale_voltage_divider_props(struct device *dev,
371 					 struct rescale *rescale)
372 {
373 	int ret;
374 	u32 factor;
375 
376 	ret = device_property_read_u32(dev, "output-ohms",
377 				       &rescale->denominator);
378 	if (ret) {
379 		dev_err(dev, "failed to read output-ohms: %d\n", ret);
380 		return ret;
381 	}
382 
383 	ret = device_property_read_u32(dev, "full-ohms",
384 				       &rescale->numerator);
385 	if (ret) {
386 		dev_err(dev, "failed to read full-ohms: %d\n", ret);
387 		return ret;
388 	}
389 
390 	factor = gcd(rescale->numerator, rescale->denominator);
391 	rescale->numerator /= factor;
392 	rescale->denominator /= factor;
393 
394 	return 0;
395 }
396 
397 static int rescale_temp_sense_rtd_props(struct device *dev,
398 					struct rescale *rescale)
399 {
400 	u32 factor;
401 	u32 alpha;
402 	u32 iexc;
403 	u32 tmp;
404 	int ret;
405 	u32 r0;
406 
407 	ret = device_property_read_u32(dev, "excitation-current-microamp",
408 				       &iexc);
409 	if (ret) {
410 		dev_err(dev, "failed to read excitation-current-microamp: %d\n",
411 			ret);
412 		return ret;
413 	}
414 
415 	ret = device_property_read_u32(dev, "alpha-ppm-per-celsius", &alpha);
416 	if (ret) {
417 		dev_err(dev, "failed to read alpha-ppm-per-celsius: %d\n",
418 			ret);
419 		return ret;
420 	}
421 
422 	ret = device_property_read_u32(dev, "r-naught-ohms", &r0);
423 	if (ret) {
424 		dev_err(dev, "failed to read r-naught-ohms: %d\n", ret);
425 		return ret;
426 	}
427 
428 	tmp = r0 * iexc * alpha / 1000000;
429 	factor = gcd(tmp, 1000000);
430 	rescale->numerator = 1000000 / factor;
431 	rescale->denominator = tmp / factor;
432 
433 	rescale->offset = -1 * ((r0 * iexc) / 1000);
434 
435 	return 0;
436 }
437 
438 static int rescale_temp_transducer_props(struct device *dev,
439 					 struct rescale *rescale)
440 {
441 	s32 offset = 0;
442 	s32 sense = 1;
443 	s32 alpha;
444 	int ret;
445 
446 	device_property_read_u32(dev, "sense-offset-millicelsius", &offset);
447 	device_property_read_u32(dev, "sense-resistor-ohms", &sense);
448 	ret = device_property_read_u32(dev, "alpha-ppm-per-celsius", &alpha);
449 	if (ret) {
450 		dev_err(dev, "failed to read alpha-ppm-per-celsius: %d\n", ret);
451 		return ret;
452 	}
453 
454 	rescale->numerator = 1000000;
455 	rescale->denominator = alpha * sense;
456 
457 	rescale->offset = div_s64((s64)offset * rescale->denominator,
458 				  rescale->numerator);
459 
460 	return 0;
461 }
462 
463 enum rescale_variant {
464 	CURRENT_SENSE_AMPLIFIER,
465 	CURRENT_SENSE_SHUNT,
466 	VOLTAGE_DIVIDER,
467 	TEMP_SENSE_RTD,
468 	TEMP_TRANSDUCER,
469 };
470 
471 static const struct rescale_cfg rescale_cfg[] = {
472 	[CURRENT_SENSE_AMPLIFIER] = {
473 		.type = IIO_CURRENT,
474 		.props = rescale_current_sense_amplifier_props,
475 	},
476 	[CURRENT_SENSE_SHUNT] = {
477 		.type = IIO_CURRENT,
478 		.props = rescale_current_sense_shunt_props,
479 	},
480 	[VOLTAGE_DIVIDER] = {
481 		.type = IIO_VOLTAGE,
482 		.props = rescale_voltage_divider_props,
483 	},
484 	[TEMP_SENSE_RTD] = {
485 		.type = IIO_TEMP,
486 		.props = rescale_temp_sense_rtd_props,
487 	},
488 	[TEMP_TRANSDUCER] = {
489 		.type = IIO_TEMP,
490 		.props = rescale_temp_transducer_props,
491 	},
492 };
493 
494 static const struct of_device_id rescale_match[] = {
495 	{ .compatible = "current-sense-amplifier",
496 	  .data = &rescale_cfg[CURRENT_SENSE_AMPLIFIER], },
497 	{ .compatible = "current-sense-shunt",
498 	  .data = &rescale_cfg[CURRENT_SENSE_SHUNT], },
499 	{ .compatible = "voltage-divider",
500 	  .data = &rescale_cfg[VOLTAGE_DIVIDER], },
501 	{ .compatible = "temperature-sense-rtd",
502 	  .data = &rescale_cfg[TEMP_SENSE_RTD], },
503 	{ .compatible = "temperature-transducer",
504 	  .data = &rescale_cfg[TEMP_TRANSDUCER], },
505 	{ /* sentinel */ }
506 };
507 MODULE_DEVICE_TABLE(of, rescale_match);
508 
509 static int rescale_probe(struct platform_device *pdev)
510 {
511 	struct device *dev = &pdev->dev;
512 	struct iio_dev *indio_dev;
513 	struct iio_channel *source;
514 	struct rescale *rescale;
515 	int sizeof_ext_info;
516 	int sizeof_priv;
517 	int i;
518 	int ret;
519 
520 	source = devm_iio_channel_get(dev, NULL);
521 	if (IS_ERR(source))
522 		return dev_err_probe(dev, PTR_ERR(source),
523 				     "failed to get source channel\n");
524 
525 	sizeof_ext_info = iio_get_channel_ext_info_count(source);
526 	if (sizeof_ext_info) {
527 		sizeof_ext_info += 1; /* one extra entry for the sentinel */
528 		sizeof_ext_info *= sizeof(*rescale->ext_info);
529 	}
530 
531 	sizeof_priv = sizeof(*rescale) + sizeof_ext_info;
532 
533 	indio_dev = devm_iio_device_alloc(dev, sizeof_priv);
534 	if (!indio_dev)
535 		return -ENOMEM;
536 
537 	rescale = iio_priv(indio_dev);
538 
539 	rescale->cfg = of_device_get_match_data(dev);
540 	rescale->numerator = 1;
541 	rescale->denominator = 1;
542 	rescale->offset = 0;
543 
544 	ret = rescale->cfg->props(dev, rescale);
545 	if (ret)
546 		return ret;
547 
548 	if (!rescale->numerator || !rescale->denominator) {
549 		dev_err(dev, "invalid scaling factor.\n");
550 		return -EINVAL;
551 	}
552 
553 	platform_set_drvdata(pdev, indio_dev);
554 
555 	rescale->source = source;
556 
557 	indio_dev->name = dev_name(dev);
558 	indio_dev->info = &rescale_info;
559 	indio_dev->modes = INDIO_DIRECT_MODE;
560 	indio_dev->channels = &rescale->chan;
561 	indio_dev->num_channels = 1;
562 	if (sizeof_ext_info) {
563 		rescale->ext_info = devm_kmemdup(dev,
564 						 source->channel->ext_info,
565 						 sizeof_ext_info, GFP_KERNEL);
566 		if (!rescale->ext_info)
567 			return -ENOMEM;
568 
569 		for (i = 0; rescale->ext_info[i].name; ++i) {
570 			struct iio_chan_spec_ext_info *ext_info =
571 				&rescale->ext_info[i];
572 
573 			if (source->channel->ext_info[i].read)
574 				ext_info->read = rescale_read_ext_info;
575 			if (source->channel->ext_info[i].write)
576 				ext_info->write = rescale_write_ext_info;
577 			ext_info->private = i;
578 		}
579 	}
580 
581 	ret = rescale_configure_channel(dev, rescale);
582 	if (ret)
583 		return ret;
584 
585 	return devm_iio_device_register(dev, indio_dev);
586 }
587 
588 static struct platform_driver rescale_driver = {
589 	.probe = rescale_probe,
590 	.driver = {
591 		.name = "iio-rescale",
592 		.of_match_table = rescale_match,
593 	},
594 };
595 module_platform_driver(rescale_driver);
596 
597 MODULE_DESCRIPTION("IIO rescale driver");
598 MODULE_AUTHOR("Peter Rosin <peda@axentia.se>");
599 MODULE_LICENSE("GPL v2");
600